JP2019001674A - Hydrogen generating material manufacturing method, fuel cell, and hydrogen generating method - Google Patents

Hydrogen generating material manufacturing method, fuel cell, and hydrogen generating method Download PDF

Info

Publication number
JP2019001674A
JP2019001674A JP2017116358A JP2017116358A JP2019001674A JP 2019001674 A JP2019001674 A JP 2019001674A JP 2017116358 A JP2017116358 A JP 2017116358A JP 2017116358 A JP2017116358 A JP 2017116358A JP 2019001674 A JP2019001674 A JP 2019001674A
Authority
JP
Japan
Prior art keywords
mass
hydrogen
aluminum
thermal spray
hydrogen generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017116358A
Other languages
Japanese (ja)
Other versions
JP6890477B2 (en
Inventor
正 森田
Tadashi Morita
正 森田
中村 亮太
Ryota Nakamura
亮太 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2017116358A priority Critical patent/JP6890477B2/en
Publication of JP2019001674A publication Critical patent/JP2019001674A/en
Application granted granted Critical
Publication of JP6890477B2 publication Critical patent/JP6890477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide a hydrogen generating material piece that can be safely stored.SOLUTION: According to the present invention, a thermal spraying material is produced by shaping a thermal spraying raw material containing an additive metal consisting of one or more of Sn, In or Bi in an amount of 0.1 mass% or more and 20 mass% or less with respect to 100 mass% of aluminum, the thermal spraying material is sprayed on a film formation surface of a substrate for film formation to form a sprayed film which is then peeled off and shaped to a predetermined size of a hydrogen generating material piece 3, and it is input into a reaction vessel 9 of a fuel cell 1 to react with water resulting in generating hydrogen gas so that a cell body 8 generates electricity. The hydrogen generating material piece 3 is stable in air, and an amount of hydrogen generated can also be controlled by an input amount of the hydrogen generating material piece 3.SELECTED DRAWING: Figure 3

Description

本発明は水素を発生させる技術に係り、特に、燃料電池用の水素を発生させる技術に関する。   The present invention relates to a technique for generating hydrogen, and more particularly to a technique for generating hydrogen for fuel cells.

化石燃料の消費による地球温暖化や、エネルギー資源の逼迫の中で、水素をエネルギーとする燃料電池は注目されている。
燃料電池は、家庭用、産業用、自動車用、携帯機器用電源としての用途が考えられているが、特に、使いきりではなく、また、充電などに要する時間なども必要がなく、水素を発生させる材料を補充することで発電が可能になることから、長時間の運転に対応できる電池としての可能性は高いと言われている。
しかしながら水素発生材料の安全性や可搬性には改良すべき点があり、取り扱いが簡単で発電が容易な水素発生材料が求められている。
In the midst of global warming due to the consumption of fossil fuels and tight energy resources, fuel cells that use hydrogen as energy have attracted attention.
Fuel cells are considered to be used as power sources for household, industrial, automotive, and portable devices, but they generate hydrogen without being used up in particular or requiring time for charging. Since it is possible to generate electricity by replenishing the material to be used, it is said that the battery has a high possibility of being able to cope with long-time operation.
However, there are points to be improved in the safety and portability of the hydrogen generating material, and there is a demand for a hydrogen generating material that is easy to handle and easy to generate electricity.

特開昭63−270459号公報JP-A 63-270459 特開2000−239837号公報JP 2000-239837 A 特開2005−256063号公報JP-A-2005-256063 WO2012/026349号公報WO2012 / 026349 特開2013−140950号公報JP 2013-140950 A

保存・運搬・取り扱いに容易な水素発生材料を提供することにある。   The object is to provide a hydrogen generating material that is easy to store, transport and handle.

