JPS632805B2 - - Google Patents

Info

Publication number
JPS632805B2
JPS632805B2 JP55038473A JP3847380A JPS632805B2 JP S632805 B2 JPS632805 B2 JP S632805B2 JP 55038473 A JP55038473 A JP 55038473A JP 3847380 A JP3847380 A JP 3847380A JP S632805 B2 JPS632805 B2 JP S632805B2
Authority
JP
Japan
Prior art keywords
air
vehicle
outside
amount
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55038473A
Other languages
Japanese (ja)
Other versions
JPS56135310A (en
Inventor
Akira Fukami
Kunihiko Negi
Hiroshi Hamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP3847380A priority Critical patent/JPS56135310A/en
Publication of JPS56135310A publication Critical patent/JPS56135310A/en
Publication of JPS632805B2 publication Critical patent/JPS632805B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/008Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being air quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/0085Smell or pollution preventing arrangements

Description

【発明の詳細な説明】 本発明は自動車用クーラもしくはエアコンデイ
シヨナ(以下空調装置と呼ぶ)に関するものであ
る。近年、自動車の搭乗者により快適さを与える
為に空調装置を装備する自動車が増えた。空調装
置は通常、暖房用のヒータ、冷防用のクーラー及
びそれらの制御装置より構成されているが、クー
ラーを作動させるには周知の如く、機関よりの動
力によつてコンプレツサを作動させねばならな
い。ところが通常コンプレツサを作動させるに
は、多大の動力を要する為、機関の正味出力は低
下し、あるいは燃費の悪化を招く欠点がある。従
来よりそれらの欠点を解消する為に多くの研究が
なされて来たが、それらは二種類に大別される。
一方は空調装置その物の改善(例えば、コンプレ
ツサの改良による効率向上、各種デバイスの改良
による冷凍サイクル効率の向上等々)に関し、他
方は空調装置に課せられた熱負荷を低減する為の
改善(例えば、ウインドガラスを通常の板ガラス
から熱線吸収ガラスに変更することによつて車室
内に浸入する熱量を低減する等々)に関するもの
である。本発明は後者の類に属し、車室内に浸入
する熱を効果的に低減することによつて、コンプ
レツサの所要動力を低減せしめ、もつて機関の正
味出力の低下や燃費の悪化を防ごうとするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automobile cooler or air conditioner (hereinafter referred to as an air conditioner). In recent years, an increasing number of automobiles have been equipped with air conditioning systems to provide greater comfort to vehicle occupants. Air conditioners usually consist of a heater for heating, a cooler for cold protection, and their control equipment, but as is well known, in order to operate the cooler, the compressor must be operated by power from the engine. . However, operating the compressor usually requires a large amount of power, which has the drawback of reducing the net output of the engine or deteriorating fuel efficiency. Many studies have been conducted to overcome these drawbacks, but they can be broadly classified into two types.
One is about improving the air conditioner itself (e.g. improving efficiency by improving the compressor, improving refrigeration cycle efficiency by improving various devices, etc.), while the other is about improving the heat load placed on the air conditioner (e.g. , reducing the amount of heat that enters the vehicle interior by changing the window glass from ordinary plate glass to heat ray absorbing glass, etc.). The present invention belongs to the latter category, and aims to reduce the required power of the compressor by effectively reducing the heat penetrating into the passenger compartment, thereby preventing a decrease in the engine's net output and deterioration of fuel efficiency. It is something to do.

