JPH0762198B2 - Aluminum alloy for hydrogen generation and method for producing the same - Google Patents

Aluminum alloy for hydrogen generation and method for producing the same

Info

Publication number
JPH0762198B2
JPH0762198B2 JP10672786A JP10672786A JPH0762198B2 JP H0762198 B2 JPH0762198 B2 JP H0762198B2 JP 10672786 A JP10672786 A JP 10672786A JP 10672786 A JP10672786 A JP 10672786A JP H0762198 B2 JPH0762198 B2 JP H0762198B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
hydrogen gas
water
alloy
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10672786A
Other languages
Japanese (ja)
Other versions
JPS62263946A (en
Inventor
元 工藤
建 当摩
庸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP10672786A priority Critical patent/JPH0762198B2/en
Publication of JPS62263946A publication Critical patent/JPS62263946A/en
Publication of JPH0762198B2 publication Critical patent/JPH0762198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、例えば水と反応させることによって水素ガス
を生成せしむる為の水素生成用アルミニウム合金に関す
るものである。
The present invention relates to an aluminum alloy for hydrogen generation for generating hydrogen gas by reacting with water, for example.

【従来技術とその問題点】 1973年に起きたオイルショックが契機となって、人類の
エネルギー消費の異常なまでの増大傾向に伴なう資源問
題と公害問題からクリーンな石油代替エネルギー資源へ
の転換の必要性がより高いものとなっている。 そして、このような観点から水素ガスが注目されてきて
おり、今日では、工業原料として水素ガスを要する場合
には、天然ガス又はナフサからの蒸気改質や、他の化学
工程での副産物から得られており、高純度なものを要す
る場合には、水の電解法によって得られている。 水素ガスの製造法としてはこの他にも非常に多くの方法
があり、特にオイルショック以後においては無尽蔵で無
公害なエネルギーメディアとして水分解に基ずく水素ガ
スの生成が注目されるところとなり、一部において、水
と容易に反応し水素ガスを生成する第III族のアルミニ
ウムに対する研究が行なわれている。 すなわち、アルミニウムは、本来においては上述の通り
水と容易に反応して水素ガスを生成する特性を有するも
のの、表面に生じた緻密な酸化被膜が酸化反応の内部進
行を阻止してしまうことから、通常においては水とほと
んど反応しないものとなっており、そこでこのような問
題を解決する為に、つまりアルミニウムと水とを継続的
に反応せしめる方法として、アルミニウムが水銀に溶解
することに注目して、アルミニウム表面に水銀被膜を形
成せしめ、その膜中を泳動・拡散したアルミニウム原子
と水分子とを被膜表面上で反応させることによって水素
ガスを生成させることが一部で提案されている。 しかし、この水銀アマルガムを利用する方法は、この水
銀による公害問題が引き起こされることになり、実用化
の上では致命的な欠点がある。
[Prior art and its problems] In response to the oil shock that occurred in 1973, there was a shift from resource problems and pollution problems accompanying the abnormal increase in human energy consumption to clean oil alternative energy resources. The need for conversion is higher. From this point of view, hydrogen gas has been drawing attention, and today, when hydrogen gas is required as an industrial raw material, it is obtained from steam reforming from natural gas or naphtha, and by-products from other chemical processes. When high purity is required, it is obtained by an electrolysis method of water. There are numerous other methods for producing hydrogen gas, and in particular, after the oil shock, the production of hydrogen gas based on water decomposition has become a focus of attention as an inexhaustible and pollution-free energy medium. In the section, research is being conducted on Group III aluminum, which readily reacts with water to produce hydrogen gas. That is, aluminum originally has a characteristic of easily reacting with water to generate hydrogen gas as described above, but since the dense oxide film formed on the surface blocks the internal progress of the oxidation reaction, Normally, it hardly reacts with water.Therefore, in order to solve such a problem, that is, as a method of continuously reacting aluminum with water, attention is paid to the fact that aluminum dissolves in mercury. It has been proposed in part to generate a hydrogen gas by forming a mercury film on the surface of aluminum and reacting aluminum atoms migrated and diffused in the film with water molecules on the surface of the film. However, the method of using this mercury amalgam causes a pollution problem due to this mercury, and has a fatal drawback in practical use.