上記課題を解決するために、本発明は、水素発生材料片と水とを反応させて水素を生成し、生成された水素と酸素を反応させて発電し、負荷に電力を供給する燃料電池の水素を発生させる燃料電池の前記水素発生材料片を製造する水素発生材料製造方法であって、添加金属とアルミニウムとが混合された溶射原料を成形して所定形状の溶射材料を得る成形工程と、前記溶射材料を熔融させて熔融物の溶滴を吹き飛ばして成膜用基板の成膜面に付着させて溶射膜を形成する溶射工程と、前記溶射膜を前記成膜面から剥離させ、前記溶射膜から所望形状の水素発生材料片を形成する片形成工程と、を有し、前記添加金属は、Sn、In又はBiのいずれか一種又は複数種から成り、アルミニウム100質量%に対して0.1質量%以上20質量%以下の範囲で含有させる水素発生材料製造方法である。
また、本発明は、前記溶射工程の後、前記溶射膜を圧延して薄くする圧延工程が設けられた水素発生材料製造方法である。
また、本発明は、前記溶射原料には前記アルミニウム100質量%に対してSiを0.2質量%以上0.5質量%以下の範囲で含有させた、水素発生材料製造方法である。
また、本発明は、前記溶射原料には前記アルミニウム100質量%に対して、Mgを0.2質量%以上2質量%以下の範囲で含有させた、水素発生材料製造方法である。
また、本発明は、前記添加金属はBiを含有し、前記溶射原料には前記アルミニウム100質量%に対して0.2質量%以上2質量%以下の範囲でMgを含有させ、前記溶射膜又は前記水素発生材料片の少なくとも一方を熱処理する水素発生材料製造方法である。
また、本発明は、水素を発生させる水素発生装置と、水素と酸素を反応させて発電し、負荷に電力を供給する電池本体と、を有する燃料電池であって、前記水素発生装置は、水と水素発生材料片とを反応させ、水素を発生させて前記電池本体に供給する反応容器と、を有し、前記水素発生材料片は、添加金属とアルミニウムとが混合された溶射原料が熔融されて生成された溶滴が吹き飛ばされて成膜用基板の成膜面に付着して形成された溶射膜から形成され、前記添加金属は、Sn、In又はBiのいずれか一種又は複数種から成り、アルミニウム100質量%に対して0.1質量%以上20質量%以下の範囲で含有された燃料電池である。
また、本発明は、前記溶射原料には前記アルミニウム100質量%に対してSiを0.2質量%以上0.5質量%以下の範囲で含有された、燃料電池である。
また、本発明は、前記溶射原料には前記アルミニウム100質量%に対して、Mgが0.2質量%以上2質量%以下の範囲で含有された燃料電池である。
また、本発明は、前記添加金属はBiを含有し、前記溶射原料には前記アルミニウム100質量%に対して0.2質量%以上2質量%以下の範囲でMgが含有され、前記溶射膜又は前記水素発生材料片は熱処理がされた燃料電池である。
また、本発明は、水素発生材料片と水とを反応容器内で反応させて水素を生成し、生成された水素と酸素を反応させて発電し、負荷に電力を供給する燃料電池の前記反応容器内で水素を発生させる水素発生方法であって、添加金属とアルミニウムとが混合された溶射原料を成形して所定形状の溶射材料を得る成形工程と、前記溶射材料を熔融させて溶滴を生成し、前記溶滴を吹き飛ばして成膜用基板の成膜面に付着させて溶射膜を形成する溶射工程と、前記溶射膜を前記成膜面から剥離させた後、前記溶射膜から所望形状の水素発生材料片を形成する切断工程と、前記水素発生材料片と水とを前記反応容器内で接触させ、反応によって水素を発生させる水素発生工程と、を有し、前記添加金属は、Sn、In又はBiのいずれか一種又は複数種から成り、アルミニウム100質量%に対して0.1質量%以上20質量%以下の範囲で含有させる水素発生方法である。
また、本発明は、前記溶射工程の後、前記切断工程の前に、前記溶射膜を圧延して薄くする圧延工程が設けられた水素発生方法である。
また、本発明は、前記溶射原料には前記アルミニウム100質量%に対してSiを0.2質量%以上0.5質量%以下の範囲で含有させた、水素発生方法である。
また、本発明は、前記溶射原料には前記アルミニウム100質量%に対して、Mgを0.2質量%以上2質量%以下の範囲で含有させた、水素発生方法である。
また、本発明は、前記添加金属はBiを含有し、前記溶射原料には前記アルミニウム100質量%に対して0.2質量%以上2質量%以下の範囲でMgを含有させ、前記溶射膜又は前記水素発生材料片を熱処理する水素発生方法である。
また、本発明は、Sn、In又はBiのいずれか一種又は複数種から成る添加金属が、アルミニウム100質量%に対して0.1質量%以上20質量%以下の範囲で含有され、前記添加金属が前記アルミニウム中に分散された構造を有する水素発生材料である。
また、本発明は、前記アルミニウム100質量%に対してSiを0.2質量%以上0.5質量%以下の範囲で含有する水素発生材料である。
また、本発明は、前記アルミニウム100質量%に対してMgを0.2質量%以上2質量%以下の範囲で含有する水素発生材料である。
また、本発明は、前記添加金属はBiを含有し、前記アルミニウム100質量%に対して0.2質量%以上2質量%以下の範囲でMgを含有し、熱処理がされた水素発生材料である。
In order to solve the above-mentioned problems, the present invention provides a fuel cell that generates hydrogen by reacting a hydrogen generating material piece with water, generates electric power by reacting the generated hydrogen and oxygen, and supplies power to a load. A hydrogen generating material manufacturing method for manufacturing the hydrogen generating material piece of a fuel cell for generating hydrogen, a molding step of forming a thermal spray material in which an additive metal and aluminum are mixed to obtain a thermal spray material of a predetermined shape; A thermal spraying step in which the thermal spray material is melted to blow off droplets of the melt and adhere to the deposition surface of the deposition substrate to form a thermal spray film; and the thermal spray film is peeled off from the deposition surface, and the thermal spraying is performed. Forming a hydrogen-generating material piece having a desired shape from the film, and the additive metal is made of one or more of Sn, In, or Bi, and is added in an amount of 0.1% to 100% by mass of aluminum. 1% to 20% by mass It is a hydrogen generating material manufacturing method of a content within a range of below.
Moreover, this invention is a hydrogen generating material manufacturing method provided with the rolling process which rolls and thins the said sprayed film after the said spraying process.
Further, the present invention is the method for producing a hydrogen generating material, wherein the thermal spray material contains Si in an amount of 0.2% by mass to 0.5% by mass with respect to 100% by mass of the aluminum.
Further, the present invention is the method for producing a hydrogen generating material, wherein the thermal spray material contains Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum.
Further, according to the present invention, the additive metal contains Bi, and the thermal spray raw material contains Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum, In the method for producing a hydrogen generating material, heat treatment is performed on at least one of the hydrogen generating material pieces.
The present invention also provides a fuel cell comprising a hydrogen generator for generating hydrogen, and a battery main body that generates electricity by reacting hydrogen and oxygen and supplies electric power to a load. And a reaction vessel that generates hydrogen and reacts with the hydrogen generating material piece and supplies the hydrogen to the battery body, and the hydrogen generating material piece is obtained by melting a thermal spray raw material in which an additive metal and aluminum are mixed. The sprayed droplets are blown off to form a sprayed coating formed on the deposition surface of the deposition substrate, and the additive metal is composed of one or more of Sn, In, or Bi. The fuel cell is contained in the range of 0.1% by mass to 20% by mass with respect to 100% by mass of aluminum.
Further, the present invention is a fuel cell in which the thermal spray material contains Si in an amount of 0.2% by mass to 0.5% by mass with respect to 100% by mass of the aluminum.
Further, the present invention is a fuel cell in which the thermal spray material contains Mg in a range of 0.2 mass% to 2 mass% with respect to 100 mass% of the aluminum.
Further, according to the present invention, the additive metal contains Bi, and the thermal spray material contains Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum, The hydrogen generating material piece is a heat-treated fuel cell.
Further, the present invention provides the above-mentioned reaction of a fuel cell in which a hydrogen generating material piece and water are reacted in a reaction vessel to generate hydrogen, the generated hydrogen and oxygen are reacted to generate electric power, and power is supplied to a load. A hydrogen generation method for generating hydrogen in a container, forming a sprayed raw material in which an additive metal and aluminum are mixed to obtain a sprayed material having a predetermined shape, and melting the sprayed material to form droplets. Generating and spraying the droplets to adhere to the film-forming surface of the film-forming substrate to form a sprayed film, and peeling the sprayed film from the film-forming surface, and then forming the desired shape from the sprayed film. A hydrogen generating step of forming a hydrogen generating material piece, and a hydrogen generating step of bringing the hydrogen generating material piece and water into contact with each other in the reaction vessel to generate hydrogen by a reaction. Any one or plural of In, Bi From comprises a method for generating hydrogen to be contained in a range of not less than 20 wt% 0.1 wt% with respect to 100 parts by mass of aluminum%.
Further, the present invention is a hydrogen generation method provided with a rolling step of rolling and thinning the sprayed film after the spraying step and before the cutting step.
Further, the present invention is the method for generating hydrogen, wherein the thermal spray raw material contains Si in an amount ranging from 0.2% by mass to 0.5% by mass with respect to 100% by mass of the aluminum.
Further, the present invention is the method for generating hydrogen, wherein the thermal spray raw material contains Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum.
Further, according to the present invention, the additive metal contains Bi, and the thermal spray raw material contains Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum, In the hydrogen generation method, the hydrogen generating material piece is heat-treated.
Further, in the present invention, the additive metal composed of one or more of Sn, In, or Bi is contained in the range of 0.1% by mass to 20% by mass with respect to 100% by mass of aluminum, and the additive metal Is a hydrogen generating material having a structure dispersed in the aluminum.
Further, the present invention is a hydrogen generating material containing Si in a range of 0.2% by mass to 0.5% by mass with respect to 100% by mass of the aluminum.
Further, the present invention is a hydrogen generating material containing Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum.
Further, the present invention is the hydrogen generating material in which the additive metal contains Bi, contains Mg in the range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum, and is heat-treated. .