ところで、一般的に自動車用空調装置は、車室
内空気導入と車室外空気導入とを選択切換できる
ように構成され、通常、機械的な操作伝達機構を
介して内外気切替ダンパを動かすようになつてい
る。しかしながら、 従来周知の空調装置においては、内外気切替ダ
ンパの位置設定が常に最適に保たれるという保障
がない。なんとなれば、内外気切替ダンパを車室
内空気のみ吸入する位置に操作した場合には、長
時間この状態が維持されると車室内空気は呼気や
たばこの煙によつて汚染され、一方、内外気切替
ダンパを車室外空気のみ吸入する位置にした場合
には、夏季高温の外気を大量に吸入する為、空調
装置に課せられる熱負荷は極度に増大しひいては
車輛燃費の悪化を招く。従つて外気取り入れ量に
は最適量があることが理解できる。しかしながら
その最適量も、乗者人数、外気温度、車室内温
度、喫煙の有無、等々多くの要素によつて左右さ
れるために、時々刻々変化する。これに対して搭
乗者は、時々刻々変化する最適量に対し、頻繁に
調整することは煩雑であるので、最適外気量に対
し常に多めの外気量となる様に設定するのが常で
ある。従つて、必要以上の外気を吸入し、もつて
熱負荷が増大することとなる。
Incidentally, automotive air conditioners are generally configured to be able to selectively switch between introducing air into the vehicle interior and introducing air outside the vehicle, and usually operate an inside/outside air switching damper via a mechanical operation transmission mechanism. ing. However, in conventionally known air conditioners, there is no guarantee that the position setting of the inside/outside air switching damper is always maintained optimally. This is because when the inside/outside air switching damper is operated to the position where only the air inside the car is taken in, if this state is maintained for a long time, the air inside the car becomes contaminated with exhaled air and cigarette smoke, while If the air switching damper is placed in a position where only the air outside the vehicle is taken in, a large amount of high temperature outside air in the summer is taken in, and the heat load imposed on the air conditioner increases extremely, which in turn leads to deterioration of the vehicle's fuel efficiency. Therefore, it can be understood that there is an optimum amount of outside air intake. However, the optimum amount changes from time to time because it depends on many factors such as the number of passengers, outside temperature, interior temperature, and whether or not smoking occurs. On the other hand, since it is troublesome for the passenger to frequently adjust the optimal amount, which changes from moment to moment, the passenger usually sets the outside air amount so that it is always a little larger than the optimal outside air amount. Therefore, more outside air than necessary is drawn in, resulting in an increase in heat load.

上記の如く従来周知の空調装置に於ては、調節
が搭乗者に委ねられているにもかかわらず、煩雑
さの故に実際には調節を行なわず、もつて熱負荷
の増大を招くという欠点を有している。
As mentioned above, conventionally known air conditioners have the disadvantage that although the adjustment is left to the passengers, they are not actually adjusted due to the complexity, which leads to an increase in heat load. have.

本発明は上述の事情に鑑み、どの様な空調が必
要とされるかを自動的に検知し、最小の冷房(も
しくは暖房)で最大の効果を発揮し、もつて熱負
荷の低減ひいては燃費の向上を図ることができる
簡単で信頼性の高い自動車用空調装置を提供する
ことを目的とする。
In view of the above-mentioned circumstances, the present invention automatically detects what kind of air conditioning is required, achieves the maximum effect with the minimum amount of cooling (or heating), and reduces the heat load, thereby reducing fuel consumption. The purpose of the present invention is to provide a simple and highly reliable air conditioning system for automobiles that can be improved.

