JPS632801A - Gaseous hydrogen generating material - Google Patents

Gaseous hydrogen generating material

Info

Publication number
JPS632801A
JPS632801A JP14547386A JP14547386A JPS632801A JP S632801 A JPS632801 A JP S632801A JP 14547386 A JP14547386 A JP 14547386A JP 14547386 A JP14547386 A JP 14547386A JP S632801 A JPS632801 A JP S632801A
Authority
JP
Japan
Prior art keywords
aluminum
gaseous hydrogen
water
hydrogen gas
generating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14547386A
Other languages
Japanese (ja)
Other versions
JPH0438682B2 (en
Inventor
Katsuhiro Nagira
柳樂 勝洋
Toru Shimizu
亨 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Fuji Corp
Original Assignee
Osaka Fuji Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Fuji Corp filed Critical Osaka Fuji Corp
Priority to JP14547386A priority Critical patent/JPS632801A/en
Priority to EP86306754A priority patent/EP0248960A1/en
Priority to US06/903,770 priority patent/US4752463A/en
Publication of JPS632801A publication Critical patent/JPS632801A/en
Publication of JPH0438682B2 publication Critical patent/JPH0438682B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To obtain the title inexpensive gaseous hydrogen generating material capable of efficiently generating gaseous hydrogen without causing environmental pollution and without requiring electricity, heat, etc., by forming the material with a laminate of laminated structure consisting of the fine particles of an Al alloy contg. tin and Al in a specified weight ratio. CONSTITUTION:An aluminum alloy contg. 5-50% tin and the balance aluminum and inevitable impurities is produced, and wire-drawn to produce an aluminum alloy wire rod. The wire rod is thermally sprayed on the substrate of an aluminum sheet, etc., by flame spraying, etc., to form a laminate of laminated structure consisting of the thermally sprayed film on the substrate, and the desired gaseous hydrogen generating material is obtained. Since a specified amt. of tin is added to the gaseous hydrogen generating material consisting essentially of aluminum, high-purity gaseous hydrogen is generated by the reaction of the material with water only by dipping the material in water at ordinary temp. Moreover, the generation rate of gaseous hydrogen can be increased by raising the temp. of the water.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水素ガス生成材に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to hydrogen gas generating materials.

(従来の技術) 従来、水素ガスを生成させる方法としては、金属を酸や
アルカリと反応させる方法及び水を電気分解する方法が
知られているが、前者は工業的に利用することが困難で
あることから、工業的には電気分解法が一般に採用され
ている。また、最近では、水を熱化学的に分解する方法
も提案されている。
(Prior art) Conventionally, methods for producing hydrogen gas include a method of reacting a metal with an acid or alkali and a method of electrolyzing water, but the former method is difficult to use industrially. For this reason, electrolysis is generally adopted industrially. Furthermore, recently, a method of thermochemically decomposing water has also been proposed.

(発明が解決しようとする問題点) しかしながら、電気分解法や水の熱化学的分解法では、
多大の電力や熱エネルギーを必要とする問題がある。
(Problems to be solved by the invention) However, in electrolysis and thermochemical decomposition of water,
There is a problem in that it requires a large amount of electric power and thermal energy.

従って、本発明は安価で、電気や熱等のエネルギーを必
要とせず、水素ガス生成能率が高く、しかも環境汚染の
恐れのない水素ガス生成材を得ることを目的とするもの
である。
Therefore, an object of the present invention is to obtain a hydrogen gas generating material that is inexpensive, does not require energy such as electricity or heat, has high hydrogen gas generation efficiency, and is free from environmental pollution.

(問題点を解決するための手段) 本発明は、前記問題を解決する手段として、金属微粒が
積重された層状組織を有し、前記金属微粒が、錫5〜5
0%、残部アルミニウム及び不可避的不純物からなるア
ルミニウム合金からなることを特徴とする水素ガス生成
材を提供するものである。
(Means for Solving the Problem) As a means for solving the problem, the present invention has a layered structure in which fine metal particles are stacked, and the fine metal particles contain 5 to 5 % of tin.
The present invention provides a hydrogen gas generating material characterized in that it is made of an aluminum alloy consisting of 0% aluminum and the remainder aluminum and inevitable impurities.