水素発生材料を安全に保管することができる。
水素ガスを安全に発生させることができる。
必要な量の水素を発生させることができる。
Hydrogen generating materials can be stored safely.
Hydrogen gas can be generated safely.
The required amount of hydrogen can be generated.

(a)〜(e):本発明の水素発生材料片を製造する工程を説明するための図(a)-(e): The figure for demonstrating the process of manufacturing the hydrogen generating material piece of this invention 溶射工程を説明するための図Diagram for explaining thermal spraying process (a):水素発生装置、(b):燃料電池(a): Hydrogen generator, (b): Fuel cell

まず、水素発生材料の製造工程を説明する。
<成形工程>
先ず、アルミニウムに、後述する添加金属を添加してアルミニウム合金から成る溶射原料4を作成する(図1(a))。
First, the manufacturing process of the hydrogen generating material will be described.
<Molding process>
First, an additive metal, which will be described later, is added to aluminum to prepare a thermal spray material 4 made of an aluminum alloy (FIG. 1 (a)).

例えば、熔融されたアルミニウムに添加金属を添加して混合し、冷却して溶射原料を作成してもよいし、アルミニウムと添加金属とを加熱溶融させ、混合した後冷却して溶射原料を作成してもよい。溶射原料は例えばインゴット状である。   For example, an additive metal may be added to molten aluminum, mixed, and cooled to create a thermal spray raw material, or aluminum and the additive metal are heated and melted, mixed, and then cooled to create a thermal spray raw material. May be. The thermal spray raw material is, for example, in an ingot shape.

次に、溶射原料を所定の形状に加工して溶射材料を得る。溶射材料を構成するアルミニウム合金は、溶射原料と同じ成分である。
図1(b)の符号2は溶射原料がワイヤー形状に成形された溶射材料であり、ワイヤー形状の溶射材料2を作成する加工法としては、伸線加工、引き抜き加工、押し出し加工等の加工方法が挙げられる。
Next, the thermal spray material is processed into a predetermined shape to obtain a thermal spray material. The aluminum alloy constituting the thermal spray material is the same component as the thermal spray material.
Reference numeral 2 in FIG. 1 (b) denotes a thermal spray material in which the thermal spray material is formed into a wire shape. As a processing method for creating the thermal spray material 2 having a wire shape, a processing method such as wire drawing, drawing, or extrusion is used. Is mentioned.

<溶射工程>
次に、図2の符号60は、この溶射材料2を溶射処理する溶射装置である。
この溶射装置60は、ノズル61の内部に溶射室63が設けられている。溶射室63の内部には、溶射材料2が配置されており、溶射材料2の熔融物が吹き飛ばされて形成された溶滴である溶射物73が放出される放出口66の前面には、成膜用基板10の成膜面21が配置されている。成膜用基板10は金属製又はセラミックス製の板であり、成膜面21は、その片面である。
<Spraying process>
Next, reference numeral 60 in FIG. 2 is a thermal spraying apparatus that performs thermal spraying on the thermal spray material 2.
The thermal spraying device 60 is provided with a thermal spraying chamber 63 inside a nozzle 61. The thermal spray material 2 is disposed inside the thermal spray chamber 63, and the front surface of the discharge port 66 from which the thermal spray 73, which is a droplet formed by blowing the melt of the thermal spray material 2, is discharged, is formed on the front surface. A film formation surface 21 of the film substrate 10 is disposed. The film formation substrate 10 is a metal or ceramic plate, and the film formation surface 21 is one side thereof.

溶射室63には着火装置が配置されており、また、溶射室63にはガス流路64と圧縮空気流路65とが接続されている。
ガス流路64はガス源に接続されており、ガス源から溶射装置60に供給された燃焼ガスと酸素とが、ガス流路64を通って溶射室63の内部に流入すると、着火装置によって着火され、燃焼ガスの燃焼が開始される。
An ignition device is disposed in the thermal spraying chamber 63, and a gas flow path 64 and a compressed air flow path 65 are connected to the thermal spraying chamber 63.
The gas flow path 64 is connected to a gas source, and when the combustion gas and oxygen supplied from the gas source to the thermal spraying device 60 flow into the thermal spraying chamber 63 through the gas flow path 64, the ignition device ignites them. Then, combustion of the combustion gas is started.