【発明の開示】DISCLOSURE OF THE INVENTION

本発明者は、水と反応させることによって水素ガスを生
成せしむる為の材料としては第III族に属するAlが基本
的に望ましいものであるとの観点から鋭意研究を押し進
めた結果、Al−Bi系合金を約104℃/sec以上の凝固速度
で溶湯から超急冷凝固させてなるアルミニウム合金は、
水に対して著しく活性なものであり、そして水素ガスを
生成せしむることを見出したのである。 すなわち、Al−Bi系合金の溶湯を約104℃/sec以上の凝
固速度で超急冷凝固させることによって得たアルミニウ
ム合金は、BiがAl素地中に充分微細に晶出分散した超急
冷凝固組織を有していることから、このような組織のAl
−Bi系合金は電気化学的に卑なものとなり、水に対して
高い活性を示し、水と継続的に反応して水素ガスを生成
せしむることを見出したのである。 尚、ここで約104℃/sec以上の凝固速度で凝固させるこ
とは極めて重要な因子であって、本発明の必須構成要件
であり、又、単にアルミニウムを約104℃/sec以上の凝
固速度で凝固させるのみでも不充分であって、必ずBiを
も含有していることが必須の要件である。 但し、このBiの含有割合は、Biが多少でも含まれている
と、Biを全く含んでいない場合に比べれば大きな効果、
すなわちAl合金を活性化して水との反応性を高める効果
があるものの、望ましくは約0.5重量%以上含まれてい
ることが水素ガス生成速度等の点から好ましい。 又、Biの含有割合が多くなっても差し支えないものでは
あるが、すなわち、Biの含有割合が多くなるにつれて水
素ガス生成速度が大きくなる傾向があるものの、このBi
の成分は水と反応して水素ガスを生成せしむるものでは
なく、Biの含有量の増大につれてこのアルミニウム合金
より生成する水素ガスの絶対量は相対的に低下すること
から、望ましくは約20重量%以下、より一層望ましくは
約10重量%以下であることが好ましい。 又、本発明の水素生成用アルミニウム合金は約104℃/se
c以上の凝固速度で凝固させられたものであれば、その
凝固法の如何は問われないものではあるが、非晶質合金
の製造に際して用いられる容器に形成したスリットから
水冷回転ロールの表面に吹き付ける方法を用いるなら
ば、薄帯状の水素生成用Al−Bi系合金が得られ、表面積
が大きな材料となることから、本発明になるアルミニウ
ム合金を得る方法として好ましいものである。 又、本発明においては、Al及びBiの他に第三の成分が含
まれていても良いものではあるが、第三の成分が含まれ
るとそれだけAl含有量が低下することになり、従ってそ
れだけ水素ガス生成量が少ないものになることから、第
三の成分な量は少ない方が望ましい。 上記の知見を基にして本発明が達成されたものであり、
本発明は、Al−Bi系の合金からなる水素ガス生成用のア
ルミニウム合金であって、Bi含有量が0.5〜20重量%
で、残部が不可避不純物及びAlであることを特徴とする
水素生成用アルミニウム合金を提供するものである。 又、Bi含有量が0.5〜20重量%で、残部が不可避不純物
及びAlのAl−Bi系の合金を104℃/sec以上の凝固速度で
凝固させることを特徴とする水素生成用アルミニウム合
金の製造方法を提供するものである。
The present inventor has carried out intensive research from the viewpoint that Al belonging to Group III is basically desirable as a material for producing hydrogen gas by reacting with water, and as a result, Al- Aluminum alloys obtained by super-quenching and solidifying a Bi alloy at a solidification rate of approximately 10 4 ° C / sec or more
It was found to be extremely active in water and to generate hydrogen gas. That is, an aluminum alloy obtained by super-quenching and solidifying a molten metal of Al-Bi alloy at a solidification rate of about 10 4 ° C / sec or more has an ultra-quick solidification structure in which Bi is crystallized and dispersed in the Al matrix sufficiently finely. Since it has Al,
It has been found that the -Bi alloy becomes electrochemically base, exhibits a high activity with respect to water, and continuously reacts with water to generate hydrogen gas. Here, solidification at a solidification rate of about 10 4 ° C / sec or more is a very important factor, and is an essential constituent requirement of the present invention, and aluminum is simply solidified at about 10 4 ° C / sec or more. Only solidifying at a speed is not sufficient, and it is essential that Bi is also contained. However, the content ratio of Bi, if Bi is included even a little, compared to the case of not containing Bi at all, a large effect,
That is, although it has the effect of activating the Al alloy to enhance the reactivity with water, it is preferably contained in an amount of about 0.5% by weight or more from the viewpoint of the hydrogen gas generation rate and the like. Further, although there is no problem even if the Bi content ratio increases, that is, although the hydrogen gas generation rate tends to increase as the Bi content ratio increases, this Bi
Component does not react with water to generate hydrogen gas, and the absolute amount of hydrogen gas generated from this aluminum alloy relatively decreases as the content of Bi increases. It is preferably less than or equal to 10% by weight, and more preferably less than or equal to about 10% by weight. Further, the aluminum alloy for hydrogen generation of the present invention is about 10 4 ° C / se
As long as it is solidified at a solidification rate of c or more, it does not matter what the solidification method is, but from the slit formed in the container used in the production of the amorphous alloy to the surface of the water-cooled rotary roll. If a spraying method is used, a ribbon-shaped Al-Bi alloy for hydrogen generation can be obtained and a material having a large surface area can be obtained, which is a preferable method for obtaining the aluminum alloy according to the present invention. Further, in the present invention, the third component may be contained in addition to Al and Bi, but if the third component is contained, the Al content will be reduced accordingly, and therefore only that much. Since the amount of hydrogen gas produced is small, it is desirable that the amount of the third component is small. The present invention has been achieved based on the above findings,
The present invention is an aluminum alloy for hydrogen gas generation consisting of an Al-Bi alloy, wherein the Bi content is 0.5 to 20% by weight.
The present invention provides an aluminum alloy for hydrogen generation, wherein the balance is unavoidable impurities and Al. Further, the Bi content is 0.5 to 20 wt%, the balance is unavoidable impurities and Al-Bi alloy of Al is solidified at a solidification rate of 10 4 ℃ / sec or more of the aluminum alloy for hydrogen generation, characterized by A manufacturing method is provided.