本発明の実施態様においては、前記水素ガス生成材は金
属微粒が偏平状の微粒となって積み重なった層状組織の
積層体で形成される。
In an embodiment of the present invention, the hydrogen gas generating material is formed of a laminate having a layered structure in which fine metal particles are piled up as flat fine particles.

水素ガス生成材 また、本発明は、基体上に形成された金属の溶射皮膜か
らなり、該金属が錫5〜50%、残部アルミニウム及び
不可避的不純物からなるアルミニウム合金であることを
特徴とする水素ガス生成材を提供するものである。この
場合、基体材料としては、軟鋼、アルミニウム、銅その
他の金属材料、アクリル樹脂その他のプラスチック、ガ
ラス、セラミックなど、任意のものを使用できる。また
、基体の形状は、板状、シート状、帯状その他任意の形
状を採用できる。
Hydrogen gas generating material The present invention also provides a hydrogen gas generating material comprising a thermally sprayed metal coating formed on a substrate, wherein the metal is an aluminum alloy consisting of 5 to 50% tin, the balance being aluminum and unavoidable impurities. It provides a gas generating material. In this case, arbitrary materials such as mild steel, aluminum, copper and other metal materials, acrylic resin and other plastics, glass, and ceramics can be used as the base material. Further, the shape of the base body can be a plate, a sheet, a band, or any other arbitrary shape.

(作用) 本発明に係る水素ガス生成材は、水に浸漬するだけでア
ルミニウム合金が水と反応して高純度の水素ガスを生成
する。特に、基体としてアルミニウムを採用した場合に
は、水素ガス生成速度が著しく増大する。
(Function) When the hydrogen gas generating material according to the present invention is simply immersed in water, the aluminum alloy reacts with water to generate high purity hydrogen gas. In particular, when aluminum is used as the base, the rate of hydrogen gas production increases significantly.

一般に、アルミニウムは大気中で乙表面が酸化されて不
動態となるため、水や温水に浸漬しても反応しないこと
は周知である。しかし、驚くべきことに、アルミニウム
に錫を所定量添加したアルミニウム合金は、常温の水に
浸漬しただけでら水と反応して水素ガスを発生する。し
かも、水素ガスの生成速度は、温度の上昇と共に増大し
、このアルミニウム合金を用いて基体上に溶射皮膜その
他の金属微粒からなる層状組織を有する積層体を形成す
ると、合金そのものの水素ガス生成速度の約70〜80
倍に達することが明らかとなった。
Generally, it is well known that the surface of aluminum is oxidized in the atmosphere and becomes passive, so it does not react even when immersed in water or hot water. However, surprisingly, an aluminum alloy made by adding a predetermined amount of tin to aluminum reacts with water and generates hydrogen gas even when immersed in water at room temperature. Moreover, the rate of hydrogen gas generation increases as the temperature rises, and when this aluminum alloy is used to form a laminated body with a laminated structure consisting of a thermal spray coating or other fine metal particles on a substrate, the hydrogen gas generation rate of the alloy itself increases. about 70-80
It has been revealed that the number has doubled.

本発明は、この知見に基づいて完成されたものである。The present invention was completed based on this knowledge.

本発明に係るアルミニウム合金及びその溶射皮膜が水と
反応し水素ガスを生成する理由及びその反応機構等は解
明されていないが、アルミニウム中に錫をその固溶限以
上に均一に固溶させたことに起因するものと推測される
。また、溶射皮膜にした場合、水素ガス生成速度が著し
く増大するのは、溶射粒子が偏平状となって積み重なっ
た層状組織となって活性化するためと推測される。
Although the reason why the aluminum alloy and its thermal spray coating according to the present invention react with water to generate hydrogen gas and the reaction mechanism are not clear, tin is uniformly dissolved in aluminum in an amount exceeding its solid solubility limit. It is assumed that this is due to this. Furthermore, when a thermally sprayed coating is formed, the hydrogen gas generation rate increases significantly, presumably because the thermally sprayed particles become flat and stacked to form a layered structure and are activated.

