JPH0123543B2 - - Google Patents

Info

Publication number
JPH0123543B2
JPH0123543B2 JP61129886A JP12988686A JPH0123543B2 JP H0123543 B2 JPH0123543 B2 JP H0123543B2 JP 61129886 A JP61129886 A JP 61129886A JP 12988686 A JP12988686 A JP 12988686A JP H0123543 B2 JPH0123543 B2 JP H0123543B2
Authority
JP
Japan
Prior art keywords
hydrogen
water
aluminum alloy
aluminum
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61129886A
Other languages
Japanese (ja)
Other versions
JPS62287032A (en
Inventor
Katsuhiro Nagira
Tooru Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA FUJI KOGYO KK
Original Assignee
OOSAKA FUJI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA FUJI KOGYO KK filed Critical OOSAKA FUJI KOGYO KK
Priority to JP61129886A priority Critical patent/JPS62287032A/en
Priority to EP86306754A priority patent/EP0248960A1/en
Priority to US06/903,770 priority patent/US4752463A/en
Publication of JPS62287032A publication Critical patent/JPS62287032A/en
Publication of JPH0123543B2 publication Critical patent/JPH0123543B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は水素生成用アルミニウム合金に関す
る。 (従来の技術) 従来、水素ガスを生成させる方法としては、金
属を酸やアルカリと反応させる方法、水を熱化学
的に分解する方法及び水を電気分解する方法が知
られているが、前者は工業的に利用することが困
難であることから、工業的には電気分解法が一般
に採用されている。 (発明が解決しようとする問題点) しかしながら、電気分解法や水の熱化学的分解
法では、多大の電力や熱エネルギーを必要とする
問題がある。 従つて、本発明は安価で、エネルギーを必要と
せず、水素生成能率が高く、しかも環境汚染の恐
れのない水素ガス生成材料を得ることを目的とす
るものである。 (問題点を解決するための手段) 本発明は、前記問題を解決する手段として、錫
5〜50%、残部アルミニウム及び不可避的不純物
からなる水素生成用アルミニウム合金を提供する
ものである。 即ち、アルミニウムは表面が酸化されて不動態
化するため、水や温水に浸漬しても反応しない
が、本発明者は、アルミニウム合金について種々
研究した結果、アルミニウムに錫を所定量添加し
て合金にすると、常温の水に浸漬しただけでも反
応して水素ガスを発生し、しかも、温度の上昇と
共に生成速度が増大することを見出だし、この知
見に基づいて本発明を完成したものである。 本発明に係るアルミニウム合金が水と反応し水
素ガスを生成する理由及びその反応機構等は解明
されていないが、アルミニウム中に錫をその固溶
限以上に均一に固溶させたことに起因するものと
推測される。 錫の含有量を5〜50%としたのは、錫の含有量
が5%未満あるいは50%を越えると、水素の発生
が殆ど見られず、本発明の目的を達成できないか
らである。なお、アルミニウム及び錫はできるだ
け高純度のものを使用するのが好ましい。 本発明に係る水素生成用アルミニウム合金は、
例えば、内壁面を溶湯の凝固点以上の温度に維持
させた鋳型にその一端側からアルミニウム合金の
溶湯を供給し、他端側から凝固させつつ水平方向
に引き抜いて鋳造することを特徴とする連続鋳造
方法によつて製造できる。 なお、アルミニウムと錫の融点及び密度が著し
く相異し、またアルミニウム中への錫が固溶度が
非常に小さいため、鋳型を冷却しながら鋳造する
方法では、偏析を起こしたり欠陥を生じ易いため
最大でも数%程度しか添加できず、また、所定量
添加した合金を鋳造後に熱処理を加えて均質化し
てもそのままでは水素を殆ど生成しない。 以下、添付の図面を参照して本発明に係る水素
生成用アルミニウム合金の製造方法について具体
的に説明する。 第1図は本発明に係る合金の製造に使用する連
続鋳造装置を示し、1は電気炉、2は黒鉛ルツ
ボ、3は加熱鋳型、4はヒータ、5は冷却装置、
6はピンチローラ、7は溶湯、8は鋳塊、9は冷
却水供給口である。まず、アルミニウムと錫とを
所定の割合で配合して電気炉1内で溶融させる一
方、ヒータ4により鋳型3を鋳造材料の凝固点以
上の温度に加熱、維持させ、ダミーバー(図示せ
ず)を鋳型内にセツトする。次に、電気炉1の黒
鉛ルツボ2内に押し込み棒(図示せず)を挿入し
て、溶湯を鋳型3内に充填し、更に、冷却装置5
に冷却水を供給しながらピンチローラ6を回転駆
動させて、ダミーバーを引き抜くことにより鋳造
が開始される。ダミーバーの引き抜きにより溶湯
は鋳型出口近傍で凝固殻を形成するが、鋳型がア
ルミニウム合金の融点以上に加熱されているた
め、その凝固界面は、図示のように鋳型内に突出
した形状となる。凝固した鋳塊8は冷却装置5に
より更に冷却される。 このようにして鋳造されたアルミニウム合金
は、そのまま使用しても良いが、水素生成速度を
大きくするため、板状、粉末状、溶射皮膜その他
の形態に加工して使用するのが好ましい。 (実施例) 純度99.99%のアルミニウム(Al)と、純度
99.9%の錫(Sn)とを原料として用い、これらを
第1表に示す組成に配合し、第1図の連続鋳造装
置を用いて鋳造し、それぞれ直径8mmのアルミニ
ウム合金の鋳塊を得た。 ついで、各アルミニウム合金を0.25mmに冷間圧
延した後、幅10mm、長さ50mm、厚さ0.25mmの試験
片を得た。
(Industrial Application Field) The present invention relates to an aluminum alloy for hydrogen generation. (Prior art) Conventionally, known methods for generating hydrogen gas include a method of reacting a metal with an acid or alkali, a method of thermochemically decomposing water, and a method of electrolyzing water. Since it is difficult to use it industrially, electrolysis is generally adopted industrially. (Problems to be Solved by the Invention) However, the electrolysis method and the thermochemical decomposition method of water have a problem in that they require a large amount of electric power and thermal energy. Therefore, an object of the present invention is to obtain a hydrogen gas generating material that is inexpensive, does not require energy, has high hydrogen generation efficiency, and is free from environmental pollution. (Means for Solving the Problems) As a means for solving the above-mentioned problems, the present invention provides an aluminum alloy for hydrogen generation comprising 5 to 50% tin, the balance aluminum and unavoidable impurities. In