溶射材料2は棒状体であり、その先端が溶射室63の内部に位置するようにされている。
圧縮空気流路65は圧縮空気源に接続されており、圧縮空気流路65から送られる圧縮空気によってガス流路64から送られる燃焼ガスをノズル61の内部で燃焼させて燃焼フレームが生成されると、溶射材料2の先端は、燃焼ガスのフレーム(炎)69と接触し、又はフレーム69に近接した場所に位置し、燃焼ガスの燃焼によって加熱され、熔融して熔融物が生成される。
The thermal spray material 2 is a rod-shaped body, and its tip is positioned inside the thermal spray chamber 63.
The compressed air flow path 65 is connected to a compressed air source, and the combustion gas sent from the gas flow path 64 is burned inside the nozzle 61 by the compressed air sent from the compressed air flow path 65 to generate a combustion frame. Then, the tip of the thermal spray material 2 is in contact with the flame (flame) 69 of the combustion gas or is located at a location close to the flame 69, heated by the combustion of the combustion gas, and melted to produce a melt.

圧縮空気源から溶射装置60に供給された圧縮空気は圧縮空気流路65を流れて溶射材料2の熔融物に衝突し、熔融物を吹き飛ばして溶滴を形成する。溶滴である溶射物73は、溶射室63に設けられた放出口66から溶射装置60の外部に、圧縮空気と共に噴出され、空中を飛行する。   The compressed air supplied to the thermal spraying device 60 from the compressed air source flows through the compressed air flow path 65 and collides with the melt of the thermal spray material 2, and blows off the melt to form droplets. The sprayed matter 73 as a droplet is ejected together with the compressed air from the discharge port 66 provided in the spraying chamber 63 to the outside of the spraying device 60 and flies in the air.

図1(c)に示す通り、溶射物73の飛行先には成膜面21が配置されており、溶射物73は成膜面21に衝突すると付着する。この付着が進行すると溶射物73の堆積が進行し、溶射物73から成る溶射膜5が形成される(図1(d))。溶射膜5の膜厚は2〜3mmである。   As shown in FIG. 1C, the film formation surface 21 is disposed at the flight destination of the sprayed material 73, and the sprayed material 73 adheres when it collides with the film formation surface 21. As this adhesion proceeds, deposition of the sprayed material 73 proceeds, and the sprayed film 5 composed of the sprayed material 73 is formed (FIG. 1D). The film thickness of the sprayed film 5 is 2 to 3 mm.

溶射膜5は、アルミニウムに添加金属が分散された粒子同士が重なり合って互いに固着された構造になっており、添加金属が添加された熔融アルミニウムを鋳造して得られたアルミニウム合金に比べると、添加金属が均一に分散され、溶射膜5は水崩壊性を有している。
成膜面21は平坦に形成され、鏡面に仕上げられているので、溶射膜5は成膜用基板10から容易に剥離させることができる。
The sprayed film 5 has a structure in which particles in which an additive metal is dispersed in aluminum are overlapped and fixed to each other, and compared to an aluminum alloy obtained by casting molten aluminum to which an additive metal is added. The metal is uniformly dispersed, and the sprayed film 5 has water disintegration.
Since the film formation surface 21 is formed flat and finished to be a mirror surface, the sprayed film 5 can be easily separated from the film formation substrate 10.

<圧延工程>
剥離させた溶射膜5を図1(e)の圧延装置20の台23上に配置し、圧延ローラ32によって溶射膜5を押圧しながら回転軸33を中心として圧延ローラ32を回転させる。溶射膜5は押圧されて薄くされて面積が大きくなる。符号6は薄くされた溶射膜を示している。
<Rolling process>
The peeled sprayed film 5 is placed on the table 23 of the rolling device 20 in FIG. 1E, and the rolling roller 32 is rotated about the rotation shaft 33 while pressing the sprayed film 5 by the rolling roller 32. The sprayed film 5 is pressed and thinned to increase the area. Reference numeral 6 denotes a thinned sprayed film.

<切断工程>
薄くされた溶射膜6が所望の大きさに截断されると、可搬性を有する水素発生材料片が得られる。
<Cutting process>
When the thinned sprayed film 6 is cut to a desired size, a portable hydrogen generating material piece is obtained.

<燃料電池>
その水素発生材料片を用いる燃料電池について説明する。
図3(b)はその燃料電池1であり、水素発生装置7と電池本体8とを有している。
<Fuel cell>
A fuel cell using the hydrogen generating material piece will be described.
FIG. 3 (b) shows the fuel cell 1, which has a hydrogen generator 7 and a battery body 8.

先ず、水素発生装置7を説明すると、図3(a)を参照し、水素発生装置7は反応容器9を有しており、反応容器9の内部には水素発生材料片が配置されている。図3(a)の符号3は、小径の円盤状に成形された水素発生材料片を示している。
反応容器9は、開口45と、開口45を塞ぐ蓋46とを有しており、蓋46を開けると、開口45から反応容器9の内部に水を注入できるようにされている。
First, the hydrogen generator 7 will be described. Referring to FIG. 3A, the hydrogen generator 7 has a reaction vessel 9, and a hydrogen generating material piece is disposed inside the reaction vessel 9. Reference numeral 3 in FIG. 3A indicates a hydrogen generating material piece formed into a small-diameter disk.
The reaction vessel 9 has an opening 45 and a lid 46 that closes the opening 45. When the lid 46 is opened, water can be injected into the reaction vessel 9 from the opening 45.

次に、電池本体8を説明すると、電池本体8は反応容器11を有しており、反応容器11の内部は板状にされた電解質14によって燃料室13と空気室15とに二分されている。ここでは、電解質14には固体電解質が用いられている。   Next, the battery main body 8 will be described. The battery main body 8 has a reaction vessel 11, and the inside of the reaction vessel 11 is divided into a fuel chamber 13 and an air chamber 15 by a plate-like electrolyte 14. . Here, a solid electrolyte is used for the electrolyte 14.

