JP2013253775A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2013253775A
JP2013253775A JP2013172456A JP2013172456A JP2013253775A JP 2013253775 A JP2013253775 A JP 2013253775A JP 2013172456 A JP2013172456 A JP 2013172456A JP 2013172456 A JP2013172456 A JP 2013172456A JP 2013253775 A JP2013253775 A JP 2013253775A
Authority
JP
Japan
Prior art keywords
compressor
working fluid
heat
heat exchanger
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013172456A
Other languages
Japanese (ja)
Other versions
JP5747058B2 (en
Inventor
Yuji Kamiya
裕治 紙屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2013172456A priority Critical patent/JP5747058B2/en
Publication of JP2013253775A publication Critical patent/JP2013253775A/en
Application granted granted Critical
Publication of JP5747058B2 publication Critical patent/JP5747058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compressor enabled to improve an exhaust heat recovery rate.SOLUTION: A compressor including a compressor body 1 for compressing air while oil is supplied into a compressor chamber, and a separator 17 for separating oil contained in compressed air discharged from the compressor body 1 includes a heat exchanger 19 for exchanging heat of compressed air separated by the separator 17 with working fluid to cool it, a heat exchanger 18 for exchanging heat of oil separated by the separator 17 with working fluid to cool it, an expander 6 for expanding working fluid evaporated by being heated by the heat exchangers 19, 18 to produce drive force, a condenser 7 for cooling working fluid supplied from the expander 6 to liquefy it and supplying the liquefied working fluid to the heat exchangers 19, 18, and a circulation pump 8 for circulating the working fluid among the heat exchangers 19, 18, the expander 6, and the condenser 7, and the heat exchangers 19, 18, the expander 6, the condenser 7, and the circulation pump 8 constitute a rankine cycle.

Description

本発明は、気体を圧縮する圧縮機に係わり、特に、排熱を回収する圧縮機に関する。   The present invention relates to a compressor that compresses gas, and more particularly, to a compressor that recovers exhaust heat.

圧縮機は、例えば空気を圧縮する際に多大な熱量が発生し、圧縮空気が高温となる。圧縮空気は、高温のまま使用される場合もあるが、一般的には、大気温度近くまで冷却され、さらに除湿されて使用される。また、圧縮機では、潤滑や冷却のために油や水を使用することがあり、高温となった油や水は冷却される。このように圧縮機で発生した熱は圧縮空気、油、又は水などを介して排熱されることになるが、この排熱を回収する装置の一つとして、圧縮機本体及び吐出配管に熱電変換素子を装着したものが提唱されている(例えば、特許文献1参照)。特許文献1に記載の従来技術では、圧縮機本体及び吐出配管などの高温部からの熱を熱電変換素子で電力変換し、レギュレータを通じて電圧変換して、冷却ファンやオイルポンプ等の補器に電力供給するようなっている。   For example, when compressing air, a compressor generates a great amount of heat, and the compressed air becomes high temperature. Compressed air may be used at a high temperature, but is generally cooled to near atmospheric temperature and dehumidified before use. Moreover, in a compressor, oil and water may be used for lubrication and cooling, and the oil and water which became high temperature are cooled. The heat generated in the compressor is exhausted through compressed air, oil, water, etc. As one of devices for recovering this exhaust heat, thermoelectric conversion is performed on the compressor body and the discharge pipe. A device equipped with an element has been proposed (see, for example, Patent Document 1). In the prior art described in Patent Document 1, heat from a high-temperature part such as a compressor main body and a discharge pipe is converted into electric power by a thermoelectric conversion element, voltage is converted through a regulator, and electric power is supplied to auxiliary devices such as a cooling fan and an oil pump. To supply.

特開2006−125302号公報JP 2006-125302 A

しかしながら、上記従来技術には以下のような課題が存在する。すなわち、上記特許文献1に記載の従来技術では、圧縮機本体及び吐出配管に熱電変換素子を装着している。ところが、圧縮機本体や吐出配管などの高温部は表面積に限りがあり、熱電変換素子の面積を大きく確保することができない。そのため、排熱回収効率の点で改善の余地があった。   However, there are the following problems in the above-described prior art. That is, in the prior art described in Patent Document 1, thermoelectric conversion elements are mounted on the compressor body and the discharge pipe. However, high-temperature parts such as the compressor main body and the discharge pipe have a limited surface area, and a large area of the thermoelectric conversion element cannot be secured. Therefore, there was room for improvement in terms of exhaust heat recovery efficiency.

本発明の目的は、排熱回収効率を向上させることができる圧縮機を提供することにある。   An object of the present invention is to provide a compressor capable of improving exhaust heat recovery efficiency.

(1)上記目的を達成するために、本発明は、圧縮室内に油又は水が供給された状態で空気を圧縮する圧縮機本体と、前記圧縮機本体から吐出された圧縮空気に含まれる油又は水を分離する分離器とを備えた圧縮機において、前記分離器で分離された圧縮空気を作動流体と熱交換して冷却する圧縮空気用の熱交換器、及び前記分離器で分離された油又は水を前記作動流体と熱交換して冷却する油用又は水用の熱交換器を含む、複数の熱交換器と、前記複数の熱交換器で加熱されて気化した前記作動流体を膨張させて駆動力を生成する膨張機と、前記膨張機から供給された前記作動流体を冷却して液化し、この液化した作動流体を前記複数の熱交換器に供給する凝縮器と、前記複数の熱交換器、前記膨張機、及び前記凝縮器の間で前記作動流体を循環させる循環ポンプとを備え、前記複数の熱交換器、前記膨張機、前記凝縮器、及び前記循環ポンプでランキンサイクルを構成する。   (1) In order to achieve the above object, the present invention provides a compressor main body that compresses air in a state where oil or water is supplied into the compression chamber, and oil contained in the compressed air discharged from the compressor main body. Or a compressor having a separator for separating water, a heat exchanger for compressed air that cools the compressed air separated by the separator by exchanging heat with a working fluid, and separated by the separator A plurality of heat exchangers including a heat exchanger for oil or water that cools oil or water by exchanging heat with the working fluid, and the working fluid that has been heated and vaporized by the plurality of heat exchangers is expanded. An expander that generates a driving force, a condenser that cools and liquefies the working fluid supplied from the expander, and supplies the liquefied working fluid to the plurality of heat exchangers; The working fluid between the heat exchanger, the expander, and the condenser And a circulation pump for circulating said plurality of heat exchangers, said expander, said condenser, and uses a Rankine cycle by the circulation pump.

(2)上記(1)において、好ましくは、前記圧縮機本体の動力を生成する原動機と、前記原動機と前記圧縮機本体との間で接続されたギア装置とを備えており、前記複数の熱交換器は、前記ギア装置で潤滑されて加熱された潤滑油を前記作動流体と熱交換して冷却する潤滑油用の熱交換器をさらに含む。   (2) In the above (1), preferably, the apparatus includes a prime mover that generates power of the compressor body, and a gear device connected between the prime mover and the compressor body, and the plurality of heats The exchanger further includes a heat exchanger for lubricating oil that cools the lubricating oil that has been lubricated and heated by the gear device by exchanging heat with the working fluid.

(3)上記(1)又は(2)において、好ましくは、前記分離器の上流側で油又は水を含む圧縮空気の温度を検出する温度検出手段と、前記温度検出手段の検出結果に応じて前記ランキンサイクルの循環流量を制御する流量制御手段とを備える。   (3) In the above (1) or (2), preferably, temperature detection means for detecting the temperature of compressed air containing oil or water on the upstream side of the separator, and depending on the detection result of the temperature detection means Flow rate control means for controlling the circulation flow rate of the Rankine cycle.

(4)上記(1)〜(3)のいずれか1つにおいて、好ましくは、前記複数の熱交換器は、交換熱量が大きくなる順序で前記作動媒体が流通するように直列接続される。   (4) In any one of the above (1) to (3), preferably, the plurality of heat exchangers are connected in series so that the working medium flows in an order in which the amount of exchange heat increases.

これにより、作動流体を効率よく気化させることができ、排熱回収効率を向上させることができる。   Thereby, a working fluid can be efficiently vaporized and exhaust heat recovery efficiency can be improved.

(5)上記(1)〜(4)のいずれか1つにおいて、好ましくは、前記膨張機に接続された発電機を備える。   (5) In any one of said (1)-(4), Preferably, the generator connected to the said expander is provided.

これにより、圧縮機の排熱を回収して生成した駆動力を電力に変換することができる。   Thereby, the driving force generated by collecting the exhaust heat of the compressor can be converted into electric power.

(6)上記(5)において、好ましくは、前記圧縮機本体の動力を生成する原動機である電動機の回転数を可変するインバータを備え、前記発電機に前記インバータが接続される。   (6) In the above (5), preferably, an inverter that changes a rotational speed of an electric motor that is a prime mover that generates power of the compressor body is provided, and the inverter is connected to the generator.

本発明によれば、排熱回収効率を向上させることができる。   According to the present invention, exhaust heat recovery efficiency can be improved.