other words, the surface of aluminum is oxidized and becomes passivated, so it does not react even when immersed in water or hot water. However, as a result of various studies on aluminum alloys, the inventors discovered that aluminum alloys can be made by adding a predetermined amount of tin to aluminum. They discovered that even when immersed in water at room temperature, it reacts and generates hydrogen gas, and that the rate of production increases as the temperature rises.Based on this knowledge, the present invention was completed. Although the reason why the aluminum alloy according to the present invention reacts with water and generates hydrogen gas and the reaction mechanism are not clear, it is due to the fact that tin is uniformly dissolved in aluminum beyond its solid solubility limit. It is assumed that The reason why the tin content is set to 5 to 50% is that if the tin content is less than 5% or exceeds 50%, hydrogen generation is hardly observed and the object of the present invention cannot be achieved. Note that it is preferable to use aluminum and tin with as high a purity as possible. The aluminum alloy for hydrogen generation according to the present invention is
For example, continuous casting is characterized by supplying molten aluminum alloy from one end of a mold whose inner wall surface is maintained at a temperature higher than the freezing point of the molten metal, and drawing it horizontally while solidifying from the other end. It can be manufactured by the method. Furthermore, since the melting points and densities of aluminum and tin are significantly different, and the solid solubility of tin in aluminum is extremely low, methods of casting while cooling the mold tend to cause segregation and defects. At most, hydrogen can only be added in a few percent, and even if a predetermined amount of hydrogen is added to the alloy and homogenized by heat treatment after casting, hardly any hydrogen will be produced as it is. Hereinafter, a method for manufacturing an aluminum alloy for hydrogen generation according to the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 shows a continuous casting apparatus used for manufacturing the alloy according to the present invention, in which 1 is an electric furnace, 2 is a graphite crucible, 3 is a heating mold, 4 is a heater, 5 is a cooling device,
6 is a pinch roller, 7 is a molten metal, 8 is an ingot, and 9 is a cooling water supply port. First, aluminum and tin are mixed in a predetermined ratio and melted in the electric furnace 1, while the mold 3 is heated and maintained at a temperature equal to or higher than the freezing point of the casting material by the heater 4, and a dummy bar (not shown) is placed in the mold. Set inside. Next, a push rod (not shown) is inserted into the graphite crucible 2 of the electric furnace 1 to fill the mold 3 with molten metal, and then the cooling device 5
Casting is started by rotating the pinch roller 6 while supplying cooling water to pull out the dummy bar. When the dummy bar is pulled out, the molten metal forms a solidified shell near the mold outlet, but since the mold is heated above the melting point of the aluminum alloy, the solidified interface protrudes into the mold as shown in the figure. The solidified ingot 8 is further cooled by the cooling device 5. The aluminum alloy thus cast may be used as is, but in order to increase the rate of hydrogen production, it is preferable to process it into a plate, powder, sprayed coating, or other form before use. (Example) 99.99% pure aluminum (Al) and purity
Using 99.9% tin (Sn) as a raw material, these were mixed into the composition shown in Table 1, and cast using the continuous casting equipment shown in Figure 1 to obtain aluminum alloy ingots each having a diameter of 8 mm. . Next, each aluminum alloy was cold rolled to 0.25 mm, and then a test piece with a width of 10 mm, a length of 50 mm, and a thickness of 0.25 mm was obtained.