アルミニウム合金の成分組成を限定した理由は次の通り
である。錫の含有量を5〜50%としたのは、錫の含有
量が5%未満あるいは50%を越えると、水素の発生が
殆ど見られず、本発明の目的を達成できないからである
。なお、アルミニウム及び錫はできるだけ高純度のもの
を使用するのが好ましい。
The reason for limiting the composition of the aluminum alloy is as follows. The reason why the tin content is set to 5 to 50% is that if the tin content is less than 5% or exceeds 50%, hydrogen generation is hardly observed and the object of the present invention cannot be achieved. Note that it is preferable to use aluminum and tin with as high a purity as possible.

本発明に係る水素ガス生成材は、例えば、内壁面を溶湯
の凝固点以上の温度に維持させた鋳型にその一端側から
アルミニウム合金の溶湯を供給し、他端側から凝固させ
つつ水平方向に引き抜いて連続鋳造し、得られるアルミ
ニウム合金を線引加工し、この線材を用いて火炎溶射法
等により基体上に溶射皮膜を形成することによって製造
できる。
In the hydrogen gas generating material according to the present invention, for example, molten aluminum alloy is supplied from one end to a mold whose inner wall surface is maintained at a temperature higher than the freezing point of the molten metal, and is drawn horizontally while solidifying from the other end. It can be produced by continuous casting, drawing the resulting aluminum alloy, and using this wire to form a thermal spray coating on a substrate by flame spraying or the like.

なお、アルミニウムと錫の融点及び密度が著しく相異し
、またアルミニウム中への錫の固溶度が非常に小さいた
め、鋳型を冷却しながらアルミニウム合金を鋳造する方
法では、偏析を起こしたり欠陥を生じ易いため均質なも
のを得難いので、溶湯そのもので直接溶射皮膜を形成す
るようにしてもよい。
Note that the melting points and densities of aluminum and tin are significantly different, and the solid solubility of tin in aluminum is extremely low. Therefore, the method of casting aluminum alloy while cooling the mold may cause segregation or defects. Since it is difficult to obtain a homogeneous coating because it is easy to form, a thermal spray coating may be formed directly using the molten metal itself.

(実施例) 第1図に示す連続鋳造装置を用い、次のようにしてアル
ミニウム合金を鋳造した。図中、■は電気炉、2は黒鉛
ルツボ、3は加熱鋳型、4はヒータ、5は冷却装置、6
はピンチローラ、7は溶湯、8は鋳塊、9は冷却水供給
口である。
(Example) Using the continuous casting apparatus shown in FIG. 1, an aluminum alloy was cast in the following manner. In the figure, ■ is an electric furnace, 2 is a graphite crucible, 3 is a heating mold, 4 is a heater, 5 is a cooling device, and 6
7 is a pinch roller, 7 is a molten metal, 8 is an ingot, and 9 is a cooling water supply port.

まず、純度99.99%のアルミニウム(A I)と、
純度99.9%の錫(Sn)とを原料として用い、これ
らを第1表に示す組成に配合し、電気炉1内で溶融させ
る一方、ヒータ4により鋳型3を鋳造材料の凝固点以上
の温度に加熱、維持させ、ダミーバー(図示せず)を鋳
型内にセットした。次に、電気炉1の黒鉛ルツボ2内に
押し込み棒(図示せず)を挿入して、溶湯を鋳型3内に
充填し、更に、冷却装置5に冷却水を供給しながらピン
チローラ6を回転駆動さ仕て、ダミーバーを引き抜くこ
とにより鋳造を開始し、それぞれ直径8+no+のアル
ミニウム合金の鋳塊を得た。なお、ダミーバーの引き抜
きにより溶湯は鋳型出口近傍で凝固殻を形成するが、鋳
型がアルミニウム合金の融点以上に加熱されているため
、その凝固界面は、図示のように鋳型内に突出した形状
となる。凝固した鋳塊8は冷却装置5により更に冷却さ
れる。ついで、第1表に示す成分組成の各アルミニウム
合金鋳塊を線引加工して直径3 、2 mmの線材を得
た。
First, aluminum (AI) with a purity of 99.99%,
Using tin (Sn) with a purity of 99.9% as a raw material, these are blended into the composition shown in Table 1 and melted in the electric furnace 1, while the mold 3 is heated by the heater 4 to a temperature above the freezing point of the casting material. A dummy bar (not shown) was set in the mold. Next, a push rod (not shown) is inserted into the graphite crucible 2 of the electric furnace 1 to fill the mold 3 with molten metal, and the pinch roller 6 is rotated while supplying cooling water to the cooling device 5. Casting was started by driving and pulling out the dummy bar, and aluminum alloy ingots each having a diameter of 8+no+ were obtained. When the dummy bar is pulled out, the molten metal forms a solidified shell near the mold outlet, but since the mold is heated above the melting point of the aluminum alloy, the solidified interface protrudes into the mold as shown in the figure. . The solidified ingot 8 is further cooled by the cooling device 5. Next, each aluminum alloy ingot having the composition shown in Table 1 was wire-drawn to obtain a wire rod having a diameter of 3.2 mm.