本発明の第1の実施形態における圧縮機の要部構成を表す図である。It is a figure showing the principal part structure of the compressor in the 1st Embodiment of this invention. 本発明の第2の実施形態における圧縮機の要部構成を表す図である。It is a figure showing the principal part structure of the compressor in the 2nd Embodiment of this invention. 本発明の第3の実施形態における圧縮機の要部構成を表す図である。It is a figure showing the principal part structure of the compressor in the 3rd Embodiment of this invention. 本発明の一変形例における圧縮機の要部構成を表す図である。It is a figure showing the principal part structure of the compressor in one modification of this invention. 本発明の第4の実施形態における圧縮機の要部構成を表す図である。It is a figure showing the principal part structure of the compressor in the 4th Embodiment of this invention. 本発明の他の変形例における圧縮機の要部構成を表す図である。It is a figure showing the principal part structure of the compressor in the other modification of this invention. 本発明の第5の実施形態における圧縮機の要部構成を表す図である。It is a figure showing the principal part structure of the compressor in the 5th Embodiment of this invention. 本発明の第6の実施形態における圧縮機の要部構成を表す図である。It is a figure showing the principal part structure of the compressor in the 6th Embodiment of this invention. 本発明の第7の実施形態における圧縮機の要部構成を表す図である。It is a figure showing the principal part structure of the compressor in the 7th Embodiment of this invention. 本発明の第8の実施形態における圧縮機の要部構成を表す図である。It is a figure showing the principal part structure of the compressor in the 8th Embodiment of this invention.

本発明の第1の実施形態を図1により説明する。図1は、本実施形態における圧縮機の要部構成を表す概略図である。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating a main configuration of a compressor in the present embodiment.

この図1において、無給油・無給水式の圧縮機は、スクリュー式の圧縮機本体1と、この圧縮機本体1に図示しないギア装置(増速装置)を介し接続され、圧縮機本体1を駆動する電動機2と、圧縮機本体1の吸込側に設けられた吸気フィルタ3及び吸込み絞り弁4とを備えている。そして、電動機2によって圧縮機本体1が駆動すると、吸気フィルタ3及び吸込み絞り弁4を経由して空気(大気)を吸い込み、所定の圧力まで圧縮し、圧縮空気を吐出するようになっている。なお、図示しない制御装置は、吸込み絞り弁4を開放状態から閉塞状態に切り換えることで、負荷運転から無負荷運転に切り換えるようになっている。   In FIG. 1, an oil-free / water-free compressor is connected to a screw-type compressor body 1 via a gear device (speed increasing device) (not shown). An electric motor 2 to be driven, and an intake filter 3 and a suction throttle valve 4 provided on the suction side of the compressor body 1 are provided. When the compressor main body 1 is driven by the electric motor 2, the air (atmosphere) is sucked through the intake filter 3 and the suction throttle valve 4, compressed to a predetermined pressure, and the compressed air is discharged. Note that a control device (not shown) switches from the load operation to the no-load operation by switching the suction throttle valve 4 from the open state to the closed state.

ここで本実施形態の大きな特徴として、圧縮機本体1の吐出側には圧縮空気を例えば大気温度近くまで冷却する熱交換器5が設けられており、この熱交換器5を介し圧縮空気から排熱を回収する排熱回収装置が設けられている。この排熱回収装置は、圧縮空気との熱交換により作動流体(水若しくは冷媒)を加熱して気化する熱交換器5と、この熱交換器5で気化した作動流体を膨張させて駆動力を生成する膨張機6と、膨張機6からの作動流体を冷却して液化する凝縮器7と、この凝縮器7で液化した作動流体を熱交換器5に供給する循環ポンプ8とを備えており、ランキンサイクルを構成している。   Here, as a major feature of the present embodiment, a heat exchanger 5 that cools the compressed air to near the atmospheric temperature, for example, is provided on the discharge side of the compressor body 1, and is discharged from the compressed air through the heat exchanger 5. An exhaust heat recovery device for recovering heat is provided. This exhaust heat recovery device heats the working fluid (water or refrigerant) by heat exchange with compressed air and evaporates the working fluid vaporized by the heat exchanger 5 to increase the driving force. The expander 6 to be generated, the condenser 7 that cools and liquefies the working fluid from the expander 6, and the circulation pump 8 that supplies the working fluid liquefied by the condenser 7 to the heat exchanger 5 are provided. Constitutes the Rankine cycle.

また、膨張機6には発電機9が接続されており、膨張機6で生成した駆動力を電力に変換するようになっている。そして、発電機9で生成した電力は、例えば、電源系統に戻して他の装置に供給する電力を賄うことが可能である(言い換えれば、電力会社に売電することが可能である)。その際、電力の周波数制御のためのインバータ(図示せず)を、発電機9に接続してもよい。   A power generator 9 is connected to the expander 6 so that the driving force generated by the expander 6 is converted into electric power. And the electric power produced | generated with the generator 9 can return to a power supply system, for example, and can supply the electric power supplied to another apparatus (in other words, it is possible to sell electric power to an electric power company). At that time, an inverter (not shown) for frequency control of electric power may be connected to the generator 9.

また、発電機9で生成した電力は、例えば圧縮機内の補器(例えば機内換気用の冷却ファン等)を駆動するための電力を賄うことが可能である。また、例えば電動機2の回転数制御のためのインバータ(図示せず)を搭載した圧縮機においては、このインバータに発電機9を接続してもよい。すなわち、インバータは、商用電源(主電源)からの電力だけでなく、発電機9からの電力も供給されるようにしてもよい。この場合、図示しない回転数制御装置は、圧縮機本体1の吐出圧力と設定圧力との偏差から回転数指令値を演算し、この回転数指令値をインバータに出力する。インバータは、回転数指令値に基づきスイッチング素子を制御して所望の周波数の電圧波形を生成し、電動機2へ供給する。   Moreover, the electric power generated by the generator 9 can cover, for example, electric power for driving an auxiliary device in the compressor (for example, a cooling fan for in-machine ventilation). For example, in a compressor equipped with an inverter (not shown) for controlling the rotational speed of the electric motor 2, a generator 9 may be connected to the inverter. That is, the inverter may be supplied not only with electric power from the commercial power supply (main power supply) but also with electric power from the generator 9. In this case, a rotation speed control device (not shown) calculates a rotation speed command value from the deviation between the discharge pressure of the compressor body 1 and the set pressure, and outputs this rotation speed command value to the inverter. The inverter generates a voltage waveform having a desired frequency by controlling the switching element based on the rotation speed command value, and supplies the voltage waveform to the electric motor 2.

また、図示しない電力供給制御装置は、発電機9からインバータへの供給電力(言い換えれば、発電機9の発電量)を推定し、さらに、この推定した供給電力と主電源からインバータへの供給電力との総和が所定値となるように、主電源からインバータへの供給電力を調整する。詳しく説明すると、発電機9の発電量(言い換えれば、排熱回収装置の回収熱量)は圧縮機の発熱量に依存し、発熱量が大となれば発電量も大となる傾向がある。圧縮機の発熱量は、圧縮機本体1の吐出圧力及び空気量、あるいは、電動機2の回転数及びトルクに依存する。そのため、圧縮機本体1の吐出圧力の検出値、電動機2の回転数の検出値(又は回転数指令値)、あるいは、電動機2のトルク電流の検出値に基づいて、発電機9の発電量を推定する。また、回収熱量は圧縮空気の温度や周囲温度に依存するため、これらの検出値を用いることで、推定精度が向上する。そして、発電機9の発電量の分だけ主電源からの供給電力を抑制する。これにより、見掛け上、圧縮機に必要な電力を低減でき、省エネルギー効果が期待できる。   Further, the power supply control device (not shown) estimates the power supplied from the generator 9 to the inverter (in other words, the amount of power generated by the generator 9), and further, the estimated power supply and the power supplied from the main power source to the inverter. The power supplied from the main power source to the inverter is adjusted so that the sum of the values becomes a predetermined value. More specifically, the power generation amount of the generator 9 (in other words, the recovered heat amount of the exhaust heat recovery device) depends on the heat generation amount of the compressor, and the power generation amount tends to increase as the heat generation amount increases. The amount of heat generated by the compressor depends on the discharge pressure and air amount of the compressor body 1 or the rotational speed and torque of the electric motor 2. Therefore, the power generation amount of the generator 9 is determined based on the detected value of the discharge pressure of the compressor body 1, the detected value of the rotational speed of the electric motor 2 (or the rotational speed command value), or the detected value of the torque current of the electric motor 2. presume. Moreover, since the amount of recovered heat depends on the temperature of the compressed air and the ambient temperature, the estimation accuracy is improved by using these detected values. Then, the power supplied from the main power source is suppressed by the amount of power generated by the generator 9. Thereby, the electric power required for the compressor can be apparently reduced, and an energy saving effect can be expected.

次に、本実施形態の作用効果を説明する。   Next, the effect of this embodiment is demonstrated.

無給油・無給水式の圧縮機は、圧縮機本体1の圧縮室に油又は水を供給しない状態で運転するため、圧縮空気が高温となる。例えば大気圧から0.7MPa(ゲージ圧)まで圧縮した場合の圧縮空気の温度は300〜400℃程度となる。この圧縮空気を使用するため、圧縮空気を熱交換器5で例えば大気温度近くまで冷却する。そして、本実施形態では、圧縮空気から排熱を回収する排熱回収装置として、熱交換器5、膨張機6、凝縮器7、及び循環ポンプ8からなるランキンサイクルを構成し、膨張機6で生成した駆動力を発電機9により電力に変換する。これにより、例えば圧縮機本体1及び吐出配管に熱電素子を装着するような場合と比べ、排熱回収効率を高めることができる。   Since the oil-free / water-free compressor is operated without supplying oil or water to the compression chamber of the compressor body 1, the compressed air becomes high temperature. For example, the temperature of the compressed air when compressed from atmospheric pressure to 0.7 MPa (gauge pressure) is about 300 to 400 ° C. In order to use this compressed air, the compressed air is cooled by the heat exchanger 5 to near the atmospheric temperature, for example. In the present embodiment, as an exhaust heat recovery device that recovers exhaust heat from compressed air, a Rankine cycle including a heat exchanger 5, an expander 6, a condenser 7, and a circulation pump 8 is configured. The generated driving force is converted into electric power by the generator 9. Thereby, compared with the case where a thermoelectric element is mounted | worn with the compressor main body 1 and discharge piping, for example, waste heat recovery efficiency can be improved.