【表】 恒温水槽内の水をそれぞれ19℃、30℃、50℃、
75℃の所定温度に維持し、その中に水を満たした
メスシリンダを倒立させた後、各試験片を入れた
フラスコを水槽内に設置し、試験片から発生する
ガスをメスシリンダで採取して、そのガスによる
水置換量から生成ガス量を計測した。その結果を
第2表および第2図〜第4図に示す。
[Table] The water in the constant temperature water tank is 19℃, 30℃, 50℃, respectively.
After maintaining the specified temperature of 75℃ and inverting a measuring cylinder filled with water, the flask containing each test piece was placed in a water tank, and the gas generated from the test piece was collected with the measuring cylinder. Then, the amount of gas produced was measured from the amount of water replaced by the gas. The results are shown in Table 2 and FIGS. 2 to 4.

【表】 第2表の結果から明らかなように、本発明に係
るアルミニウム合金は、水温が低くても水素を発
生し、高温になるほど生成速度が増大する。従つ
て、水温を制御することにより水素生成速度を制
御することができる。 第2図は50℃(1点鎖線)及び75℃(実線)に
おけるアルミニウム合金の錫含有量と最大水素生
成速度との関係を示す。図から明らかなように、
錫の含有量が5%未満ではアルミニウム合金から
水素が殆ど発生せず、5%以上になると水素ガス
が発生し始める。水素ガスの生成速度は錫含有量
が10%を超えると急激に増大し、20%前後で顕著
なピーク値を示す。また、50%を越えると再び水
素ガスが発生しなくなる。ちなみに、錫含有量20
%のものは、水温が75℃で128ml/hr・cm2と著し
く速く、旧式電解槽を用い印加電圧2V、電流密
度0.1A/mm2で水を電気分解したときの生成速度
の4倍以上の値を示す。また、20℃でも24ml/
hr・cm2と電解槽の値(22ml/hr・cm2)と同等の
値を示す。 第3図及び第4図は、水温をそれぞれ50℃およ
び75℃に設定し、アルミニウム合金を水中に浸漬
した場合の水素生成速度の変化を示す。図から明
らかなように、水素生成速度は錫含有量に大きく
依存することがわかる。 (発明の効果) 以上の説明から明らかなように、本発明によれ
ば、安価で無害な材料を用いて水素生成材料を得
ることができ、しかも、水素生成に電力その他の
エネルギーを必要とせず、旧式電解槽の4倍以上
の水素生成速度が得られるなど優れた効果が得ら
れる。
[Table] As is clear from the results in Table 2, the aluminum alloy according to the present invention generates hydrogen even when the water temperature is low, and the generation rate increases as the temperature increases. Therefore, by controlling the water temperature, the hydrogen production rate can be controlled. Figure 2 shows the relationship between the tin content of the aluminum alloy and the maximum hydrogen production rate at 50°C (dashed line) and 75°C (solid line). As is clear from the figure,
When the tin content is less than 5%, hardly any hydrogen is generated from the aluminum alloy, and when the tin content is 5% or more, hydrogen gas starts to be generated. The rate of hydrogen gas production increases rapidly when the tin content exceeds 10%, and reaches a remarkable peak value at around 20%. Moreover, when it exceeds 50%, hydrogen gas will no longer be generated. By the way, tin content 20
% is extremely fast at 128 ml/hr・cm 2 at a water temperature of 75°C, which is more than four times the generation rate when water is electrolyzed using an old-style electrolytic cell at an applied voltage of 2 V and a current density of 0.1 A/mm 2. indicates the value of Also, even at 20℃, 24ml/