【実施例1〜7】 溶解るつぼ内で、Biが約0.5〜15重量%及び不可避不純
物を含み残部Alの組成を有するように調整した溶湯を、
るつぼの底部に設けた0.5mm×15mmの寸法のスリットか
らその真下に位置した3000rpmで回転している直径250mm
の水冷銅製ロールの表面に、104℃/sec以上の凝固速度
で凝固するようArガス圧によって吹き付け、厚さ0.03〜
0.1mmの寸法のアルミニウム合金薄帯材を得る。
[Examples 1 to 7] In a melting crucible, melts prepared so that Bi contained about 0.5 to 15% by weight and unavoidable impurities and had a composition of balance Al,
250 mm diameter rotating at 3000 rpm located directly below the slit of 0.5 mm × 15 mm provided at the bottom of the crucible
Sprayed by Ar gas pressure on the surface of the water-cooled copper roll to solidify at a solidification rate of 10 4 ° C / sec or more, with a thickness of 0.03 ~
An aluminum alloy ribbon with a dimension of 0.1 mm is obtained.

【比較例1,2】 所定のアルミニウム合金の溶湯を水冷鋳型に鋳造して35
mm×200mm×300mmの寸法の鋳塊とし、この鋳塊に通常の
条件で熱間圧延を施し、さらに冷間圧延と中間焼純とを
繰り返し施すことによって、厚さ0.05mmの寸法のアルミ
ニウム合金薄帯材を得る。
[Comparative Examples 1 and 2] A predetermined aluminum alloy melt was cast in a water-cooled mold.
mm x 200 mm x 300 mm ingot, hot rolling this ingot under normal conditions, and then repeatedly performing cold rolling and intermediate refining to obtain an aluminum alloy with a thickness of 0.05 mm Obtain a ribbon.