本発明の第2の実施形態を図2により説明する。図2は、本施形態における圧縮機の要部構成を表す図である。なお、この図2において、上記第1の実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。   A second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a diagram illustrating a main configuration of the compressor according to the present embodiment. In FIG. 2, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

本実施形態では、圧縮機本体1のケーシングには冷却液(クーラント)が流通する冷却液用流路(図示せず)が形成されており、この冷却液用流路に冷却液を供給する冷却液系統が設けられている。この冷却液系統は、冷却液を冷却して圧縮機本体1の冷却液用流路に供給する熱交換器10と、圧縮機本体1の冷却液用流路に流通されて加熱された冷却液を熱交換器10に供給するポンプ11とを備えている。   In the present embodiment, the casing of the compressor body 1 is formed with a cooling liquid passage (not shown) through which a cooling liquid (coolant) flows, and the cooling liquid is supplied to the cooling liquid passage. A liquid system is provided. The coolant system includes a heat exchanger 10 that cools the coolant and supplies the coolant to the coolant channel of the compressor body 1, and a coolant that is circulated and heated in the coolant channel of the compressor body 1. Is provided to the heat exchanger 10.

そして、熱交換器10を介し冷却液から排熱を回収するとともに、熱交換器5を介し圧縮空気から排熱を回収する排熱回収装置が設けられている。この排熱回収装置は、冷却液との熱交換により作動流体を加熱する熱交換器10と、この熱交換器10で加熱された作動流体を、圧縮空気との熱交換により加熱して気化する熱交換器5と、この熱交換器5で気化した作動流体を膨張させて駆動力を生成する膨張機6と、膨張機6からの作動流体を冷却して液化する凝縮器7と、この凝縮器7で液化した作動流体を熱交換器11に供給する循環ポンプ8とを備えており、ランキンサイクルを構成している。   An exhaust heat recovery device that recovers exhaust heat from the coolant via the heat exchanger 10 and recovers exhaust heat from the compressed air via the heat exchanger 5 is provided. The exhaust heat recovery device heats and vaporizes the heat exchanger 10 that heats the working fluid by heat exchange with the coolant and the heat exchanger 10 heated by the heat exchanger 10 by heat exchange with compressed air. The heat exchanger 5, the expander 6 that expands the working fluid vaporized in the heat exchanger 5 to generate a driving force, the condenser 7 that cools and liquefies the working fluid from the expander 6, and the condensation And a circulation pump 8 for supplying the working fluid liquefied in the vessel 7 to the heat exchanger 11 to constitute a Rankine cycle.

このように構成された本実施形態においても、排熱回収効率を向上させることができる。また、本実施形態では、圧縮空気だけでなく冷却液からも排熱を回収するので、上記第1の実施形態よりも、排熱回収効率を高めることができる。また、本実施形態では、熱交換器10の熱交換量が熱交換器5の熱交換量より小さいことから、熱交換器10から熱交換器5へと順に作動流体を流すことにより、作動流体を効率よく気化させることができ、排熱回収効率を向上させることができる。なお、例えば熱交換器5の熱交換量が熱交換器10の熱交換量より小さい場合は、熱交換器5から熱交換器10へと順に作動流体を流すように構成したほうがよい。   Also in the present embodiment configured as described above, the exhaust heat recovery efficiency can be improved. Moreover, in this embodiment, since exhaust heat is collect | recovered not only from compressed air but from a cooling fluid, waste heat recovery efficiency can be improved rather than the said 1st Embodiment. Moreover, in this embodiment, since the heat exchange amount of the heat exchanger 10 is smaller than the heat exchange amount of the heat exchanger 5, the working fluid is caused to flow from the heat exchanger 10 to the heat exchanger 5 in order, so that the working fluid Can be efficiently vaporized, and exhaust heat recovery efficiency can be improved. For example, when the heat exchange amount of the heat exchanger 5 is smaller than the heat exchange amount of the heat exchanger 10, it is better to configure the working fluid to flow from the heat exchanger 5 to the heat exchanger 10 in order.

なお、上記第2の実施形態においては、熱交換器10を介し冷却液から排熱を回収するとともに、熱交換器5を介し圧縮空気から排熱を回収する排熱回収装置を説明したが、これに代えて、例えば熱交換器10を介し冷却液だけから排熱を回収する排熱回収装置としてもよい。すなわち、図示しないが、排熱回収装置は、冷却液との熱交換により作動流体を加熱して気化する熱交換器10と、この熱交換器10で気化した作動流体を膨張させて駆動力を生成する膨張機6と、膨張機6からの作動流体を冷却して液化する凝縮器7と、この凝縮器7で液化した作動流体を熱交換器5に供給する循環ポンプ8とを備えて、ランキンサイクルを構成してもよい。   In the second embodiment, the exhaust heat recovery apparatus that recovers exhaust heat from the coolant via the heat exchanger 10 and recovers exhaust heat from the compressed air via the heat exchanger 5 has been described. Instead of this, for example, an exhaust heat recovery device that recovers exhaust heat only from the coolant via the heat exchanger 10 may be used. That is, although not shown, the exhaust heat recovery device expands the working fluid vaporized by heating the working fluid by heat exchange with the coolant and expands the working fluid vaporized by the heat exchanger 10 to increase the driving force. An expander 6 to be generated, a condenser 7 that cools and liquefies the working fluid from the expander 6, and a circulation pump 8 that supplies the working fluid liquefied by the condenser 7 to the heat exchanger 5. A Rankine cycle may be configured.

本発明の第3の実施形態を図3により説明する。図3は、本実施形態における圧縮機の要部構成を表す図である。なお、この図3において、上記第2の実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。   A third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a diagram illustrating a main configuration of the compressor according to the present embodiment. In FIG. 3, the same parts as those of the second embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

本実施形態では、圧縮機本体1はギア装置12を介し電動機2に接続されており、このギア装置12に潤滑油を供給する潤滑油系統が設けられている。この潤滑油系統は、潤滑油を冷却してギア装置12にする熱交換器13と、ギア装置12で潤滑されて加熱された潤滑油を熱交換器13に供給するポンプ14とを備えている。   In the present embodiment, the compressor main body 1 is connected to the electric motor 2 via a gear device 12, and a lubricating oil system for supplying lubricating oil to the gear device 12 is provided. This lubricating oil system includes a heat exchanger 13 that cools the lubricating oil into the gear device 12 and a pump 14 that supplies the lubricating oil heated by the gear device 12 to the heat exchanger 13. .

そして、熱交換器13を介し潤滑油から排熱を回収し、熱交換器10を介し冷却液から排熱を回収し、熱交換器5を介し圧縮空気から排熱を回収する排熱回収装置が設けられている。この排熱回収装置は、潤滑油との熱交換により作動流体を加熱する熱交換器13と、この熱交換器13で加熱された作動流体を、冷却液との熱交換により加熱する熱交換器10と、この熱交換器10で加熱された作動流体を、圧縮空気との熱交換により加熱して気化する熱交換器5と、この熱交換器5で気化した作動流体を膨張させて駆動力を生成する膨張機6と、膨張機6からの作動流体を冷却して液化する凝縮器7と、この凝縮器7で液化した作動流体を熱交換器13に供給する循環ポンプ8とを備えており、ランキンサイクルを構成している。   The exhaust heat recovery device recovers exhaust heat from the lubricating oil via the heat exchanger 13, recovers exhaust heat from the coolant via the heat exchanger 10, and recovers exhaust heat from the compressed air via the heat exchanger 5. Is provided. The exhaust heat recovery apparatus includes a heat exchanger 13 that heats a working fluid by heat exchange with a lubricating oil, and a heat exchanger that heats the working fluid heated by the heat exchanger 13 by heat exchange with a coolant. 10, a heat exchanger 5 that heats and vaporizes the working fluid heated by the heat exchanger 10 by heat exchange with compressed air, and a driving force that expands the working fluid vaporized by the heat exchanger 5 , A condenser 7 that cools and liquefies the working fluid from the expander 6, and a circulation pump 8 that supplies the working fluid liquefied by the condenser 7 to the heat exchanger 13. And constitutes the Rankine cycle.