hr・cm 2 and the value of the electrolytic cell (22ml/hr・cm 2 ) are shown. Figures 3 and 4 show changes in the hydrogen production rate when the aluminum alloy is immersed in water with the water temperature set at 50°C and 75°C, respectively. As is clear from the figure, the hydrogen production rate is largely dependent on the tin content. (Effects of the Invention) As is clear from the above description, according to the present invention, a hydrogen-generating material can be obtained using inexpensive and harmless materials, and hydrogen generation does not require electricity or other energy. , excellent effects can be obtained, such as a hydrogen production rate four times faster than that of old-style electrolyzers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る水素生成用アルミニウム
合金の製造に使用する連続鋳造装置の概略断面
図、第2図は本発明に係る水素生成用アルミニウ
ム合金の錫含有量と最大生成速度との関係を示す
図、第3図及び第4図は本発明に係る水素生成用
アルミニウム合金の一定温度における水素生成速
度の変化を示す図である。 1……電気炉、2……黒鉛ルツボ、3……加熱
鋳型、4……ヒータ、5……冷却装置、6……ピ
ンチローラ、7……溶湯、8……鋳塊、9……冷
却水供給口。
FIG. 1 is a schematic cross-sectional view of a continuous casting apparatus used for producing the aluminum alloy for hydrogen generation according to the present invention, and FIG. 2 is the relationship between the tin content and the maximum production rate of the aluminum alloy for hydrogen generation according to the present invention. , FIG. 3, and FIG. 4 are diagrams showing changes in the hydrogen production rate at a constant temperature of the aluminum alloy for hydrogen production according to the present invention. 1... Electric furnace, 2... Graphite crucible, 3... Heating mold, 4... Heater, 5... Cooling device, 6... Pinch roller, 7... Molten metal, 8... Ingot, 9... Cooling Water supply port.

Claims (1)

【特許請求の範囲】[Claims] 1 錫5〜50%、残部アルミニウム及び不可避的
不純物からなる水素生成用アルミニウム合金。
1. An aluminum alloy for hydrogen generation consisting of 5-50% tin, the balance aluminum and unavoidable impurities.
JP61129886A 1986-06-03 1986-06-03 Aluminum alloy for producing hydrogen Granted JPS62287032A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61129886A JPS62287032A (en) 1986-06-03 1986-06-03 Aluminum alloy for producing hydrogen
EP86306754A EP0248960A1 (en) 1986-06-03 1986-09-02 Hydrogen producing material
US06/903,770 US4752463A (en) 1986-06-03 1986-09-05 Method of producing hydrogen and material used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61129886A JPS62287032A (en) 1986-06-03 1986-06-03 Aluminum alloy for producing hydrogen

Publications (2)

Publication Number Publication Date
JPS62287032A JPS62287032A (en) 1987-12-12
JPH0123543B2 true JPH0123543B2 (en) 1989-05-02