以下本発明を第1図、第2図に示す第1の実施
例について説明する。第1図において、1は車室
外空気取り入れダクト、2は車室内空気取り入れ
ダクト、3は内外気切替ダンパ3で両ダクト1,
2とメインダクトとの連通量を調節する。4はブ
ロワモータ、5はブロワ、6は空気冷却用熱交換
器(エバポレータ)、7は空気加熱用熱交換器
(ヒータコア)、8は温度調節ダンパでヒータコア
7を通る空気量を加減して吹出される空気の温度
を調節する。なお、調節機構は手動による操作伝
達機構あるいは自動位置制御装置を使用してもよ
い。9はエアミツクスチヤンバ、10はデフロス
タ吹出口、11は足元吹出口、12は運転席側吹
出口、13は助手席側吹出口、14,15,1
6,17は吹出口切替ダンパで、手動による操作
伝達機構あるいは自動位置制御装置が使用され
る。上述した構成は冷風温風混合方式の自動車用
空調装置として公知である。
The present invention will be described below with reference to a first embodiment shown in FIGS. 1 and 2. In Fig. 1, 1 is an air intake duct outside the vehicle, 2 is an air intake duct inside the vehicle, 3 is an inside/outside air switching damper 3, and both ducts 1,
Adjust the amount of communication between 2 and the main duct. 4 is a blower motor, 5 is a blower, 6 is an air cooling heat exchanger (evaporator), 7 is an air heating heat exchanger (heater core), 8 is a temperature control damper that adjusts the amount of air passing through the heater core 7 and blows it out. Adjust the temperature of the air. Note that the adjustment mechanism may be a manual operation transmission mechanism or an automatic position control device. 9 is an air mix chamber, 10 is a defroster outlet, 11 is a footwell outlet, 12 is a driver's seat side outlet, 13 is a passenger side outlet, 14, 15, 1
Reference numerals 6 and 17 are outlet switching dampers, and a manual operation transmission mechanism or an automatic position control device is used. The above-mentioned configuration is known as a cold air/warm air mixing type automobile air conditioner.

18は光散乱式の微粒子検出器で、車室内空気
取り入れダクト2に装着され、吸入される空気に
含まれている煙等の微粒子に応じた出力信号が発
生される。19は制御回路で検出器18からの出
力信号に応答して、ダンパ3を駆動するアクチユ
エータ3を制御する。
Reference numeral 18 denotes a light scattering type particulate detector, which is attached to the vehicle interior air intake duct 2 and generates an output signal corresponding to particulates such as smoke contained in the inhaled air. A control circuit 19 controls the actuator 3 that drives the damper 3 in response to the output signal from the detector 18.

いま夏季冷房時に関して説明すれば、ダンパ
3,8,14,15,16,17は通常実線位置
に操作されている。ここで、内外気切替ダンパ3
は実線位置にあつて車室内空気取り入れダクト2
を開いているが、車室内空気取り入れダクト1と
の間にわずかなすき間を有しており、少量(5〜
6m3/h程度)の車室外空気が吸入される。この
量は通常運転者1名の呼気をまかなうのに充分で
ある。車室内の微粒子濃度が増加し、制御回路1
9において定める設定値を越えるとアクチユエー
タ20が作動され、ダンパ3は破線方向に移動さ
れる。その結果、車室外空気は50〜100m3/h程
度取り入れられ、煙濃度が設定値以下になるとダ
ンパ3は制御回路19とアクチユエータ21によ
つて実線方向に移動される。
Now, to explain the summer cooling time, the dampers 3, 8, 14, 15, 16, and 17 are normally operated to the solid line position. Here, the inside/outside air switching damper 3
is at the solid line position and is the cabin air intake duct 2.
is open, but there is a slight gap between it and the cabin air intake duct 1.
6m 3 /h) of outside air is taken in. This amount is usually sufficient to cover the exhalation of one driver. As the concentration of particulates inside the vehicle increases, control circuit 1
When the set value determined at 9 is exceeded, the actuator 20 is actuated and the damper 3 is moved in the direction of the broken line. As a result, about 50 to 100 m 3 /h of air outside the vehicle is taken in, and when the smoke concentration falls below the set value, the damper 3 is moved in the direction of the solid line by the control circuit 19 and the actuator 21.