第1表 lAl−5wt%Sn合金 2A1−10vt%Sn合金 3A1−15vt%Sn合金 4A1−20wt%Sn合金 5Al−25vt%Sn合金 6AI−30vt%Sn合金 7A1−40wt%Sn合金 8A1−50wt%Sn合金 9A1−5wt%Sn合金 10    Al−10wt%Sn合金llAl−15
wt%Sn合金 12Al−20wt%Sn合金 13A1−25wt%Sn合金 14A1−30vt%Sn合金 15AI−40wt%Sn合金 また、これとは別に、厚さ5mmのアルミニウム板及び
アクリル板を基体とし、その表面にブラスト圧力6Kg
/n+mでアルミナグリッド(#30)を吹き付けてブ
ラスト処理して基体を用意した。
Table 1 Al-5wt%Sn alloy 2A1-10vt%Sn alloy 3A1-15vt%Sn alloy 4A1-20wt%Sn alloy 5Al-25vt%Sn alloy 6AI-30vt%Sn alloy 7A1-40wt%Sn alloy 8A1-50wt%Sn Alloy 9A1-5wt%Sn alloy 10 Al-10wt%Sn alloyllAl-15
wt%Sn alloy 12Al-20wt%Sn alloy 13A1-25wt%Sn alloy 14A1-30vt%Sn alloy 15AI-40wt%Sn alloy In addition, apart from this, an aluminum plate and an acrylic plate with a thickness of 5 mm are used as a base, and the surface thereof Blasting pressure 6Kg
A substrate was prepared by spraying and blasting an alumina grid (#30) at /n+m.

前記各線材を用いてガス溶線式フレーム溶射法により下
記条件下で溶射し、前記基体上に厚さ0 、5 mmの
溶射皮膜を形成して、幅10111111%長さ20I
III11水素ガス生成材の試料を得た。なお、試料番
号1〜8のものは、対応する番号の線材を用いてアルミ
ニウム上に溶射皮膜を形成したものであり、番号9〜1
6の試料は対応する番号の線材を用いてアクリル板上に
溶射皮膜を形成したものである。
Using each of the above-mentioned wire rods, thermal spraying was carried out using the gas wire flame spraying method under the following conditions to form a sprayed coating with a thickness of 0.5 mm on the substrate, and the width was 10111111% and the length was 20I.
A sample of III11 hydrogen gas generating material was obtained. In addition, samples Nos. 1 to 8 have thermal spray coatings formed on aluminum using wire rods with corresponding numbers, and samples Nos. 9 to 1
In sample No. 6, a thermal spray coating was formed on an acrylic plate using wire rods with corresponding numbers.

(溶射条件)ノズル径:  3.175mmエアキャッ
プ二EC ガス流量: アセチレン 17(!/min酸素  3
2 mm12/min 空気 780 C/min ワイヤ送給速度:   3.72m/min溶射距離:
     200mm 恒温水槽内の水をそれぞれ20℃、30’C150℃、
75℃の所定温度に維持し、その中に水を満たしたメス
シリンダを倒立させた後、各試験片を入れたフラスコを
水槽内に設置し、試験片から発生するガスをメスシリン
ダで採取して、そのガスによる水置換量から生成速度を
計測した。その結果を第2表および第2図〜第3図に示
す。
(Thermal spraying conditions) Nozzle diameter: 3.175mm Air cap 2EC Gas flow rate: Acetylene 17 (!/min Oxygen 3
2 mm12/min Air 780 C/min Wire feeding speed: 3.72 m/min Spraying distance:
The water in the 200mm constant temperature water tank was heated to 20°C, 30'C, 150°C,
After maintaining a predetermined temperature of 75°C and inverting a measuring cylinder filled with water, the flask containing each test piece was placed in a water tank, and the gas generated from the test piece was collected with the measuring cylinder. Then, the production rate was measured from the amount of water replaced by the gas. The results are shown in Table 2 and Figures 2-3.