このように構成された本実施形態においても、排熱回収効率を向上させることができる。また、本実施形態では、圧縮空気及び冷却液だけでなく潤滑油からも排熱を回収するので、上記第2の実施形態よりも、排熱回収効率を高めることができる。また、本実施形態では、熱交換器13、熱交換器11、及び熱交換器5の順序で熱交換量が大きくなることから、その順序で作動流体を流すことにより、作動流体を効率よく気化させることができ、排熱回収効率を向上させることができる。なお、熱交換器5,11,13における熱交換量の順序が本実施形態と異なる場合は、その順序で作動流体を流すように構成したほうがよい。   Also in the present embodiment configured as described above, the exhaust heat recovery efficiency can be improved. Moreover, in this embodiment, since exhaust heat is collect | recovered not only from compressed air and a cooling fluid but from lubricating oil, waste heat recovery efficiency can be improved rather than the said 2nd Embodiment. In this embodiment, since the heat exchange amount increases in the order of the heat exchanger 13, the heat exchanger 11, and the heat exchanger 5, the working fluid is efficiently vaporized by flowing the working fluid in that order. It is possible to improve the exhaust heat recovery efficiency. In addition, when the order of the heat exchange amount in the heat exchangers 5, 11, and 13 is different from that of the present embodiment, it is better to configure the working fluid to flow in that order.

なお、上記第3の実施形態においては、熱交換器13を介し潤滑油から排熱を回収し、熱交換器10を介し冷却液から排熱を回収し、熱交換器5を介し圧縮空気から排熱を回収する排熱回収装置を説明したが、これに代えて、例えば熱交換器13を介し潤滑油から排熱を回収するとともに、熱交換器5を介し圧縮空気から排熱を回収する排熱回収装置としてもよい。すなわち、図示しないが、排熱回収装置は、潤滑油との熱交換により作動流体を加熱する熱交換器13と、この熱交換器13で加熱された作動流体を、圧縮空気との熱交換により加熱して気化する熱交換器5と、この熱交換器5で気化した作動流体を膨張させて駆動力を生成する膨張機6と、膨張機6からの作動流体を冷却して液化する凝縮器7と、この凝縮器7で液化した作動流体を熱交換器5に供給する循環ポンプ8とを備えて、ランキンサイクルを構成してもよい。   In the third embodiment, the exhaust heat is recovered from the lubricating oil via the heat exchanger 13, the exhaust heat is recovered from the coolant via the heat exchanger 10, and the compressed air is recovered via the heat exchanger 5. The exhaust heat recovery device that recovers exhaust heat has been described, but instead, for example, exhaust heat is recovered from the lubricating oil via the heat exchanger 13 and exhaust heat is recovered from the compressed air via the heat exchanger 5. An exhaust heat recovery device may be used. That is, although not shown in the drawings, the exhaust heat recovery apparatus uses a heat exchanger 13 that heats the working fluid by heat exchange with the lubricating oil, and a working fluid heated by the heat exchanger 13 by heat exchange with compressed air. A heat exchanger 5 that is heated and vaporized, an expander 6 that expands the working fluid vaporized in the heat exchanger 5 to generate a driving force, and a condenser that cools and liquefies the working fluid from the expander 6 7 and a circulation pump 8 for supplying the working fluid liquefied by the condenser 7 to the heat exchanger 5 may be provided to constitute a Rankine cycle.

また、上記第1〜第3の実施形態においては、1段の圧縮機本体1を備えた構成に適用した場合を例にとって説明したが、これに限られず、例えば2段の圧縮機本体を備えた構成に適用してもよい。このような変形例の一つを図4により説明する。   In the first to third embodiments, the case where the present invention is applied to the configuration including the one-stage compressor main body 1 has been described as an example. However, the present invention is not limited to this. The present invention may be applied to other configurations. One such modification will be described with reference to FIG.

図4は、本変形例における圧縮機の要部構成を表す概略図である。なお、この図4において、上記第1の実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。   FIG. 4 is a schematic diagram illustrating a main configuration of the compressor according to the present modification. In FIG. 4, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

本変形例では、低圧段の圧縮機本体1Aと、この圧縮機本体1Aで圧縮された空気を冷却する熱交換器5Aと、この熱交換器5Aで冷却した圧縮空気をさらに圧縮する高圧段の圧縮機本体1Bと、この圧縮機本体1Bで圧縮された空気を例えば大気温度近くまで冷却する熱交換器5Bとを備えている。なお、圧縮機本体1A,1Bは、ギア装置12Aを介し電動機2に接続されている。   In this modification, the compressor body 1A of the low pressure stage, the heat exchanger 5A that cools the air compressed by the compressor body 1A, and the high pressure stage that further compresses the compressed air cooled by the heat exchanger 5A. A compressor main body 1B and a heat exchanger 5B that cools the air compressed by the compressor main body 1B to, for example, near the atmospheric temperature, are provided. The compressor main bodies 1A and 1B are connected to the electric motor 2 via the gear device 12A.

そして、熱交換器5A,5Bを介し圧縮空気から排熱を回収する排熱回収装置が設けられている。この排熱回収装置は、低圧段の圧縮機本体1Aで生成された圧縮空気との熱交換により作動流体を加熱する熱交換器5Aと、この熱交換器5Aで加熱された作動流体を、高圧段の圧縮機本体1Bで生成された圧縮空気との熱交換により加熱して気化する熱交換器5Bと、この熱交換器5Bで気化した作動流体を膨張させて駆動力を生成する膨張機6と、膨張機6からの作動流体を冷却して液化する凝縮器7と、この凝縮器7で液化した作動流体を熱交換器5Aに供給する循環ポンプ8とを備えており、ランキンサイクルを構成している。   And the waste heat recovery apparatus which collect | recovers waste heat from compressed air via heat exchanger 5A, 5B is provided. This exhaust heat recovery device has a heat exchanger 5A that heats the working fluid by heat exchange with the compressed air generated by the low-pressure stage compressor body 1A, and a high-pressure working fluid heated by the heat exchanger 5A. A heat exchanger 5B that is heated and vaporized by heat exchange with the compressed air generated in the compressor body 1B of the stage, and an expander 6 that expands the working fluid vaporized in the heat exchanger 5B to generate a driving force. And a condenser 7 that cools and liquefies the working fluid from the expander 6, and a circulation pump 8 that supplies the working fluid liquefied by the condenser 7 to the heat exchanger 5A. doing.

このように構成された本変形例においても、上記第1の実施形態と同様、排熱回収効率を向上させることができる。また、本実施形態では、熱交換器5Aの熱交換量が熱交換器5Bの熱交換量より小さく、熱交換器5Aから熱交換器5Bへと順に作動流体を流すことにより、作動流体を効率よく気化させることができ、排熱回収効率を向上させることができる。なお、例えば熱交換器5Bの熱交換量が熱交換器5Aの熱交換量より小さい場合は、熱交換器5Bから熱交換器5Aへと順に作動流体を流すように構成したほうがよい。   Also in this modified example configured as described above, the exhaust heat recovery efficiency can be improved as in the first embodiment. Further, in this embodiment, the heat exchange amount of the heat exchanger 5A is smaller than the heat exchange amount of the heat exchanger 5B, and the working fluid is made to flow efficiently from the heat exchanger 5A to the heat exchanger 5B in order. It can be vaporized well, and the exhaust heat recovery efficiency can be improved. For example, when the heat exchange amount of the heat exchanger 5B is smaller than the heat exchange amount of the heat exchanger 5A, it is better to configure the working fluid to flow from the heat exchanger 5B to the heat exchanger 5A in order.

本発明の第4の実施形態を図5により説明する。図5は、本実施形態における圧縮機の要部構成を表す図である。なお、この図5において、上記第3の実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。   A fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a diagram illustrating a main configuration of the compressor in the present embodiment. In FIG. 5, the same parts as those in the third embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

本実施形態では、例えば熱交換器5の下流側に圧縮空気の温度を検出する温度センサ15が設けられ、この温度センサ15の検出信号がコントローラ16に出力されている。コントローラ16は、圧縮空気の設定温度を予めメモリ(記憶手段)に記憶しており、温度センサ15で検出された圧縮空気の検出温度が設定温度となるように循環ポンプ9の吐出量(すなわち、ランキンサイクルの循環量)を制御するようになっている。具体的には、例えば圧縮空気の検出温度が設定温度より高い場合は、圧縮空気の検出温度と設定温度との差分に応じて循環ポンプ9の吐出量を大きくし、一方、例えば圧縮空気の検出温度が設定温度より低い場合は、圧縮空気の検出温度と設定温度との差分に応じて循環ポンプ9の吐出量を小さくするようになっている。これにより、圧縮機の負荷変動にかかわらず、圧縮空気の温度を安定させることが可能である。   In the present embodiment, for example, a temperature sensor 15 that detects the temperature of the compressed air is provided on the downstream side of the heat exchanger 5, and a detection signal of the temperature sensor 15 is output to the controller 16. The controller 16 stores the set temperature of the compressed air in a memory (storage means) in advance, and the discharge amount of the circulation pump 9 (that is, the detected temperature of the compressed air detected by the temperature sensor 15 becomes the set temperature (that is, The circulation rate of the Rankine cycle is controlled. Specifically, for example, when the detected temperature of the compressed air is higher than the set temperature, the discharge amount of the circulation pump 9 is increased according to the difference between the detected temperature of the compressed air and the set temperature, while the detected temperature of the compressed air is detected, for example. When the temperature is lower than the set temperature, the discharge amount of the circulation pump 9 is reduced according to the difference between the detected temperature of the compressed air and the set temperature. Thereby, it is possible to stabilize the temperature of compressed air irrespective of the load fluctuation of a compressor.

このように構成された本実施形態においても、上記実施形態と同様、排熱回収効率を向上させることができる。   Also in the present embodiment configured as described above, the exhaust heat recovery efficiency can be improved as in the above embodiment.