第2図に微粒子検出器18と制御回路19とア
クチユエータ20が図示してある。断面で示した
検出器18において、181は樹脂ハウジング、
182は空洞状の空気通路、183は光源電球、
184はGdSセルからなる光検知器で、この検知
器184の受光面は電球183の照射光と平行に
なるように配置されている。この検出器180は
ダクト2内の空気通路181の入口185および
出口186より外乱光が入射しない位置に取りつ
けられる。しかして、ダクト2を通る空気の流れ
によつて空気通路182内には矢印方向に示す空
気流が生じ、もしこの空気流にたばこの煙等の微
粒子が含まれていると、電球183から照射され
微粒子によつて散乱された散乱光が光検知器18
4の受光面に到達してその出力端子間の抵抗値が
変化する。この検知器184の内部抵抗は空気粒
中に微粒子が存在しないときほぼ無限大であり、
煙等の微粒子があると数KΩになる。
FIG. 2 shows the particle detector 18, control circuit 19, and actuator 20. In the detector 18 shown in cross section, 181 is a resin housing;
182 is a hollow air passage, 183 is a light source bulb,
Reference numeral 184 denotes a photodetector made of a GdS cell, and the light receiving surface of this detector 184 is arranged to be parallel to the light emitted from the light bulb 183. This detector 180 is installed at a position where external light does not enter from the entrance 185 and exit 186 of the air passage 181 in the duct 2 . Therefore, due to the air flow passing through the duct 2, an air flow shown in the direction of the arrow is generated in the air passage 182, and if this air flow contains particulates such as cigarette smoke, the light bulb 183 will emit light. The scattered light scattered by the fine particles is detected by the photodetector 18.
4, the resistance value between the output terminals changes. The internal resistance of this detector 184 is almost infinite when there are no particles in the air particles,
If there are fine particles such as smoke, the resistance will be several kilohms.

検知器18の出力端子間抵抗値に応答する制御
回路19において、19A,19Bは第1、第2
のスイツチング回路である。191は検知器18
4に通電し、検知器184との接続点に検知器の
抵抗値に応じた信号電圧Vsを生じさせる抵抗で
ある。192は電圧比較器で上記信号電圧Wsを
第1の設定電圧V1と比較し、電圧Vsが電圧V1
り高いと(つまり微粒子が設定量より少ないと)、
トランジスタ回路を介してリレー193を付勢し
接点193A−193Bを導通させる。比較器1
94は前記の検知器信号電圧Vsと第’設定値V2
(第1の設定値より小さい)とを比較し、電圧Vs
が第2の設定値V2より低いと(つまり微粒子が
設定量より多いと)、トランジスタ回路を介して
リレー195を付勢し接点195A−195Bを
導通させる。制御回路19の機能を要約すると、
微粒子が第1の設定量より少ないとリレー193
が付勢されて第1出力信号S1がハイレベルにな
り、微粒子が第2の設定量より多いとリレー19
5が付勢されて第2出力信号S2がハイレベルとな
る。もし、微粒子量が第1の設定量と第2の設定
量との中間量であると、リレー193,195は
いずれも消勢され第1、第2出力信号S1,S2はオ
ープンレベルとなる。なお、21は自動車キース
イツチ、22は車載バツテリである。
In the control circuit 19 that responds to the resistance value between the output terminals of the detector 18, 19A and 19B are the first and second
This is a switching circuit. 191 is the detector 18
4 and generates a signal voltage Vs at the connection point with the detector 184 according to the resistance value of the detector. 192 is a voltage comparator that compares the signal voltage Ws with the first set voltage V1 , and if the voltage Vs is higher than the voltage V1 (that is, if the amount of fine particles is less than the set amount),
The relay 193 is energized via the transistor circuit to make the contacts 193A-193B conductive. Comparator 1
94 is the aforementioned detector signal voltage Vs and the 'th set value V 2
(smaller than the first set value) and compare the voltage Vs
When V2 is lower than the second set value V2 (that is, the amount of particulates is greater than the set amount), relay 195 is energized via the transistor circuit, causing contacts 195A-195B to conduct. To summarize the functions of the control circuit 19,
If the amount of fine particles is less than the first set amount, relay 193
is energized and the first output signal S1 becomes high level, and when the amount of fine particles is greater than the second set amount, relay 19 is activated.
5 is activated, and the second output signal S2 becomes high level. If the amount of particulates is an intermediate amount between the first set amount and the second set amount, the relays 193 and 195 are both deenergized and the first and second output signals S 1 and S 2 are at the open level. Become. Note that 21 is an automobile key switch, and 22 is an in-vehicle battery.