第2表 +    991   670   5804  32
8+   4416  40371+    670 
 3228  4939第2表の結果から明らかなよう
に、本発明に係る水素ガス生成材は、常温でも水素ガス
生成速度が旧式電解槽の約20倍以上と極めて速く、高
温になるほど生成速度が増大する。ちなみに、旧式電解
槽(印加電圧2V、電流密度0.IA/mmりは常温で
は22a+l/hr−am″であり、75℃では約3 
On+I/ hr −cm”である。
Table 2 + 991 670 5804 32
8+ 4416 40371+ 670
3228 4939 As is clear from the results in Table 2, the hydrogen gas generation material according to the present invention has an extremely high hydrogen gas generation rate of about 20 times or more than the old electrolytic tank even at room temperature, and the generation rate increases as the temperature increases. . By the way, the old electrolytic cell (applied voltage 2V, current density 0.IA/mm) is 22a+l/hr-am'' at room temperature, and about 3
On+I/hr-cm".

第2図はアルミニウム板を基体として形成した溶射皮膜
からなる各水素ガス生成材を水中に浸漬した場合の水素
ガス生成速度と水温との関係゛を、また、第3図はアク
リル板製基体上に形成した溶射皮膜からなる各水素ガス
生成材を水中に浸漬した場合の水素ガス生成速度と水温
との関係をそれぞれ示す。
Figure 2 shows the relationship between the hydrogen gas generation rate and water temperature when each hydrogen gas generating material consisting of a thermally sprayed coating formed on an aluminum plate as a base is immersed in water, and Figure 3 shows the relationship between the hydrogen gas generation rate and water temperature when each hydrogen gas generating material is made of a sprayed coating formed on an aluminum plate as a base. The relationship between the hydrogen gas generation rate and the water temperature when each hydrogen gas generation material made of a thermally sprayed coating formed in 1 is immersed in water is shown.

図から明らかなように、水素ガス生成速度は温度及び錫
含有量に大きく依存する。また、第2図及び第3図の比
較から明らかなように、水素ガス生成速度は、基体の材
料によっても変化し、基体としてアルミニウム板を使用
した場合に特に水素ガス生成速度が速い。
As is clear from the figure, the rate of hydrogen gas production is highly dependent on temperature and tin content. Furthermore, as is clear from the comparison of FIGS. 2 and 3, the hydrogen gas generation rate also changes depending on the material of the substrate, and the hydrogen gas generation rate is particularly fast when an aluminum plate is used as the substrate.

(発明の効果) 以上の説明から明らかなように、本発明によれば、安価
で無害な材料を用いて水素ガス生成材を得ることができ
、しかも、水素ガス生成に電力その他のエネルギーを必
要とせず、75℃では旧式電解槽の約300倍にも達す
る水素ガス生成速度が得られるなど優れた効果が得られ
る。
(Effects of the Invention) As is clear from the above description, according to the present invention, a hydrogen gas generating material can be obtained using inexpensive and harmless materials, and hydrogen gas generation does not require electricity or other energy. At 75°C, the hydrogen gas generation rate is about 300 times faster than the old electrolytic tank, and other excellent effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る水素ガス生成材の材料であるアル
ミニウム合金の製造に使用する連続鋳造装置の概略断面
図、第2図及び第3図は本発明に係る水素ガス生成材の
水素ガス生成速度と温度との関係を示す図である。 1〜電気炉、2〜黒鉛ルツボ、3〜加熱鋳型、4〜ヒー
タ、5〜冷却装置、6〜ピンチローラ、7〜溶湯、8〜
鋳塊、9〜冷却水供給口。 特 許 出 願 人 大阪富士工業株式会社代 理 人
 弁理士 青 山  葆はか2名第1@ 水洟(’C) 第3図 ×103 温度(0C)
FIG. 1 is a schematic cross-sectional view of a continuous casting apparatus used for manufacturing aluminum alloy, which is the material of the hydrogen gas generating material according to the present invention, and FIGS. 2 and 3 show the hydrogen gas of the hydrogen gas generating material according to the present invention. It is a figure showing the relationship between production rate and temperature. 1 - electric furnace, 2 - graphite crucible, 3 - heating mold, 4 - heater, 5 - cooling device, 6 - pinch roller, 7 - molten metal, 8 -
Ingot, 9 ~ cooling water supply port. Patent applicant: Osaka Fuji Industries Co., Ltd. Agent: Patent attorney: Aoyama Bohaka, 2nd person @ Mizuho ('C) Figure 3 x 103 Temperature (0C)