Family

ID=15020772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61129886A Granted JPS62287032A (en) 1986-06-03 1986-06-03 Aluminum alloy for producing hydrogen

Country Status (1)

Country Link
JP (1) JPS62287032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004428A1 (en) * 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP2008266777A (en) * 2007-03-29 2008-11-06 Kobe Steel Ltd Hydrogen generating alloy, hydrogen generating method, and fuel cell
WO2009028143A1 (en) 2007-08-29 2009-03-05 Japan Science And Technology Agency Hydrogen gas generating member and hydrogen gas producing method therefor
JP2009215602A (en) * 2008-03-10 2009-09-24 Kobelco Kaken:Kk Liquid state alloy material and method for producing hydrogen and byproduct material using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757557A4 (en) * 2005-01-07 2008-09-24 Hitachi Maxell Hydrogen generating material, hydrogen generator and fuel cell
JP5208532B2 (en) * 2007-11-06 2013-06-12 株式会社コベルコ科研 Hydrogen generator
KR101044260B1 (en) 2008-09-16 2011-06-28 한국과학기술원 Alloy design of Al alloys and their production method for fast hydrogen generation from hydrolysis reaction in alkaline water
KR101175958B1 (en) 2010-01-11 2012-08-23 한국과학기술원 Alloy design of ternary Al alloys and their production method for fast hydrogen generation from hydrolysis reaction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004428A1 (en) * 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP5511186B2 (en) * 2006-07-05 2014-06-04 勲 伊藤 Hydrogen generating method, hydrogen generating alloy, and hydrogen generating alloy manufacturing method
JP2008266777A (en) * 2007-03-29 2008-11-06 Kobe Steel Ltd Hydrogen generating alloy, hydrogen generating method, and fuel cell
WO2009028143A1 (en) 2007-08-29 2009-03-05 Japan Science And Technology Agency Hydrogen gas generating member and hydrogen gas producing method therefor
JP2009215602A (en) * 2008-03-10 2009-09-24 Kobelco Kaken:Kk Liquid state alloy material and method for producing hydrogen and byproduct material using the same

Also Published As

Publication number Publication date
JPS62287032A (en) 1987-12-12

Similar Documents

Publication Publication Date Title
CN101200806B (en) Method for preparing gadolinium-iron alloy by molten salt electrolysis
EA002205B1 (en) Process for the electrolytic production of metals
US5372659A (en) Alloys of refractory metals suitable for transformation into homogeneous and pure ingots
CN108339953A (en) It is a kind of it is antivacuum under draw the production technology of continuous casting chromium-zirconium-copper slab ingot
JPH0123543B2 (en)
CN105714134B (en) The vacuum metling technique of nickel-base alloy containing aluminium titanium boron zirconium
CN103993335A (en) Device and method for directly preparing aluminum alloy through molten salt electrolysis-casting
US4752463A (en) Method of producing hydrogen and material used therefor
JPS61169149A (en) Continuous casting method
JPH0438682B2 (en)
US3226311A (en) Process of producing calcium by electrolysis
US3672879A (en) Tini cast product
CN109055995B (en) Method for preparing carbon oxide anode for electrolytic extraction of titanium
JP2535678B2 (en) Method for producing Al-B alloy
US3867976A (en) Electroflux melting method and apparatus
CN109055996A (en) A kind of method that the molten-salt electrolysis of sinking cathode prepares aluminium samarium intermediate alloy
US4297132A (en) Electroslag remelting method and flux composition
CN110129836B (en) Method for reducing volatilization of molten salt by utilizing sectional heating
US2991235A (en) Method for supplying current to the anode of aluminum refining cells
JP2926280B2 (en) Rare earth-iron alloy production method
CN112267131B (en) Yttrium-nickel alloy and preparation method and application thereof
US2759230A (en) Ingot molds provided with a hot-top
JPH059499B2 (en)
US3230177A (en) Actinide oxide-actinide nitride eutectic compositions and their method of manufacture
CN116287808B (en) Smelting preparation method of titanium-aluminum-based alloy with evenly distributed niobium and zirconium elements