アクチユエータ20において、201は可逆転
モータで、減速機202を介して回転シヤフト2
03を回転駆動し、内外気切替ダンパ3を駆動す
る。モータ201の端子204には前記の第2出
力信号S2が印加され、端子205には第1出力信
号S1が印加される。しかして、第1出力信号S1
ハイレベルになると、モータ201の左回転によ
りダンパ3を第2図bの矢印Lの方向(すなわ
ち、第1図の実線方向)に動かし、第2出力信号
S2がハイレベルになると、モータ202の右回転
によりダンパ3を第2図bの矢印Rの方向(第1
図の破線方向)に動かす。
In the actuator 20, 201 is a reversible motor that drives the rotating shaft 2 through a reducer 202.
03 to drive the inside/outside air switching damper 3. The second output signal S 2 is applied to the terminal 204 of the motor 201, and the first output signal S 1 is applied to the terminal 205. When the first output signal S1 becomes high level, the motor 201 rotates counterclockwise to move the damper 3 in the direction of the arrow L in FIG. 2b (that is, in the direction of the solid line in FIG.
When S 2 reaches a high level, the motor 202 rotates clockwise to move the damper 3 in the direction of arrow R in FIG.
(in the direction of the dashed line in the figure).

上述した構成において、キースイツチ21が投
入されると制御回路19が作動状態になり、また
これと同時に光源電球183にも図示しない給電
路を介して通電され照光状態になる。いま、第1
図図示の空調装置が作動しており、車室内の微粒
子量が第1設定量より少ないと第1出力信号S1
ハイレベルとなり、内外気切替ダンパ3は第1図
の実線位置に動かされる。従つて前述のごとく多
量の車室内空気とわずかな車室外空気とが空調装
置に吸入される。喫煙等により車室内の微粒子が
増加すると、それにつれて光検知器184の受光
面に到達する散乱光が増加し、微粒子が第2の設
定量より多いと第2出力信号S2がハイレベルとな
り、ダンパ3は第1図の破線位置方向に移動さ
れ、多量の車室外空気が取り入れられる。その結
果、しばらくして微粒子濃度が減少し第1設定量
より低下すると、第1出力信号S1がハイレベルに
なりダンパ3は実線位置に復帰される。かくし
て、ダンパ3は微粒子量が多いときのみ車室外空
気導入するように動かされ、車室外空気の汚染を
防止しつつ、しかも熱負荷の小さい状態を得るよ
うに位置制御される。
In the above-described configuration, when the key switch 21 is turned on, the control circuit 19 is put into operation, and at the same time, the light source bulb 183 is also energized via a power supply path (not shown) and becomes illuminated. Now, the first
When the air conditioner shown in the figure is operating and the amount of particulates in the passenger compartment is less than the first set amount, the first output signal S1 becomes high level, and the inside/outside air switching damper 3 is moved to the solid line position in FIG. 1. . Therefore, as described above, a large amount of air inside the vehicle and a small amount of air outside the vehicle are sucked into the air conditioner. When the number of particulates in the vehicle interior increases due to smoking, etc., the amount of scattered light reaching the light receiving surface of the photodetector 184 increases accordingly, and when the number of particulates exceeds the second set amount, the second output signal S2 becomes high level. The damper 3 is moved in the direction of the broken line in FIG. 1, and a large amount of air outside the vehicle compartment is taken in. As a result, after a while, when the particulate concentration decreases and becomes lower than the first set amount, the first output signal S1 becomes high level and the damper 3 is returned to the solid line position. Thus, the damper 3 is moved to introduce air outside the vehicle only when the amount of particulates is large, and its position is controlled so as to prevent contamination of the air outside the vehicle and to obtain a state with a small heat load.