なお、上記第4の実施形態においては、上記第3の実施形態のように熱交換器5,10,13を介して排熱を回収する排熱回収装置を備えた構成において、温度センサ15及びコントローラ16を設けた場合を例にとって説明したが、これに限られない。すなわち、例えば上記第2の実施形態のように熱交換器5,10を介して排熱を回収する排熱回収装置を備えた構成、若しくは上記第1の実施形態のように熱交換器5を介して排熱を回収する排熱回収装置を備えた構成においても、温度センサ15及びコントローラ16を設けてもよい。また、上記一変形例のように熱交換器5A,5Bを介して排熱を回収する排熱回収装置を備えた構成においても、温度センサ15及びコントローラ16を設けてもよく、この場合には、例えば図6に示すように、低圧段の圧縮機本体5Aと高圧段の圧縮機本体5Bとの間に温度センサ15を設けてもよい。これらの場合も、上記同様の効果を得ることができる。   In the fourth embodiment, in the configuration including the exhaust heat recovery device that recovers exhaust heat via the heat exchangers 5, 10, and 13 as in the third embodiment, the temperature sensor 15 and Although the case where the controller 16 is provided has been described as an example, the present invention is not limited to this. That is, for example, a configuration including an exhaust heat recovery device that recovers exhaust heat via the heat exchangers 5 and 10 as in the second embodiment, or a heat exchanger 5 as in the first embodiment. The temperature sensor 15 and the controller 16 may also be provided in a configuration provided with an exhaust heat recovery device that recovers exhaust heat through the heat sensor. In addition, in the configuration including the exhaust heat recovery device that recovers the exhaust heat via the heat exchangers 5A and 5B as in the above-described modification, the temperature sensor 15 and the controller 16 may be provided. For example, as shown in FIG. 6, a temperature sensor 15 may be provided between the low-pressure stage compressor body 5A and the high-pressure stage compressor body 5B. In these cases, the same effect as described above can be obtained.

本発明の第5の実施形態を図7により説明する。図7は、本実施形態における圧縮機の要部構成を表す概略図である。なお、この図7において、上記実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。   A fifth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a schematic diagram illustrating a main configuration of the compressor in the present embodiment. In FIG. 7, parts equivalent to those in the above embodiment are given the same reference numerals, and description thereof is omitted as appropriate.

本実施形態では、圧縮機は給油式であって、圧縮機本体1の吐出側には圧縮空気に含まれる油を分離する油分離器17が設けられ、この油分離器17で分離された油を圧縮機本体1の圧縮室内に供給する油系統が設けられている。この油系統は、油を冷却する熱交換器18を備えており、油分離器17の内部圧力によって油分離器17から熱交換器18に油が供給されるようになっている。なお、図示しないが、油系統は熱交換器18の下流側で分岐されており、圧縮機本体1の圧縮室内に油を供給するとともに、ギア装置にも油を供給するようになっている。   In the present embodiment, the compressor is an oil supply type, and an oil separator 17 for separating oil contained in the compressed air is provided on the discharge side of the compressor body 1, and the oil separated by the oil separator 17 is provided. Is provided with an oil system for supplying the oil into the compression chamber of the compressor body 1. This oil system includes a heat exchanger 18 that cools the oil, and the oil is supplied from the oil separator 17 to the heat exchanger 18 by the internal pressure of the oil separator 17. Although not shown, the oil system is branched on the downstream side of the heat exchanger 18 so that oil is supplied to the compression chamber of the compressor body 1 and also to the gear device.

そして、熱交換器18を介し油から排熱を回収する排熱回収装置が設けられている。この排熱回収装置は、油との熱交換により作動流体を加熱して気化する熱交換器18と、この熱交換器18で気化した作動流体を膨張させて駆動力を生成する膨張機6と、膨張機6からの作動流体を冷却して液化する凝縮器7と、この凝縮器7で液化した作動流体を熱交換器11に供給する循環ポンプ8とを備えており、ランキンサイクルを構成している。   An exhaust heat recovery device that recovers exhaust heat from the oil via the heat exchanger 18 is provided. The exhaust heat recovery apparatus includes a heat exchanger 18 that heats and vaporizes a working fluid by heat exchange with oil, and an expander 6 that expands the working fluid vaporized by the heat exchanger 18 to generate a driving force. A condenser 7 that cools and liquefies the working fluid from the expander 6, and a circulation pump 8 that supplies the working fluid liquefied by the condenser 7 to the heat exchanger 11. ing.

このように構成された本実施形態においても、例えば圧縮機本体1及び吐出配管に熱電素子を装着するような場合と比べ、排熱回収効率を向上させることができる。   Also in the present embodiment configured as described above, the exhaust heat recovery efficiency can be improved as compared with, for example, a case where thermoelectric elements are attached to the compressor body 1 and the discharge pipe.

本発明の第6の実施形態を図8により説明する。図8は、本実施形態における圧縮機の要部構成を表す概略図である。なお、この図8において、上記第5の実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。   A sixth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic diagram illustrating a main configuration of the compressor according to the present embodiment. In FIG. 8, the same parts as those in the fifth embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

本実施形態では、油分離器17で分離された圧縮空気を冷却する熱交換器19が設けられている。   In the present embodiment, a heat exchanger 19 that cools the compressed air separated by the oil separator 17 is provided.

そして、熱交換器19を介し圧縮空気から排熱を回収するとともに、熱交換器18を介し油から排熱を回収する排熱回収装置が設けられている。この排熱回収装置は、圧縮空気との熱交換により作動流体を加熱する熱交換器19と、この熱交換器19で加熱された作動流体を、油との熱交換により加熱して気化する熱交換器18と、この熱交換器18で気化した作動流体を膨張させて駆動力を生成する膨張機6と、膨張機6からの作動流体を冷却して液化する凝縮器7と、この凝縮器7で液化した作動流体を熱交換器11に供給する循環ポンプ8とを備えており、ランキンサイクルを構成している。   An exhaust heat recovery device that recovers exhaust heat from the compressed air via the heat exchanger 19 and recovers exhaust heat from the oil via the heat exchanger 18 is provided. This exhaust heat recovery device includes a heat exchanger 19 that heats a working fluid by heat exchange with compressed air, and heat that heats and vaporizes the working fluid heated by the heat exchanger 19 by heat exchange with oil. An exchanger 18, an expander 6 that expands the working fluid vaporized in the heat exchanger 18 to generate a driving force, a condenser 7 that cools and liquefies the working fluid from the expander 6, and the condenser And a circulation pump 8 for supplying the working fluid liquefied in 7 to the heat exchanger 11 to constitute a Rankine cycle.

このように構成された本実施形態においても、排熱回収効率を向上させることができる。また、本実施形態では、油だけでなく圧縮空気からも排熱を回収するので、上記第5の実施形態よりも、排熱回収効率を高めることができる。また、本実施形態では、熱交換器18の熱交換量が熱交換器19の熱交換量より小さいことから、熱交換器18から熱交換器19へと順に作動流体を流すことにより、作動流体を効率よく気化させることができ、排熱回収効率を向上させることができる。なお、例えば熱交換器19の熱交換量が熱交換器18の熱交換量より小さい場合は、熱交換器19から熱交換器18へと順に作動流体を流すように構成したほうがよい。   Also in the present embodiment configured as described above, the exhaust heat recovery efficiency can be improved. Moreover, in this embodiment, since exhaust heat is collect | recovered not only from oil but compressed air, waste heat recovery efficiency can be improved rather than the said 5th Embodiment. Moreover, in this embodiment, since the heat exchange amount of the heat exchanger 18 is smaller than the heat exchange amount of the heat exchanger 19, the working fluid is caused to flow from the heat exchanger 18 to the heat exchanger 19 in order, so that the working fluid Can be efficiently vaporized, and exhaust heat recovery efficiency can be improved. For example, when the heat exchange amount of the heat exchanger 19 is smaller than the heat exchange amount of the heat exchanger 18, it is better to configure the working fluid to flow from the heat exchanger 19 to the heat exchanger 18 in order.

なお、上記第5及び第6の実施形態においては、給油式の圧縮機に適用した場合を例にとって説明したが、給水式の圧縮機に適用してもよい。すなわち、図示しないが、例えば、圧縮機本体の吐出側に設けられ圧縮空気に含まれる水を分離する水分離器と、この水分離器で分離された水を冷却して圧縮機本体1の圧縮室内に供給する水用の熱交換器とを備え、この水用の熱交換器を介し水から排熱を回収する排熱回収装置を設けてもよい。また、例えば、水分離器で分離された圧縮空気を冷却する圧縮空気用の熱交換器をさらに備え、この圧縮空気用の熱交換器を介し圧縮空気から排熱を回収するとともに、水用の熱交換器を介し水から排熱を回収する排熱回収装置を設けてもよい。これらの場合も、上記同様の効果を得ることができる。   In addition, in the said 5th and 6th embodiment, although demonstrated taking the case of applying to an oil supply type compressor, you may apply to a water supply type compressor. That is, although not shown, for example, a water separator that is provided on the discharge side of the compressor body and separates water contained in the compressed air, and the compressor body 1 is compressed by cooling the water separated by the water separator. It is also possible to provide a waste heat recovery device that includes a heat exchanger for water supplied into the room and recovers waste heat from the water via the water heat exchanger. Further, for example, a heat exchanger for compressed air that cools the compressed air separated by the water separator is further provided, and exhaust heat is recovered from the compressed air through the heat exchanger for compressed air, and for water. An exhaust heat recovery device that recovers exhaust heat from water via a heat exchanger may be provided. In these cases, the same effect as described above can be obtained.