Claims (2)

【特許請求の範囲】[Claims] (1)金属微粒が積重された層状組織を有し、前記金属
微粒が、錫5〜50%、残部アルミニウム及び不可避的
不純物からなるアルミニウム合金からなることを特徴と
する水素ガス生成材。
(1) A hydrogen gas generating material having a layered structure in which fine metal particles are piled up, and characterized in that the fine metal particles are made of an aluminum alloy consisting of 5 to 50% tin, the balance being aluminum and unavoidable impurities.
(2)基体上に形成された金属溶射皮膜からなり、該金
属溶射皮膜が錫5〜50%、残部アルミニウム及び不可
避的不純物からなるアルミニウム合金の線材を用いて形
成されていることを特徴とする水素ガス生成材。
(2) It consists of a metal sprayed coating formed on a substrate, and is characterized in that the metal sprayed coating is formed using an aluminum alloy wire consisting of 5 to 50% tin, the balance being aluminum and unavoidable impurities. Hydrogen gas generating material.
JP14547386A 1986-06-03 1986-06-21 Gaseous hydrogen generating material Granted JPS632801A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14547386A JPS632801A (en) 1986-06-21 1986-06-21 Gaseous hydrogen generating material
EP86306754A EP0248960A1 (en) 1986-06-03 1986-09-02 Hydrogen producing material
US06/903,770 US4752463A (en) 1986-06-03 1986-09-05 Method of producing hydrogen and material used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14547386A JPS632801A (en) 1986-06-21 1986-06-21 Gaseous hydrogen generating material

Publications (2)

Publication Number Publication Date
JPS632801A true JPS632801A (en) 1988-01-07
JPH0438682B2 JPH0438682B2 (en) 1992-06-25

Family

ID=15386061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14547386A Granted JPS632801A (en) 1986-06-03 1986-06-21 Gaseous hydrogen generating material

Country Status (1)