ここで、前述の微粒子検出器の利点を付記す
る。まず本発明の光散乱式の微粒子検出器は最も
安価であり、同様の目的の為に例えばCOセンサ
ーやCO2センサーを使用するよりも安価である。
さらに、この検出器は通常家庭用等の火災報知器
用等に用いられる煙センサー(燃焼式)等に比べ
て格段に感度にすぐれ、ごくわずかな微粒子量の
変化にも反応するという特色をもつている。
Here, the advantages of the above-mentioned particle detector will be added. First, the light scattering type particle detector of the present invention is the cheapest, and is cheaper than using, for example, a CO sensor or a CO 2 sensor for the same purpose.
Furthermore, this detector has much higher sensitivity than smoke sensors (combustion type) normally used for household fire alarms, etc., and has the feature of responding to even the slightest change in the amount of particulates. There is.

また、一般に車室内に於て、喫煙がなく、人間
の呼気だけの場合に於ても、CO2が増加するに供
なつて、浮遊粒子も正比例的に増加する。これは
呼気中の粒子や水蒸気の影響の為であるが、従つ
てこの場合においても微粒子濃度を測定すること
によつて、CO2濃度をある程度推定することさ
え、可能である。従つて、高価かつ感度上も問題
のあるCO,CO2センサー等を使用するよりも、
光散乱式の微粒子検出器を使用する方が安価かつ
簡便である。
Furthermore, even when there is no smoking in the vehicle interior and only human exhalation, as CO 2 increases, the number of airborne particles also increases in direct proportion. This is due to the influence of particles and water vapor in the exhaled breath, but even in this case, it is even possible to estimate the CO 2 concentration to some extent by measuring the particulate concentration. Therefore, rather than using CO, CO 2 sensors, etc., which are expensive and have problems with sensitivity,
It is cheaper and easier to use a light scattering type particle detector.

第3図、第4図に本発明の第2の実施例を示
す。この例では、第1の実施例に対し、車室外空
気取り入れダクト1内にも微粒子検出器23が設
置され、内外気切替ダンパ3の位置に応答するリ
ミツトスイツチ25の信号とを制御回路24に付
加し、アクチユエータ20を駆動するように改良
されている。第4図に示すごとく、制御回路24
は検知器18に応答する部分24Aと検出器23
に応答する部分24Bとから構成されている。回
路24Bは検出器23における通過微粒子が設定
量より多いとハイレベル、設定量より少ないとオ
ープンレベルとなる第3出力信号S3が発生され
る。
A second embodiment of the present invention is shown in FIGS. 3 and 4. In this example, in contrast to the first embodiment, a particulate detector 23 is also installed inside the vehicle outdoor air intake duct 1, and a signal from a limit switch 25 responsive to the position of the inside/outside air switching damper 3 is added to the control circuit 24. However, it has been improved to drive the actuator 20. As shown in FIG. 4, the control circuit 24
is the portion 24A responsive to the detector 18 and the detector 23
24B. The circuit 24B generates a third output signal S3 which is at a high level when the number of particles passing through the detector 23 is more than a set amount, and at an open level when it is less than a set amount.

リミツトスイツチ25は内外気切替ダンパ3
が、閉位置α(車室外空気はわずかに取り入れら
れる)になるとオフし、それよりも全閉位置βに
近づくとオフを維持し、閉位置αより開いている
位置でオンとなる。そして、このリミツトスイツ
チ25は回路24Bの第3出力信号S3と並列関係
になるように接続されて、かつ前記第1出力信号
S1が通る回路に直列に挿入され、アクチユエータ
モータ201の左回転を制御する。
The limit switch 25 is the internal/external air switching damper 3
is turned off when it reaches the closed position α (a small amount of air outside the vehicle is taken in), remains off when it approaches the fully closed position β, and turns on when it is more open than the closed position α. The limit switch 25 is connected in parallel with the third output signal S3 of the circuit 24B, and is connected to the first output signal S3 of the circuit 24B.
It is inserted in series in the circuit through which S1 passes, and controls the left rotation of the actuator motor 201.