燃料室13側の電解質14の片面には燃料極16が密着して配置され、燃料室13の内部空間は燃料極16と接触しながら電解質14とは非接触にされている。また、電解質14の空気室15側の面には空気極17が密着して配置され、空気室15の内部空間は空気極17と接触しながら電解質14とは非接触にされている。   A fuel electrode 16 is disposed in close contact with one surface of the electrolyte 14 on the fuel chamber 13 side, and the internal space of the fuel chamber 13 is in contact with the fuel electrode 16 but is not in contact with the electrolyte 14. An air electrode 17 is disposed in close contact with the surface of the electrolyte 14 on the side of the air chamber 15, and the internal space of the air chamber 15 is in contact with the air electrode 17 and is not in contact with the electrolyte 14.

ここでは、燃料極16の電解質14と接触した面とは反対側の面は燃料室13の内部空間に露出されており、空気極17の電解質14と接触した面とは反対側の面は空気室15の内部空間に露出されている。   Here, the surface of the fuel electrode 16 opposite to the surface in contact with the electrolyte 14 is exposed in the internal space of the fuel chamber 13, and the surface of the air electrode 17 opposite to the surface in contact with the electrolyte 14 is air. It is exposed to the internal space of the chamber 15.

反応容器9には水素ガス放出口12が設けられ、燃料室13には水素ガス導入口27が設けられており、水素ガス放出口12と水素ガス導入口27とを配管28によって接続すると、反応容器9の内部空間と燃料室13の内部空間とが配管28によって接続される。
開口45から水を反応容器9の内部に投入し、次いで、水素発生材料片3を開口45から投入し、蓋46によって開口45を閉じる。
The reaction vessel 9 is provided with a hydrogen gas discharge port 12, and the fuel chamber 13 is provided with a hydrogen gas introduction port 27. When the hydrogen gas discharge port 12 and the hydrogen gas introduction port 27 are connected by a pipe 28, a reaction occurs. The internal space of the container 9 and the internal space of the fuel chamber 13 are connected by a pipe 28.
Water is introduced into the reaction vessel 9 from the opening 45, and then the hydrogen generating material piece 3 is introduced from the opening 45, and the opening 45 is closed by the lid 46.

水素発生材料片3は、Alに添加金属が含有されたアルミニウム合金であり、添加金属は、Sn、In又はBiのいずれか一種又は複数種から成り、アルミニウム100質量%に対して(以下同じ)、添加金属を0.1質量%以上20質量%以下の範囲で含有されている。   The hydrogen generating material piece 3 is an aluminum alloy in which an additive metal is contained in Al, and the additive metal is composed of one or more of Sn, In, or Bi, and is 100% by mass of aluminum (the same applies hereinafter). The additive metal is contained in the range of 0.1% by mass or more and 20% by mass or less.

水素発生材料片3は水と接触すると、水は、水素発生材料片3を構成する粒子の間に侵入し、アルミニウム合金と水とが反応して水素ガスが発生する。
Sn、In、Biはアルミニウム中に均一に分散されることで、アルミニウム合金が水と接触したときに、電気化学的な反応を起こし水素発生材料片3を構成するアルミニウム合金が水素を発生させながら崩壊する。
When the hydrogen generating material piece 3 comes into contact with water, the water enters between the particles constituting the hydrogen generating material piece 3, and the aluminum alloy and water react to generate hydrogen gas.
Sn, In, and Bi are uniformly dispersed in aluminum, and when the aluminum alloy comes into contact with water, an electrochemical reaction occurs and the aluminum alloy constituting the hydrogen generating material piece 3 generates hydrogen. Collapse.

水素発生材料片3が全部反応するまでには所定時間を要し、その間には水素は継続して発生する。
また、水素の発生量は水素発生材料片3の量に比例しており、反応容器9の中に投入する水素発生材料片3の量によって発生する水素の量を制御することができる。
また、水素発生材料片3の反応が終了しても、新しい水素発生材料片3を反応容器9に投入することで、水素ガスの発生を再開することができる。
A predetermined time is required until all of the hydrogen generating material pieces 3 are reacted, during which hydrogen is continuously generated.
The amount of hydrogen generated is proportional to the amount of the hydrogen generating material piece 3, and the amount of hydrogen generated can be controlled by the amount of the hydrogen generating material piece 3 put into the reaction vessel 9.
Further, even when the reaction of the hydrogen generating material piece 3 is completed, the generation of hydrogen gas can be restarted by introducing a new hydrogen generating material piece 3 into the reaction vessel 9.

<発電工程>
このように、水素発生材料片3が反応容器9の内部で水崩壊し、H2(水素ガス)を発生させると、発生したH2は、燃料室13に移動する。
<Power generation process>
Thus, when the hydrogen generating material piece 3 is water-collapsed inside the reaction vessel 9 to generate H 2 (hydrogen gas), the generated H 2 moves to the fuel chamber 13.

燃料極16は水素ガスを透過させ、空気極17は酸素ガスを透過させるように構成されている。燃料室13内に導入された水素ガスは、燃料極16の内部に侵入する。   The fuel electrode 16 is configured to transmit hydrogen gas, and the air electrode 17 is configured to transmit oxygen gas. The hydrogen gas introduced into the fuel chamber 13 enters the fuel electrode 16.

空気室15には、空気導入口25と排出口26とが設けられており、空気導入口25から空気室15の内部に空気が導入され、空気が空気極17に接触すると、酸素ガスは空気極17の内部に侵入する。   The air chamber 15 is provided with an air inlet 25 and an outlet 26. When air is introduced into the air chamber 15 from the air inlet 25 and the air contacts the air electrode 17, the oxygen gas is air. It penetrates into the inside of the pole 17.

燃料極16の内部で電子が水素ガスから燃料極16に移動して水素イオンが生成され、空気極17の内部で電子が空気極17から酸素ガスに移動して酸素イオンが生成される。燃料極16と空気極17とは、端子24、22に接続されており、端子22、24の間に負荷を接続すると、水素ガスから放出された電子は燃料極16から負荷を通って空気極17へ移動し、その結果、負荷に電流が流れる。   Inside the fuel electrode 16, electrons move from the hydrogen gas to the fuel electrode 16 to generate hydrogen ions, and inside the air electrode 17, electrons move from the air electrode 17 to oxygen gas to generate oxygen ions. The fuel electrode 16 and the air electrode 17 are connected to terminals 24 and 22, and when a load is connected between the terminals 22 and 24, electrons emitted from the hydrogen gas pass through the load from the fuel electrode 16 and the air electrode. As a result, the current flows to the load.