本発明の第7の実施形態を図9により説明する。図9は、本実施形態における圧縮機の要部構成を表す概略図である。なお、この図9において、上記実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。   A seventh embodiment of the present invention will be described with reference to FIG. FIG. 9 is a schematic diagram illustrating a main configuration of the compressor in the present embodiment. In FIG. 9, parts equivalent to those in the above embodiment are given the same reference numerals, and description thereof is omitted as appropriate.

本実施形態では、圧縮機は給水式であって、圧縮機本体1の吐出側には圧縮空気に含まれる水を分離する水分離器20が設けられ、この水分離器20で分離された水を圧縮機本体1の圧縮室内に供給する水系統が設けられている。この水系統は、水を冷却する熱交換器21を備えており、水分離器21の内部圧力によって水分離器20から熱交換器21に水が供給されるようになっている。また、水分離器20で分離された圧縮空気を冷却する熱交換器19が設けられている。   In the present embodiment, the compressor is a water supply type, and a water separator 20 for separating water contained in the compressed air is provided on the discharge side of the compressor body 1, and the water separated by the water separator 20 is provided. Is provided in the compressor chamber of the compressor body 1. This water system includes a heat exchanger 21 that cools water, and water is supplied from the water separator 20 to the heat exchanger 21 by the internal pressure of the water separator 21. Further, a heat exchanger 19 for cooling the compressed air separated by the water separator 20 is provided.

圧縮機本体1は、ギア装置12を介し電動機2に接続されており、このギア装置12に潤滑油を供給する潤滑油系統が設けられている。この潤滑油系統は、潤滑油を冷却してギア装置12にする熱交換器13と、ギア装置12で潤滑されて加熱された潤滑油を熱交換器13に供給するポンプ14とを備えている。   The compressor body 1 is connected to the electric motor 2 via a gear device 12, and a lubricating oil system for supplying lubricating oil to the gear device 12 is provided. This lubricating oil system includes a heat exchanger 13 that cools the lubricating oil into the gear device 12 and a pump 14 that supplies the lubricating oil heated by the gear device 12 to the heat exchanger 13. .

そして、熱交換器13を介し潤滑油から排熱を回収し、熱交換器19を介し圧縮空気から排熱を回収し、熱交換器21を介し水から排熱を回収する排熱回収装置が設けられている。この排熱回収装置は、潤滑油との熱交換により作動流体を加熱する熱交換器13と、この熱交換器13で加熱された作動流体を、圧縮空気との熱交換により加熱する熱交換器19と、この熱交換器19で加熱された作動流体を、水との熱交換により加熱して気化する熱交換器21と、この熱交換器21で気化した作動流体を膨張させて駆動力を生成する膨張機6と、膨張機6からの作動流体を冷却して液化する凝縮器7と、この凝縮器7で液化した作動流体を熱交換器13に供給する循環ポンプ8とを備えており、ランキンサイクルを構成している。   An exhaust heat recovery device that recovers exhaust heat from the lubricating oil via the heat exchanger 13, recovers exhaust heat from the compressed air via the heat exchanger 19, and recovers exhaust heat from the water via the heat exchanger 21. Is provided. The exhaust heat recovery apparatus includes a heat exchanger 13 that heats a working fluid by heat exchange with a lubricating oil, and a heat exchanger that heats the working fluid heated by the heat exchanger 13 by heat exchange with compressed air. 19 and a heat exchanger 21 that heats and vaporizes the working fluid heated by the heat exchanger 19 by heat exchange with water, and expands the working fluid vaporized by the heat exchanger 21 to increase the driving force. The expander 6 to be generated, the condenser 7 that cools and liquefies the working fluid from the expander 6, and the circulation pump 8 that supplies the working fluid liquefied by the condenser 7 to the heat exchanger 13 are provided. Constitutes the Rankine cycle.

このように構成された本実施形態においても、排熱回収効率を向上させることができる。また、本実施形態では、水及び圧縮空気だけでなく潤滑油からも排熱を回収するので、排熱回収効率を高めることができる。また、本実施形態では、熱交換器13、熱交換器19、及び熱交換器21の順序で熱交換量が大きくなることから、その順序で作動流体を流すことにより、作動流体を効率よく気化させることができ、排熱回収効率を向上させることができる。なお、熱交換器13,19,21における熱交換量の順序が本実施形態と異なる場合は、その順序で作動流体を流すように構成したほうがよい。   Also in the present embodiment configured as described above, the exhaust heat recovery efficiency can be improved. Moreover, in this embodiment, since exhaust heat is collect | recovered not only from water and compressed air but from lubricating oil, waste heat recovery efficiency can be improved. In the present embodiment, the heat exchange amount increases in the order of the heat exchanger 13, the heat exchanger 19, and the heat exchanger 21, and therefore the working fluid is efficiently vaporized by flowing the working fluid in that order. It is possible to improve the exhaust heat recovery efficiency. In addition, when the order of the heat exchange amount in the heat exchangers 13, 19, and 21 is different from the present embodiment, it is better to configure the working fluid to flow in that order.

本発明の第8の実施形態を図10により説明する。図10は、本実施形態における圧縮機の要部構成を表す図である。なお、この図10において、上記第6の実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。   An eighth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a diagram illustrating a main configuration of the compressor according to the present embodiment. In FIG. 10, the same parts as those in the sixth embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

本実施形態では、油分離器17の上流側で圧縮空気の温度を検出する温度センサ22が設けられ、この温度センサ22の検出信号がコントローラ23に出力されている。コントローラ23は、内部メモリに圧縮空気の設定温度を予め記憶しており、温度センサ22で検出された圧縮空気の検出温度が設定温度となるように循環ポンプ9の吐出量(すなわち、ランキンサイクルの循環量)を制御する。具体的には、例えば圧縮空気の検出温度が設定温度より高い場合は、圧縮空気の検出温度と設定温度との差分に応じて循環ポンプ9の吐出量を大きくし、一方、例えば圧縮空気の検出温度が設定温度より低い場合は、圧縮空気の検出温度と設定温度との差分に応じて循環ポンプ9の吐出量を小さくするようになっている。これにより、圧縮機の負荷変動にかかわらず、圧縮空気の温度を安定させ、また油中のドレン析出を抑制することが可能である。   In the present embodiment, a temperature sensor 22 that detects the temperature of the compressed air is provided on the upstream side of the oil separator 17, and a detection signal of the temperature sensor 22 is output to the controller 23. The controller 23 stores the set temperature of the compressed air in the internal memory in advance, and the discharge amount of the circulation pump 9 (that is, the Rankine cycle) is set so that the detected temperature of the compressed air detected by the temperature sensor 22 becomes the set temperature. (Circulation amount) is controlled. Specifically, for example, when the detected temperature of the compressed air is higher than the set temperature, the discharge amount of the circulation pump 9 is increased according to the difference between the detected temperature of the compressed air and the set temperature, while the detected temperature of the compressed air is detected, for example. When the temperature is lower than the set temperature, the discharge amount of the circulation pump 9 is reduced according to the difference between the detected temperature of the compressed air and the set temperature. Thereby, it is possible to stabilize the temperature of compressed air regardless of the load fluctuation of a compressor, and to suppress drain precipitation in oil.

このように構成された本実施形態においても、上記実施形態と同様、排熱回収効率を向上させることができる。   Also in the present embodiment configured as described above, the exhaust heat recovery efficiency can be improved as in the above embodiment.

なお、上記第8の実施形態においては、上記第6の実施形態のように熱交換器18,19を介して排熱を回収する排熱回収装置を備えた構成において、温度センサ22及びコントローラ23を設けた場合を例にとって説明したが、これに限られない。すなわち、上記第5の実施形態のように熱交換器18を介して排熱を回収する排熱回収装置を備えた構成においても、温度センサ22及びコントローラ23を設けてもよい。また、上記第7の実施形態も含め給水式の圧縮機に適用した場合においても、温度センサ22及びコントローラ23を設けてもよい。これらの場合も、上記同様の効果を得ることができる。   In the eighth embodiment, a temperature sensor 22 and a controller 23 are provided in a configuration including an exhaust heat recovery device that recovers exhaust heat via the heat exchangers 18 and 19 as in the sixth embodiment. However, the present invention is not limited to this. That is, the temperature sensor 22 and the controller 23 may be provided even in a configuration including an exhaust heat recovery device that recovers exhaust heat via the heat exchanger 18 as in the fifth embodiment. Further, even when applied to a water supply type compressor including the seventh embodiment, the temperature sensor 22 and the controller 23 may be provided. In these cases, the same effect as described above can be obtained.