しかして、車室外空気が清浄であり微粒子量が
設定量以下であると、第3出力信号S3はオープン
レベルである。従つて、車室内空気中の微粒子の
有無に対して前記第1実施例と同様に動作する。
ただし、ここに於てはリミツトスイツチ25のオ
ンオフ作動によつて、ダンパ3は閉位置αよりも
閉方向には動かない。一方、車室外空気がよごれ
ている場合(例えば工場地帯を運転中とか混雑し
た交さ点を通行するとき等)、第3出力信号S3
ハイレベルとなる。従つて、リミツトスイツチ2
5の動作に関係なく全閉位置βまでダンパ3が閉
じるので、汚れた外気を完全に遮へいできる。
Therefore, when the air outside the vehicle is clean and the amount of particulates is below the set amount, the third output signal S3 is at the open level. Therefore, the same operation as in the first embodiment is performed regarding the presence or absence of particulates in the air inside the vehicle.
However, in this case, due to the on/off operation of the limit switch 25, the damper 3 does not move beyond the closed position α in the closing direction. On the other hand, when the air outside the vehicle is dirty (for example, when driving in a factory area or passing through a crowded intersection), the third output signal S3 becomes high level. Therefore, limit switch 2
Since the damper 3 closes to the fully closed position β regardless of the operation of the damper 5, dirty outside air can be completely blocked.

上述した如く本発明は、必要最小限の外気取り
入れを自動的に行うことによつて、必要十分な内
気状態を保ちながら、熱負荷の低減を図り、もつ
て車輌燃費の低減を期すことができるという優れ
た効果がある。
As described above, the present invention can reduce the heat load while maintaining the necessary and sufficient inside air condition by automatically taking in the necessary minimum amount of outside air, thereby reducing vehicle fuel consumption. This has an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す全体構成
図、第2図aはその要部を示す詳細構成図、第2
図bは第2図aに示すアクチユエータ20のA矢
視図、第3図は本発明の第2の実施例を示す全体
構成図、第4図はその要部を示す詳細構成図であ
る。 1……車室外空気取り入れダクト、2……車室
内空気取り入れダクト、3……内外気切替ダン
パ、18……微粒子検出器、19,24,24A
……制御回路、20……アクチユエータ。
FIG. 1 is an overall configuration diagram showing the first embodiment of the present invention, FIG. 2a is a detailed configuration diagram showing the main parts, and
FIG. 2B is a view of the actuator 20 shown in FIG. 1... Vehicle outdoor air intake duct, 2... Vehicle interior air intake duct, 3... External/internal air switching damper, 18... Particulate detector, 19, 24, 24A
... Control circuit, 20 ... Actuator.

Claims (1)

【特許請求の範囲】[Claims] 1 車室内空気導入と車室外空気導入とが可能な
自動車用空調装置において、発光素子および受光
素子が対角配置され両素子間の微粒子濃度に応じ
た出力信号を前記受光素子に生じる微粒子検出器
を車室内または車室内空気通路に配置し、前記出
力信号に応答する制御回路を具備し、前記微粒子
濃度が設定値より大きくなると内外気切替ダンパ
を所定の小角度だけ作動させ、車室内空気導入の
状態から車室外空気導入の割合を増加させるよう
前記制御回路を構成したことを特徴とする自動車
用空調装置。
1. In an automotive air conditioner capable of introducing air into the vehicle interior and outside the vehicle, a particle detector in which a light emitting element and a light receiving element are arranged diagonally, and the light receiving element generates an output signal in accordance with the particle concentration between the two elements. is placed in the vehicle interior or in the vehicle interior air passage, and is equipped with a control circuit that responds to the output signal, and when the concentration of particulates exceeds a set value, the inside/outside air switching damper is actuated by a predetermined small angle to introduce air into the vehicle interior. An air conditioner for an automobile, characterized in that the control circuit is configured to increase the rate of air introduction from outside the vehicle from the state shown in FIG.
JP3847380A 1980-03-25 1980-03-25 Air conditioner for automobile Granted JPS56135310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3847380A JPS56135310A (en) 1980-03-25 1980-03-25 Air conditioner for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3847380A JPS56135310A (en) 1980-03-25 1980-03-25 Air conditioner for automobile