【特性】【Characteristic】

上記各例で得たアルミニウム合金薄帯材を約70〜90℃の
水道水に浸漬して、発生する水素ガスを捕集し、アルミ
ニウム合金薄帯材の単位面積当り単位時間に捕集される
水素ガス量を調べると表に示す通りである。 又、このアルミニウム合金薄帯材の伸びについても調べ
たので、併せてこの特性も表に示す。 これによれば、本実施例1〜7になるアルミニウム合金
の薄帯材は比較例1,2になるアルミニウム合金の薄帯材
に比べて水との反応は極めて大きなものであり、すなわ
ち水素ガス生成速度が極めて大きなことがわかる。 特に、実施例3と実施例4と比較例1とを比べると、凝
固速度を大きくして得たAl−Bi系のアルミニウム合金薄
帯材は、その水素ガス生成速度の大きなことがわかる。 すなわち、Al−Bi系合金の溶湯を約104℃/sec以上の凝
固速度で凝固させてなるアルミニウム合金は、水との反
応が著しいものであって、水素ガスを効率よく生成せし
むることのできるものであることがわかる。 そして、このようにして得られたアルミニウム合金の薄
帯材を、例えばプレス手段等によって押し固めたものと
すれ ば、燃料電池の水素ガス供給源として好適なもの
であって、エネルギー貯蔵材として優れた効果を発揮す
るものである。
The aluminum alloy thin strip material obtained in each of the above examples is immersed in tap water of about 70 to 90 ° C. to collect the generated hydrogen gas, and the aluminum alloy thin strip material is collected per unit area per unit time. The amount of hydrogen gas is examined and is shown in the table. Further, since the elongation of this aluminum alloy thin strip material was also investigated, this property is also shown in the table. According to this, the aluminum alloy ribbons according to Examples 1 to 7 have a significantly larger reaction with water than the aluminum alloy ribbons according to Comparative Examples 1 and 2, that is, hydrogen gas. It can be seen that the generation rate is extremely high. In particular, comparing Example 3 and Example 4 with Comparative Example 1, it can be seen that the Al—Bi-based aluminum alloy ribbon obtained by increasing the solidification rate has a high hydrogen gas generation rate. That is, an aluminum alloy obtained by solidifying a molten Al-Bi alloy at a solidification rate of about 10 4 ° C / sec or more has a remarkable reaction with water and efficiently produces hydrogen gas. You can see that it is possible. If the aluminum alloy thin strip material thus obtained is compacted by, for example, a pressing means, it is suitable as a hydrogen gas supply source for a fuel cell and excellent as an energy storage material. It is effective.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Al−Bi系の合金からなる水素ガス生成用の
アルミニウム合金であって、Bi含有量が0.5〜20重量%
で、残部が不可避不純物及びAlであることを特徴とする
水素生成用アルミニウム合金。
1. An aluminum alloy for hydrogen gas production, which comprises an Al-Bi alloy and has a Bi content of 0.5 to 20% by weight.
In the aluminum alloy for hydrogen generation, the balance is unavoidable impurities and Al.
【請求項2】Bi含有量が0.5〜20重量%で、残部が不可
避不純物及びAlのAl−Bi系の合金を104℃/sec以上の凝
固速度で凝固させることを特徴とする水素生成用アルミ
ニウム合金の製造方法。
2. For hydrogen production, characterized in that a Bi content is 0.5 to 20% by weight and the balance is unavoidable impurities and an Al-Bi alloy of Al is solidified at a solidification rate of 10 4 ° C / sec or more. Aluminum alloy manufacturing method.
JP10672786A 1986-05-12 1986-05-12 Aluminum alloy for hydrogen generation and method for producing the same Expired - Lifetime JPH0762198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10672786A JPH0762198B2 (en) 1986-05-12 1986-05-12 Aluminum alloy for hydrogen generation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10672786A JPH0762198B2 (en) 1986-05-12 1986-05-12 Aluminum alloy for hydrogen generation and method for producing the same

Publications (2)

Publication Number Publication Date
JPS62263946A JPS62263946A (en) 1987-11-16
JPH0762198B2 true JPH0762198B2 (en) 1995-07-05