なお、以上においては、圧縮機本体は空気を圧縮する場合を例にとって説明したが、これに限られず、他の気体(冷媒等)を圧縮してもよい。また、圧縮機本体はスクリュー式とする場合を例にとって説明したが、これに限られず、他の方式(レシプロ等)としてもよい。また、圧縮機本体の動力を生成する原動機として電動機を備えた場合を例にとって説明したが、これに限られず、他の原動機(エンジン等)を備えてもよい。また、膨張機で生成した駆動力を発電機で電力に変換する場合を例にとって説明したが、これに限られず、例えば膨張機で生成した駆動力によって他の装置(圧縮機内の補器等)を駆動してもよい。これらの場合も、上記同様の効果を得ることができる。   In the above description, the case where the compressor body compresses air has been described as an example. However, the present invention is not limited to this, and another gas (refrigerant or the like) may be compressed. Moreover, although the case where the compressor main body is a screw type has been described as an example, the compressor main body is not limited to this, and may be another type (reciprocating or the like). Moreover, although the case where the electric motor is provided as an example of the prime mover that generates the power of the compressor body has been described as an example, the invention is not limited thereto, and another prime mover (such as an engine) may be provided. Moreover, although the case where the driving force generated by the expander is converted into electric power by the generator has been described as an example, the present invention is not limited to this. For example, another device (such as an auxiliary device in the compressor) by the driving force generated by the expander May be driven. In these cases, the same effect as described above can be obtained.

(付記1)気体を圧縮する圧縮機本体を備えた圧縮機において、前記圧縮機本体から吐出された圧縮気体を作動流体と熱交換して冷却する圧縮気体用の熱交換器を含み、前記作動流体が流通する少なくとも1つの熱交換器と、前記熱交換器で加熱されて気化した前記作動流体を膨張させて駆動力を生成する膨張機と、前記膨張機から供給された前記作動流体を冷却して液化し、この液化した作動流体を前記熱交換器に供給する凝縮器と、前記熱交換器、前記膨張機、及び前記凝縮器の間で前記作動流体を循環させる循環ポンプとを備え、前記熱交換器、前記膨張機、前記凝縮器、及び前記循環ポンプでランキンサイクルを構成する。   (Appendix 1) A compressor including a compressor main body for compressing a gas, including a heat exchanger for compressed gas that cools the compressed gas discharged from the compressor main body by exchanging heat with a working fluid, and the operation Cooling the working fluid supplied from the expander, at least one heat exchanger through which the fluid flows, an expander that expands the working fluid heated and vaporized by the heat exchanger to generate a driving force A condenser for liquefying and supplying the liquefied working fluid to the heat exchanger, and a circulation pump for circulating the working fluid between the heat exchanger, the expander, and the condenser, The heat exchanger, the expander, the condenser, and the circulation pump constitute a Rankine cycle.

(付記2)付記1において、好ましくは、前記圧縮機本体のケーシングに形成されて冷却液が流通する冷却液用流路を有しており、前記熱交換器は、前記冷却液用流路に流通されて加熱された冷却液を前記作動流体と熱交換して冷却する冷却液用の熱交換器をさらに含み、複数有する。   (Additional remark 2) In additional remark 1, Preferably, it has the flow path for cooling fluid formed in the casing of the said compressor main body, and a cooling fluid distribute | circulates, The said heat exchanger is in the said flow path for cooling fluid. It further includes a plurality of heat exchangers for cooling liquid that cool the circulating and heated cooling liquid by exchanging heat with the working fluid.

(付記3)付記1又は2において、好ましくは、前記圧縮機本体の動力を生成する原動機と、前記原動機と前記圧縮機本体との間で接続されたギア装置とを備えており、前記熱交換器は、前記ギア装置で潤滑されて加熱された潤滑油を前記作動流体と熱交換して冷却する潤滑油用の熱交換器をさらに含み、複数有する。   (Additional remark 3) In additional remark 1 or 2, Preferably, it is provided with the motor | power_engine which produces | generates the motive power of the said compressor main body, and the gear apparatus connected between the said motor | power_engine and the said compressor main body, The said heat exchange The container further includes a plurality of heat exchangers for lubricating oil that cool and heat the lubricating oil lubricated and heated by the gear device with the working fluid.

(付記4)付記1〜3のいずれか1つにおいて、好ましくは、前記圧縮機本体から吐出された圧縮気体の温度を検出する温度検出手段と、前記温度検出手段の検出結果に応じて前記ランキンサイクルの循環流量を制御する流量制御手段とを備える。   (Supplementary note 4) In any one of Supplementary notes 1 to 3, preferably, temperature detection means for detecting the temperature of the compressed gas discharged from the compressor main body, and the Rankine according to the detection result of the temperature detection means And a flow rate control means for controlling the circulation flow rate of the cycle.

(付記5)圧縮室内に油又は水が供給された状態で気体を圧縮する圧縮機本体と、前記圧縮機本体から吐出された圧縮気体に含まれる油又は水を分離する分離器とを備えた圧縮機において、前記分離器で分離された油又は水を前記作動流体と熱交換して冷却する油用又は水用の熱交換器を含み、前記作動流体が流通する少なくとも1つの熱交換器と、前記熱交換器で加熱されて気化した前記作動流体を膨張させて駆動力を生成する膨張機と、前記膨張機から供給された前記作動流体を冷却して液化し、この液化した作動流体を前記熱交換器に供給する凝縮器と、前記熱交換器、前記膨張機、及び前記凝縮器の間で前記作動流体を循環させる循環ポンプとを備え、前記熱交換器、前記膨張機、前記凝縮器、及び前記循環ポンプでランキンサイクルを構成する。   (Supplementary Note 5) A compressor main body that compresses gas while oil or water is supplied into the compression chamber, and a separator that separates oil or water contained in the compressed gas discharged from the compressor main body. In the compressor, an oil or water heat exchanger that cools the oil or water separated by the separator by exchanging heat with the working fluid, and at least one heat exchanger through which the working fluid flows The working fluid heated and vaporized by the heat exchanger is expanded to generate a driving force, the working fluid supplied from the expander is cooled and liquefied, and the liquefied working fluid is A condenser that supplies the heat exchanger; and a circulation pump that circulates the working fluid between the heat exchanger, the expander, and the condenser, the heat exchanger, the expander, and the condensation And Rankine cycle with the circulation pump Constitute a.

(付記6)付記5において、好ましくは、前記圧縮機本体の動力を生成する原動機と、前記原動機と前記圧縮機本体との間で接続されたギア装置とを備えており、前記熱交換器は、前記ギア装置で潤滑されて加熱された潤滑油を前記作動流体と熱交換して冷却する潤滑油用の熱交換器をさらに含み、複数有する。   (Additional remark 6) In Additional remark 5, Preferably, it is provided with the motor | power_engine which produces | generates the motive power of the said compressor main body, and the gear apparatus connected between the said motor | power_engine and the said compressor main body, The said heat exchanger is And a plurality of heat exchangers for lubricating oil that cool the lubricating oil heated and lubricated by the gear device by exchanging heat with the working fluid.

(付記7)付記5又は6において、好ましくは、前記分離器の上流側で油又は水を含む圧縮空気の温度を検出する温度検出手段と、前記温度検出手段の検出結果に応じて前記ランキンサイクルの循環流量を制御する流量制御手段とを備える。   (Additional remark 7) In additional remark 5 or 6, Preferably, the Rankine cycle according to the detection result of the temperature detection means which detects the temperature of the compressed air containing oil or water in the upstream of the said separator, and the said temperature detection means And a flow rate control means for controlling the circulation flow rate.

(付記8)付記1〜7のいずれか1つにおいて、好ましくは、前記熱交換器は、複数有し、交換熱量が大きくなる順序で前記作動媒体が流通するように直列接続される。   (Supplementary Note 8) In any one of Supplementary Notes 1 to 7, preferably, the heat exchanger includes a plurality of the heat exchangers and is connected in series so that the working medium flows in the order in which the amount of exchange heat increases.

(付記9)付記1〜8のいずれか1つにおいて、好ましくは、前記膨張機に接続された発電機を備える。   (Supplementary Note 9) In any one of Supplementary Notes 1 to 8, preferably, a generator connected to the expander is provided.

(付記10)付記9において、好ましくは、前記電動機の回転数を可変するインバータを備え、前記発電機に前記インバータが接続される。   (Additional remark 10) In additional remark 9, Preferably, the inverter which changes the rotation speed of the said electric motor is provided, and the said inverter is connected to the said generator.

1,1A,1B 圧縮機本体
2 電動機(原動機)
5,5A,5B 熱交換器
6 膨張機
7 凝縮器
8 循環ポンプ
9 発電機
10 熱交換器
12,12A ギア装置
13 熱交換器
15 温度センサ(温度検出手段)
16 コントローラ(流量制御手段)
17 油分離器
18 熱交換器
19 熱交換器
20 水分離器
21 熱交換器
22 温度センサ(温度検出手段)
23 コントローラ(流量制御手段)
1,1A, 1B Compressor body 2 Electric motor (motor)
5, 5A, 5B Heat exchanger 6 Expander 7 Condenser 8 Circulation pump 9 Generator 10 Heat exchanger 12, 12A Gear device 13 Heat exchanger 15 Temperature sensor (temperature detection means)
16 Controller (Flow control means)
17 Oil Separator 18 Heat Exchanger 19 Heat Exchanger 20 Water Separator 21 Heat Exchanger 22 Temperature Sensor (Temperature Detection Means)
23 Controller (Flow control means)

Claims (6)