Publications (2)

Publication Number Publication Date
JPS56135310A JPS56135310A (en) 1981-10-22
JPS632805B2 true JPS632805B2 (en) 1988-01-20

Family

ID=12526209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3847380A Granted JPS56135310A (en) 1980-03-25 1980-03-25 Air conditioner for automobile

Country Status (1)

Country Link
JP (1) JPS56135310A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126712U (en) * 1983-02-17 1984-08-25 株式会社ボッシュオートモーティブ システム Vehicle air conditioner equipped with air purifier
JPH0634088U (en) * 1992-10-09 1994-05-06 忠義 高田 Concrete gutter
FR3051725B1 (en) * 2016-05-26 2020-04-17 Valeo Systemes Thermiques AIR QUALITY SYSTEM FOR MOTOR VEHICLE
FR3063250A1 (en) * 2017-02-27 2018-08-31 Valeo Systemes Thermiques APPARATUS FOR HEATING, VENTILATION AND / OR AIR CONDITIONING FOR A MOTOR VEHICLE COMPRISING AT LEAST ONE CIRCULATION CHANNEL OF AN AIR FLOW
FR3063249A1 (en) * 2017-02-27 2018-08-31 Valeo Systemes Thermiques AIR FLOW CIRCULATION CHANNEL ASSEMBLY, IN PARTICULAR FOR A HEAT, VENTILATION AND / OR AIR CONDITIONING APPARATUS FOR A MOTOR VEHICLE, AND A PARTICULATE MATERIAL DETECTION SENSOR
EP3715157B1 (en) * 2019-03-26 2022-04-06 Valeo Systemes Thermiques Fluid circulation housing, especially to measure particles in the fluid, air intake and heating, ventilating and/or air conditioning unit comprising said housing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656419U (en) * 1979-10-09 1981-05-16

Also Published As

Publication number Publication date
JPS56135310A (en) 1981-10-22

Similar Documents

Publication Publication Date Title
JPS6117684B2 (en)
US5729989A (en) Electronic climate control system for automotive vehicles
JPH0346322B2 (en)
JPS632805B2 (en)
JP2006240438A (en) Vehicular air-conditioner
JPS5923721A (en) Controller for air conditioner of vehicle
KR20080085324A (en) Device and method for controlling indoor pressure for bus
JP2003335121A (en) Automatic inside and outside air control device for air conditioner in vehicle
JPS6029319A (en) Air conditioner for vehicle
KR20210011576A (en) Vehicle air conditioning system
JPS6347127Y2 (en)
JP2540858B2 (en) Inside / outside air switching device for vehicles
JPH0538929A (en) Air conditioner for vehicle
JP3835913B2 (en) Intake door controller for exhaust gas
KR960014878B1 (en) Air-conditioning method & air-con system of a vehicle
JPS6210848B2 (en)
KR20000000525A (en) Automatic ventilation device of indoor air for car and control method thereof
JPH0235528Y2 (en)
JPH0622566Y2 (en) Demist control device for vehicle air conditioner
JPS6029318A (en) Air conditioner for vehicle
KR19990035706A (en) Bet air change over device
KR100423279B1 (en) Method and device for turning on/off air conditioner
JPH0213208Y2 (en)
JPH05124422A (en) Air-conditioning device for vehicle
JPS62184913A (en) Vehicle air-conditioning device provided with solar radiation sensor