Family

ID=14440968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10672786A Expired - Lifetime JPH0762198B2 (en) 1986-05-12 1986-05-12 Aluminum alloy for hydrogen generation and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0762198B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004428A1 (en) 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP2009215602A (en) * 2008-03-10 2009-09-24 Kobelco Kaken:Kk Liquid state alloy material and method for producing hydrogen and byproduct material using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803349B1 (en) 2005-06-08 2010-09-28 University Of Central Florida Research Foundation, Inc. Method and apparatus for hydrogen production from water
JP5383989B2 (en) * 2007-08-29 2014-01-08 独立行政法人科学技術振興機構 Hydrogen gas generating member and method for producing hydrogen gas
JP2009137803A (en) * 2007-12-07 2009-06-25 Ulvac Japan Ltd Hydrogen gas-producing material and method for generating hydrogen gas using the same
RU2468118C2 (en) * 2008-04-30 2012-11-27 Улвак, Инк. Al COMPOSITE MATERIAL REACTING WITH WATER, Al FILM REACTING WITH WATER, METHOD TO PRODUCE THIS Al FILM AND COMPONENT OF FILM-PRODUCING CHAMBER
MY152964A (en) * 2008-04-30 2014-12-15 Ulvac Inc Water-reactive al composite material for thermal spray, water-reactive thermally sprayed al film, process for the production of the thermally sprayed al film, and constituent member for film-forming chamber
WO2009133839A1 (en) * 2008-04-30 2009-11-05 株式会社アルバック Water-reactive al composite material, water-reactive al film, method for production of the al film, and structural member for film-forming chamber
JP2013107822A (en) * 2013-01-30 2013-06-06 Ulvac Japan Ltd Method for generating gaseous hydrogen and material for generating gaseous hydrogen
US11465902B2 (en) 2017-09-08 2022-10-11 Osamu Sugiyama Method for producing hydrogen gas
CN109852847B (en) * 2017-11-30 2020-10-30 吉林大学 Al-Ga-In-Sn-Cu alloy for hydrogen production, preparation method thereof and application thereof In fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004428A1 (en) 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP5511186B2 (en) * 2006-07-05 2014-06-04 勲 伊藤 Hydrogen generating method, hydrogen generating alloy, and hydrogen generating alloy manufacturing method
JP2009215602A (en) * 2008-03-10 2009-09-24 Kobelco Kaken:Kk Liquid state alloy material and method for producing hydrogen and byproduct material using the same

Also Published As

Publication number Publication date
JPS62263946A (en) 1987-11-16

Similar Documents

Publication Publication Date Title
Gebert et al. Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes
JPH0762198B2 (en) Aluminum alloy for hydrogen generation and method for producing the same
US4195067A (en) Process for the production of refined metallurgical silicon
JPS60215703A (en) Amorphous metal alloy powder and synthesis thereof by solid phase chemical reducing reaction
CN102560198A (en) Active aluminum-rich alloy for preparing high purity hydrogen through hydrolysis and preparation method thereof
CN101525704A (en) Alloy for manufacturing bush and method for manufacturing bush thereof
US4193974A (en) Process for producing refined metallurgical silicon ribbon
JP4035323B2 (en) Purification of metallurgical grade silicon
JPH0748658A (en) Material for sacrificial electrode for preventing corrosion excellent in corrosion resistance
JPH02225642A (en) Niobium-base alloy for high temperature
CN115786753A (en) Tellurium-copper alloy material containing rare earth metal and preparation method thereof
CN101928983B (en) Method for producing polycrystalline silicon and polycrystalline silicon membrane by accelerant process
JPH0123543B2 (en)
Mitani Abnormal expansion of Cu-Sn powder compacts during sintering
JP3346861B2 (en) High strength copper alloy
JPS6056409B2 (en) Surface activated amorphous alloy for electrolytic cathode
CN101368241B (en) Process for manufacturing magnesium air fuel cell anode material
JP3397979B2 (en) Hydrogen storage alloy
JPH0572450B2 (en)
JPH0438682B2 (en)
US3939009A (en) Method of making battery plate grids for lead-acid batteries and alloys therefor
CN111575562A (en) Magnesium alloy cast body, method for producing same and use thereof
US4086264A (en) Self supported skeletal metal catalysts and process for producing them
JPS5849632B2 (en) Amorphous alloy electrode material for electrolysis
JPH0512425B2 (en)