電解質14は、水素イオン又は酸素イオンが通過する材料で構成されており、電解質14内を水素イオンが移動すると、電解質14と空気極17とが接触する場所で水が生成され、電解質14の内部を酸素イオンが移動すると、電解質14と燃料極16とが接触する場所で水が生成される。   The electrolyte 14 is made of a material through which hydrogen ions or oxygen ions pass. When the hydrogen ions move in the electrolyte 14, water is generated at the place where the electrolyte 14 and the air electrode 17 are in contact with each other, and the inside of the electrolyte 14. When oxygen ions move, water is generated where the electrolyte 14 and the fuel electrode 16 are in contact with each other.

ここでは電解質14には水素イオンが移動する材料が用いられており、電解質14と空気極17とが接触する場所で生成された水は空気極17を通過して空気室15の内部空間に放出され、排出口26から大気中に放出される。   Here, a material in which hydrogen ions move is used for the electrolyte 14, and water generated in a place where the electrolyte 14 and the air electrode 17 are in contact with each other passes through the air electrode 17 and is released into the internal space of the air chamber 15. And is discharged from the discharge port 26 into the atmosphere.

反応容器9の内部で水素発生材料片3が水素を発生させている間は、水素イオンと酸素イオンとが生成され、水素イオンと酸素イオンとが化合して水が生成される。その間は燃料電池1は発電して負荷に電力を供給しており、水素発生材料片3の水崩壊が終了すると、発電を終了させてもよいし、反応容器9に水素発生材料片3を追加して発電を継続させてもよい。   While the hydrogen generating material piece 3 generates hydrogen inside the reaction vessel 9, hydrogen ions and oxygen ions are generated, and the hydrogen ions and oxygen ions combine to generate water. In the meantime, the fuel cell 1 generates power and supplies power to the load. When the hydrogen generation material piece 3 is completely disintegrated in water, the power generation may be ended, or the hydrogen generation material piece 3 is added to the reaction vessel 9. Then, power generation may be continued.

なお、水素発生材料片3の作成方法として、アルミニウムに添加金属を添加して混合するだけでは水崩壊性を発現させることはできず、一旦アルミニウムと添加金属とを混合して得られたアルミニウム合金から、溶射材料を成形し、溶射方法によって熔融・溶射・固化させた後、所定形状に成形すると、水崩壊性を有する水素発生材料片3を得ることができる。   In addition, as a method for producing the hydrogen generating material piece 3, it is not possible to develop water disintegration only by adding and adding an additive metal to aluminum, and an aluminum alloy obtained by once mixing aluminum and the additive metal. From the above, if the thermal spray material is molded, melted / sprayed / solidified by a thermal spraying method, and then molded into a predetermined shape, the hydrogen generating material piece 3 having water disintegration property can be obtained.

添加金属に加え、アルミニウム合金に0.5質量%以下の範囲でCeを添加しておくと、水崩壊性が安定して発現するようになる。また、添加金属に加え、アルミニウム合金にTiを添加するとアルミニウムの再結晶化温度が上昇するので、溶射によって溶射膜を形成する際に、添加金属の析出を防止することができる。Tiは、Al100質量%に対して0.13質量%以上4質量%以下の含有率で含有させるとよい。   When Ce is added to the aluminum alloy in the range of 0.5 mass% or less in addition to the additive metal, the water disintegration property is stably expressed. Further, when Ti is added to the aluminum alloy in addition to the additive metal, the recrystallization temperature of aluminum rises, so that it is possible to prevent the additive metal from being deposited when the sprayed film is formed by thermal spraying. Ti is preferably contained at a content of 0.13% by mass to 4% by mass with respect to 100% by mass of Al.

本発明の水素発生材料片3の一部は、特に空気を遮断しなくても長期間の保存ができるように調整可能である。   A part of the hydrogen generating material piece 3 of the present invention can be adjusted so that it can be stored for a long period of time without shutting off the air.

アルミニウム100質量%に対してSiを0.2質量%以上0.5質量%以下の範囲で含有させると、水崩壊性を維持したまま、空気中の水分による水崩壊を防止することができる。   When Si is contained in the range of 0.2% by mass or more and 0.5% by mass or less with respect to 100% by mass of aluminum, water collapse due to moisture in the air can be prevented while maintaining the water collapse property.

Siを添加して空気中の水分による水崩壊を防止した本発明の水素発生材料片3を、5年間大気に接触する状態で保管したが、変化はなかった。さらにその水素発生材料片3を水の中に投入すると、直ちに反応が始まり水素が発生した。   The hydrogen generating material piece 3 of the present invention in which Si was added to prevent water collapse due to moisture in the air was stored in contact with the atmosphere for 5 years, but there was no change. Further, when the hydrogen generating material piece 3 was put into water, the reaction immediately started and hydrogen was generated.

また、アルミニウム100質量%に対してMgを0.2質量%以上含有させても、空気中の水分による水崩壊を防止することができる。但し、2質量%を超えると加工性が悪くなるのでMgは、0.2質量%以上2質量%以下含有させることが好ましい。   Further, even when Mg is contained in an amount of 0.2% by mass or more with respect to 100% by mass of aluminum, water collapse due to moisture in the air can be prevented. However, since workability will worsen if it exceeds 2 mass%, it is preferable to contain Mg 0.2 mass% or more and 2 mass% or less.

特に、添加金属としてBiを含有する場合に、更にMgを含有させると、溶射膜が形成された後200℃以上300℃以下の温度に昇温される熱処理が行われると水又は温水(「温水」は60℃以上100℃以下に昇温した水とする。)で水崩壊するが、熱処理が行われない場合には、水又は温水では水崩壊が発生しなくなる。   In particular, when Bi is added as an additive metal, if Mg is further added, water or warm water (“warm water” is formed when heat treatment is performed to raise the temperature to 200 ° C. or more and 300 ° C. or less after the sprayed film is formed. Is water that has been heated to 60 ° C. or higher and 100 ° C. or lower.), But when heat treatment is not performed, water or hot water does not cause water collapse.