Country Link
JP (1) JPS632801A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299401A (en) * 1988-10-06 1990-04-11 Topy Ind Ltd Manufacturing method of rim for tubeless tire and its form of material
JPH0426503A (en) * 1990-05-23 1992-01-29 Mitsubishi Heavy Ind Ltd Method for reforming methanol
WO2005087968A1 (en) * 2004-03-10 2005-09-22 Ulvac, Inc. Al COMPOSITE MATERIAL BEING CRUMBLED WITH WATER, Al FILM AND Al POWDER COMPRISING THE MATERIAL AND METHODS FOR PREPARATION THEREOF, CONSTITUTIONAL MEMBER FOR FILM-FORMING CHAMBER METHOD FOR RECOVERING FILM-FORMING MATERIAL
JP2009137803A (en) * 2007-12-07 2009-06-25 Ulvac Japan Ltd Hydrogen gas-producing material and method for generating hydrogen gas using the same
JP2009155189A (en) * 2007-12-28 2009-07-16 Kobelco Kaken:Kk Hydrogen generation accelerating member, method and apparatus for generating hydrogen
JP2013107822A (en) * 2013-01-30 2013-06-06 Ulvac Japan Ltd Method for generating gaseous hydrogen and material for generating gaseous hydrogen
JP2019001674A (en) * 2017-06-14 2019-01-10 株式会社アルバック Hydrogen generating material manufacturing method, fuel cell, and hydrogen generating method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299401A (en) * 1988-10-06 1990-04-11 Topy Ind Ltd Manufacturing method of rim for tubeless tire and its form of material
JPH0426503A (en) * 1990-05-23 1992-01-29 Mitsubishi Heavy Ind Ltd Method for reforming methanol
WO2005087968A1 (en) * 2004-03-10 2005-09-22 Ulvac, Inc. Al COMPOSITE MATERIAL BEING CRUMBLED WITH WATER, Al FILM AND Al POWDER COMPRISING THE MATERIAL AND METHODS FOR PREPARATION THEREOF, CONSTITUTIONAL MEMBER FOR FILM-FORMING CHAMBER METHOD FOR RECOVERING FILM-FORMING MATERIAL
JP2005256063A (en) * 2004-03-10 2005-09-22 Ulvac Japan Ltd Water collapsible al composite material, al film and al powder composed of the material, method for manufacturing the same, and constitution member for deposition chamber, and method for recovering deposition material
JP4653406B2 (en) * 2004-03-10 2011-03-16 株式会社アルバック Water-disintegrating Al composite material, water-disintegrating Al sprayed film, method for producing water-disintegrating Al powder, film forming chamber component, and method for recovering film forming material
US7951463B2 (en) 2004-03-10 2011-05-31 Ulvac, Inc. Water collapsible aluminum film
JP2009137803A (en) * 2007-12-07 2009-06-25 Ulvac Japan Ltd Hydrogen gas-producing material and method for generating hydrogen gas using the same
JP2009155189A (en) * 2007-12-28 2009-07-16 Kobelco Kaken:Kk Hydrogen generation accelerating member, method and apparatus for generating hydrogen
JP2013107822A (en) * 2013-01-30 2013-06-06 Ulvac Japan Ltd Method for generating gaseous hydrogen and material for generating gaseous hydrogen
JP2019001674A (en) * 2017-06-14 2019-01-10 株式会社アルバック Hydrogen generating material manufacturing method, fuel cell, and hydrogen generating method

Also Published As

Publication number Publication date
JPH0438682B2 (en) 1992-06-25

Similar Documents

Publication Publication Date Title
JP3325900B2 (en) Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
CN101130841B (en) Titanium rare-earth magnesium alloy
CN100457954C (en) High capacity Mg2Ni-type hydrogen storing alloy amorphous band and preparation method thereof
CA1058554A (en) Process for the electrolysis of a molten charge using inconsumable anodes
JPS632801A (en) Gaseous hydrogen generating material
Shi et al. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis
EP0248960A1 (en) Hydrogen producing material
US20080274031A1 (en) Method for Producing High Purity Silicon
CN113279030B (en) Molten salt electrodeposition method of niobium coating
CN110899609B (en) Graphite type coating paste for titanium and titanium alloy casting and preparation method and application thereof
JPH0123543B2 (en)
CA1080151A (en) Forming crust in electrolysis of salt charge of aluminium oxide content above eutectic point
CN110983080B (en) Method for preparing ultra-low sulfur cupronickel by adopting vacuum melting equipment
CN110079831B (en) Protection method of non-carbon anode metal guide rod for combined production and electrolysis of oxygen and aluminum
Brace Reactions of molten titanium with certain refractory oxides
CN106350754A (en) Aluminum profile for high-rise building balcony and preparation method of aluminum profile
CN105200287A (en) Manufacturing method of super-high-strength aluminium alloy circular ingots
JP2017066016A (en) Method and apparatus for manufacturing float plate glass
CN107974597A (en) The magnesium scandium alloy and its processing technology of a kind of die casting
JPH05105979A (en) High density sintered zn-ni alloy and its production
US3113879A (en) Aluminum nitride refractory and method of making
US3849879A (en) Method of making a composite magnesium-titanium conductor
CN111485127A (en) Preparation method of magnesium alloy with high corrosion resistance and magnesium alloy
JPS6265941A (en) Apparatus for producing float glass
Tane et al. Fabrication of porous magnesium with directional pores through use of hydrogen thermally decomposed from MgH2 powders during unidirectional solidification