圧縮室内に油又は水が供給された状態で空気を圧縮する圧縮機本体と、前記圧縮機本体から吐出された圧縮空気に含まれる油又は水を分離する分離器とを備えた圧縮機において、
前記分離器で分離された圧縮空気を作動流体と熱交換して冷却する圧縮空気用の熱交換器、及び前記分離器で分離された油又は水を前記作動流体と熱交換して冷却する油用又は水用の熱交換器を含む、複数の熱交換器と、
前記複数の熱交換器で加熱されて気化した前記作動流体を膨張させて駆動力を生成する膨張機と、
前記膨張機から供給された前記作動流体を冷却して液化し、この液化した作動流体を前記複数の熱交換器に供給する凝縮器と、
前記複数の熱交換器、前記膨張機、及び前記凝縮器の間で前記作動流体を循環させる循環ポンプとを備え、
前記複数の熱交換器、前記膨張機、前記凝縮器、及び前記循環ポンプでランキンサイクルを構成したことを特徴とする圧縮機。
In a compressor comprising a compressor body that compresses air in a state where oil or water is supplied into the compression chamber, and a separator that separates oil or water contained in the compressed air discharged from the compressor body,
A heat exchanger for compressed air that cools the compressed air separated by the separator by exchanging heat with the working fluid, and an oil that cools the oil or water separated by the separator by exchanging heat with the working fluid A plurality of heat exchangers, including heat or water heat exchangers;
An expander that expands the working fluid heated and vaporized by the plurality of heat exchangers to generate a driving force;
A condenser for cooling and liquefying the working fluid supplied from the expander, and supplying the liquefied working fluid to the plurality of heat exchangers;
A circulation pump for circulating the working fluid between the plurality of heat exchangers, the expander, and the condenser;
A compressor characterized in that a Rankine cycle is constituted by the plurality of heat exchangers, the expander, the condenser, and the circulation pump.
請求項1記載の圧縮機において、
前記圧縮機本体の動力を生成する原動機と、
前記原動機と前記圧縮機本体との間で接続されたギア装置とを備えており、
前記複数の熱交換器は、前記ギア装置で潤滑されて加熱された潤滑油を前記作動流体と熱交換して冷却する潤滑油用の熱交換器をさらに含むことを特徴とする圧縮機。
The compressor according to claim 1, wherein
A prime mover for generating power of the compressor body;
A gear device connected between the prime mover and the compressor body,
The plurality of heat exchangers further include a heat exchanger for lubricating oil that cools the lubricating oil heated by being lubricated by the gear device by exchanging heat with the working fluid.
請求項1又は2記載の圧縮機において、
前記分離器の上流側で油又は水を含む圧縮空気の温度を検出する温度検出手段と、
前記温度検出手段の検出結果に応じて前記ランキンサイクルの循環流量を制御する流量制御手段とを備えたことを特徴とする圧縮機。
The compressor according to claim 1 or 2,
Temperature detecting means for detecting the temperature of compressed air containing oil or water on the upstream side of the separator;
A compressor comprising flow rate control means for controlling a circulating flow rate of the Rankine cycle in accordance with a detection result of the temperature detection means.
請求項1〜3のいずれか1項記載の圧縮機において、
前記複数の熱交換器は、交換熱量が大きくなる順序で前記作動媒体が流通するように直列接続されたことを特徴とする圧縮機。
The compressor according to any one of claims 1 to 3,
The compressor, wherein the plurality of heat exchangers are connected in series so that the working medium flows in an order in which the amount of exchange heat increases.
請求項1〜4のいずれか1項記載の圧縮機において、
前記膨張機に接続された発電機を備えたことを特徴とする圧縮機。
The compressor according to any one of claims 1 to 4,
A compressor comprising a generator connected to the expander.
請求項5記載の圧縮機において、
前記圧縮機本体の動力を生成する原動機である電動機の回転数を可変するインバータを備え、前記発電機に前記インバータが接続されることを特徴とする圧縮機。
The compressor according to claim 5, wherein
A compressor comprising: an inverter that varies a rotational speed of an electric motor that is a prime mover that generates power of the compressor body; and the inverter is connected to the generator.
JP2013172456A 2013-08-22 2013-08-22 Compressor Active JP5747058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172456A JP5747058B2 (en) 2013-08-22 2013-08-22 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172456A JP5747058B2 (en) 2013-08-22 2013-08-22 Compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009160228A Division JP5495293B2 (en) 2009-07-06 2009-07-06 Compressor

Publications (2)

Publication Number Publication Date
JP2013253775A true JP2013253775A (en) 2013-12-19
JP5747058B2 JP5747058B2 (en) 2015-07-08

Family

ID=49951406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172456A Active JP5747058B2 (en) 2013-08-22 2013-08-22 Compressor

Country Status (1)

Country Link
JP (1) JP5747058B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073433A1 (en) * 2015-10-28 2017-05-04 株式会社神戸製鋼所 Heat pump
CN106762647A (en) * 2016-12-30 2017-05-31 温岭市鑫磊空压机有限公司 A kind of UTILIZATION OF VESIDUAL HEAT IN energy-saving air compressor
CN114718870A (en) * 2022-04-28 2022-07-08 华海(北京)科技股份有限公司 Energy-saving control system of variable-frequency screw compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101909974B1 (en) * 2016-07-13 2018-12-19 주식회사 엔박 the electricity generater using the recovery heat of both compressed air and cooling oil of screw typed air compressor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142582U (en) * 1982-03-19 1983-09-26 株式会社日立製作所 Compressor waste heat recovery device
JPS63280805A (en) * 1987-05-12 1988-11-17 Agency Of Ind Science & Technol Energy recovery system for airlift device
JPH03290089A (en) * 1990-04-05 1991-12-19 Hitachi Ltd Single stage type oil-free compressor
GB2367333A (en) * 2000-09-25 2002-04-03 Compair Uk Ltd Variable speed control of a cooling fan of a variable speed oil-injected screw compressor
JP2002115921A (en) * 2000-10-12 2002-04-19 Mitsubishi Electric Building Techno Service Co Ltd Freezing system
JP2006316696A (en) * 2005-05-12 2006-11-24 Kobe Steel Ltd Oil-cooled compressor
JP2007146766A (en) * 2005-11-29 2007-06-14 Noboru Shoda Heat cycle device and compound heat cycle power generation device
WO2007137373A1 (en) * 2006-06-01 2007-12-06 Atlas Copco Airpower, Naamloze Vennootschap Improved compressor device
JP2007327359A (en) * 2006-06-06 2007-12-20 Ebara Corp Waste heat power generation device and method for operating same
JP2009085045A (en) * 2007-09-28 2009-04-23 Hitachi Industrial Equipment Systems Co Ltd Oil-cooled air compressor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142582U (en) * 1982-03-19 1983-09-26 株式会社日立製作所 Compressor waste heat recovery device
JPS63280805A (en) * 1987-05-12 1988-11-17 Agency Of Ind Science & Technol Energy recovery system for airlift device
JPH03290089A (en) * 1990-04-05 1991-12-19 Hitachi Ltd Single stage type oil-free compressor
GB2367333A (en) * 2000-09-25 2002-04-03 Compair Uk Ltd Variable speed control of a cooling fan of a variable speed oil-injected screw compressor
JP2002115921A (en) * 2000-10-12 2002-04-19 Mitsubishi Electric Building Techno Service Co Ltd Freezing system
JP2006316696A (en) * 2005-05-12 2006-11-24 Kobe Steel Ltd Oil-cooled compressor
JP2007146766A (en) * 2005-11-29 2007-06-14 Noboru Shoda Heat cycle device and compound heat cycle power generation device
WO2007137373A1 (en) * 2006-06-01 2007-12-06 Atlas Copco Airpower, Naamloze Vennootschap Improved compressor device
JP2007327359A (en) * 2006-06-06 2007-12-20 Ebara Corp Waste heat power generation device and method for operating same
JP2009085045A (en) * 2007-09-28 2009-04-23 Hitachi Industrial Equipment Systems Co Ltd Oil-cooled air compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073433A1 (en) * 2015-10-28 2017-05-04 株式会社神戸製鋼所 Heat pump
US11079143B2 (en) 2015-10-28 2021-08-03 Kobe Steel, Ltd. Heat pump
CN106762647A (en) * 2016-12-30 2017-05-31 温岭市鑫磊空压机有限公司 A kind of UTILIZATION OF VESIDUAL HEAT IN energy-saving air compressor
CN114718870A (en) * 2022-04-28 2022-07-08 华海(北京)科技股份有限公司 Energy-saving control system of variable-frequency screw compressor

Also Published As

Publication number Publication date
JP5747058B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5495293B2 (en) Compressor
US10030646B2 (en) Gas compressor
US8783034B2 (en) Hot day cycle
BE1017317A3 (en) IMPROVED COMPRESSOR DEVICE.
US10358975B2 (en) Compressed air energy storage and power generation device
Seyfouri et al. Analysis of integrated compression–absorption refrigeration systems powered by a microturbine
KR102045273B1 (en) Heat pump
AU2018325293B2 (en) A combined heat recovery and chilling system and method
RU2698566C1 (en) Organic rankine cycle for conversion of waste heat of heat source into mechanical energy and compressor plant using such cycle
US10794278B2 (en) Compressed air storage power generation device
US20140110939A1 (en) Waste heat power generator
JP5747058B2 (en) Compressor
JP2007183078A (en) Refrigerating machine and refrigerating device
US9540961B2 (en) Heat sources for thermal cycles
JP2016161226A (en) Refrigeration system, operation method of refrigeration system and design method of refrigeration system
US9819193B2 (en) Waste heat recovery system
JP2007187332A (en) Refrigeration cycle device
JP6174191B2 (en) Gas compressor
JP6906013B2 (en) heat pump

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R150 Certificate of patent or registration of utility model

Ref document number: 5747058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150