熱処理は溶射膜5に行っても良いし、水素発生材料片3に行っても良い。圧延ローラ32で溶射膜5を薄くする際に、圧延ローラ32を加熱し、押圧する溶射膜5を200℃以上300℃以下の温度に加熱するようにしてもよい。   The heat treatment may be performed on the sprayed film 5 or the hydrogen generating material piece 3. When the sprayed film 5 is thinned by the rolling roller 32, the rolling roller 32 may be heated and the sprayed film 5 to be pressed may be heated to a temperature of 200 ° C or higher and 300 ° C or lower.

従って、溶射膜5の形成後、熱処理を行わないで水素発生材料片3を作成し、使用の直前に熱処理を行うようにすれば、保管中に水崩壊が発生しない水素発生材料片3を得ることができる。   Therefore, if the hydrogen generating material piece 3 is prepared without performing heat treatment after the thermal spray film 5 is formed and heat treatment is performed immediately before use, the hydrogen generating material piece 3 that does not cause water collapse during storage is obtained. be able to.

このように本発明の水素発生材料片3は、水との反応性を調整することができるが、反応性を高くしたい場合や、湿度の高い環境でより長期の保管する場合、浸水などによる反応を防止する場合には、水素発生材料片3を樹脂フィルムで封止し、水素発生材料片3と大気や水分とが接触しないようにしてもよいし、水素発生材料片3を容器に入れ、容器に蓋をして水素発生材料片3と大気や水分とが接触しないようにしてもよい。   As described above, the hydrogen generating material piece 3 of the present invention can adjust the reactivity with water. However, when the reactivity is desired to be high, or when the hydrogen generating material piece 3 is stored for a long time in a high humidity environment, the reaction is caused by water immersion. If the hydrogen generating material piece 3 is sealed with a resin film, the hydrogen generating material piece 3 may not be in contact with the atmosphere or moisture, or the hydrogen generating material piece 3 is put in a container, The container may be covered so that the hydrogen generating material piece 3 does not come into contact with air or moisture.

このように本発明の水素発生材料片3は、アルカリ金属のように特別な保管手段を必要とすることなく長期の保管が可能なので、長期保管が望まれる緊急災害用の燃料電池の水素発生材料として好適である。
さらに、水としては、水道水の他、海水、湖水、河川の水、雨水等を使用でき、水が主成分であれば種類・純度を問わないので、災害時に好適である。
Thus, since the hydrogen generating material piece 3 of the present invention can be stored for a long time without the need for special storage means like an alkali metal, the hydrogen generating material for a fuel cell for an emergency disaster where long-term storage is desired. It is suitable as.
In addition to tap water, seawater, lake water, river water, rainwater, and the like can be used as water. Since water is the main component, it can be of any kind and purity, and is suitable for disasters.

特に燃料電池は回転機構等がないためメンテナンス無しで長期の保管が可能で、軽量で、かつ、単独で発電可能なため、遠隔地や離島での緊急発電機として期待される。さらに、本発明の水素発生材料片3を備蓄すれば、安全に長期間の保管が可能である。   In particular, fuel cells have no rotating mechanism and can be stored for a long time without maintenance, are lightweight, and can generate power independently. Therefore, they are expected as emergency generators in remote areas and remote islands. Furthermore, if the hydrogen generating material piece 3 of the present invention is stored, it can be safely stored for a long time.

13……燃料室
14……電解質
15……空気室
16……燃料極
17……空気極
25……空気導入口
26……排出口
27……水素ガス導入口
28……配管
13 ... Fuel chamber 14 ... Electrolyte 15 ... Air chamber 16 ... Fuel electrode 17 ... Air electrode 25 ... Air introduction port 26 ... Discharge port 27 ... Hydrogen gas introduction port 28 ... Piping

Claims (18)

水素発生材料片と水とを反応させて水素を生成し、生成された水素と酸素を反応させて発電し、負荷に電力を供給する燃料電池の水素を発生させる燃料電池の前記水素発生材料片を製造する水素発生材料製造方法であって、
添加金属とアルミニウムとが混合された溶射原料を成形して所定形状の溶射材料を得る成形工程と、
前記溶射材料を熔融させて熔融物の溶滴を吹き飛ばして成膜用基板の成膜面に付着させて溶射膜を形成する溶射工程と、
前記溶射膜を前記成膜面から剥離させ、前記溶射膜から所望形状の水素発生材料片を形成する片形成工程と、
を有し、
前記添加金属は、Sn、In又はBiのいずれか一種又は複数種から成り、アルミニウム100質量%に対して0.1質量%以上20質量%以下の範囲で含有させる水素発生材料製造方法。
The hydrogen generating material piece of the fuel cell for generating hydrogen by reacting the hydrogen generating material piece with water, generating hydrogen by reacting the generated hydrogen and oxygen, and generating hydrogen for the fuel cell that supplies power to the load A hydrogen generating material manufacturing method for manufacturing
A molding step of molding a thermal spray raw material in which an additive metal and aluminum are mixed to obtain a thermal spray material of a predetermined shape;
A thermal spraying process in which the thermal spray material is melted and the droplets of the melt are blown off to adhere to the film formation surface of the film formation substrate to form a thermal spray film;
A piece forming step of peeling the sprayed film from the film forming surface and forming a hydrogen generating material piece having a desired shape from the sprayed film;
Have
The said addition metal consists of any 1 type or multiple types of Sn, In, or Bi, The hydrogen generating material manufacturing method made to contain in 0.1 to 20 mass% with respect to 100 mass% of aluminum.
前記溶射工程の後、前記溶射膜を圧延して薄くする圧延工程が設けられた請求項1記載の水素発生材料製造方法。   The method for producing a hydrogen generating material according to claim 1, further comprising a rolling step of rolling and thinning the sprayed film after the spraying step. 前記溶射原料には前記アルミニウム100質量%に対してSiを0.2質量%以上0.5質量%以下の範囲で含有させた、請求項1又は請求項2のいずれか1項記載の水素発生材料製造方法。   3. The hydrogen generation according to claim 1, wherein Si is contained in a range of 0.2 mass% to 0.5 mass% with respect to 100 mass% of the aluminum. Material manufacturing method. 前記溶射原料には前記アルミニウム100質量%に対して、Mgを0.2質量%以上2質量%以下の範囲で含有させた、請求項1乃至請求項3のいずれか1項記載の水素発生材料製造方法。   4. The hydrogen generating material according to claim 1, wherein Mg is contained in the thermal spray material in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum. Production method. 前記添加金属はBiを含有し、前記溶射原料には前記アルミニウム100質量%に対して0.2質量%以上2質量%以下の範囲でMgを含有させ、前記溶射膜又は前記水素発生材料片の少なくとも一方を熱処理する請求項1乃至請求項3のいずれか1項記載の水素発生材料製造方法。   The additive metal contains Bi, and the thermal spray raw material contains Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum, and the thermal spray film or the hydrogen generating material piece The method for producing a hydrogen generating material according to any one of claims 1 to 3, wherein at least one of them is heat-treated. 水素を発生させる水素発生装置と、
水素と酸素を反応させて発電し、負荷に電力を供給する電池本体と、
を有する燃料電池であって、
前記水素発生装置は、
水と水素発生材料片とを反応させ、水素を発生させて前記電池本体に供給する反応容器と、
を有し、
前記水素発生材料片は、添加金属とアルミニウムとが混合された溶射原料が熔融されて生成された溶滴が吹き飛ばされて成膜用基板の成膜面に付着して形成された溶射膜から形成され、
前記添加金属は、Sn、In又はBiのいずれか一種又は複数種から成り、アルミニウム100質量%に対して0.1質量%以上20質量%以下の範囲で含有された燃料電池。
A hydrogen generator for generating hydrogen;
A battery body that reacts hydrogen and oxygen to generate electricity and supply power to the load;
A fuel cell comprising:
The hydrogen generator is
A reaction vessel for reacting water with a piece of hydrogen generating material to generate hydrogen and supplying it to the battery body;
Have
The hydrogen generating material piece is formed from a thermal spray film formed by melting a thermal spray raw material in which an additive metal and aluminum are mixed and blowing the generated droplets to adhere to the film deposition surface of the film deposition substrate. And
The said addition metal consists of any 1 type or multiple types of Sn, In, or Bi, The fuel cell contained in 0.1 to 20 mass% with respect to 100 mass% of aluminum.
前記溶射原料には前記アルミニウム100質量%に対してSiを0.2質量%以上0.5質量%以下の範囲で含有された、請求項6記載の燃料電池。   The fuel cell according to claim 6, wherein Si is contained in the thermal spray material in a range of 0.2 mass% to 0.5 mass% with respect to 100 mass% of the aluminum. 前記溶射原料には前記アルミニウム100質量%に対して、Mgが0.2質量%以上2質量%以下の範囲で含有された請求項6又は請求項7のいずれか1項記載の燃料電池。   8. The fuel cell according to claim 6, wherein Mg is contained in the thermal spray material in a range of 0.2 mass% to 2 mass% with respect to 100 mass% of the aluminum. 前記添加金属はBiを含有し、前記溶射原料には前記アルミニウム100質量%に対して0.2質量%以上2質量%以下の範囲でMgが含有され、
前記溶射膜又は前記水素発生材料片は熱処理がされた請求項6又は請求項7のいずれか1項記載の燃料電池。
The additive metal contains Bi, and the thermal spray material contains Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum,
The fuel cell according to claim 6, wherein the sprayed film or the hydrogen generating material piece is heat-treated.
水素発生材料片と水とを反応容器内で反応させて水素を生成し、生成された水素と酸素を反応させて発電し、負荷に電力を供給する燃料電池の前記反応容器内で水素を発生させる水素発生方法であって、
添加金属とアルミニウムとが混合された溶射原料を成形して所定形状の溶射材料を得る成形工程と、
前記溶射材料を熔融させて溶滴を生成し、前記溶滴を吹き飛ばして成膜用基板の成膜面に付着させて溶射膜を形成する溶射工程と、
前記溶射膜を前記成膜面から剥離させた後、前記溶射膜から所望形状の水素発生材料片を形成する切断工程と、
前記水素発生材料片と水とを前記反応容器内で接触させ、反応によって水素を発生させる水素発生工程と、を有し、
前記添加金属は、Sn、In又はBiのいずれか一種又は複数種から成り、アルミニウム100質量%に対して0.1質量%以上20質量%以下の範囲で含有させる水素発生方法。
A hydrogen generating material piece and water are reacted in a reaction vessel to generate hydrogen, the generated hydrogen and oxygen are reacted to generate electric power, and hydrogen is generated in the reaction vessel of the fuel cell that supplies power to the load. A method of generating hydrogen,
A molding step of molding a thermal spray raw material in which an additive metal and aluminum are mixed to obtain a thermal spray material of a predetermined shape;
A thermal spraying step in which the thermal spray material is melted to generate droplets, and the thermal droplets are blown off to adhere to the deposition surface of the deposition substrate to form a thermal spray film;
A cutting step of forming a hydrogen generating material piece having a desired shape from the sprayed film after peeling the sprayed film from the film-forming surface;
A hydrogen generation step of bringing the hydrogen generating material piece and water into contact with each other in the reaction vessel and generating hydrogen by a reaction,
The said additional metal consists of any 1 type or multiple types of Sn, In, or Bi, The hydrogen generating method made to contain in 0.1 to 20 mass% with respect to 100 mass% of aluminum.
前記溶射工程の後、前記切断工程の前に、前記溶射膜を圧延して薄くする圧延工程が設けられた請求項10記載の水素発生方法。   The hydrogen generation method according to claim 10, further comprising a rolling step of rolling and thinning the sprayed film after the spraying step and before the cutting step. 前記溶射原料には前記アルミニウム100質量%に対してSiを0.2質量%以上0.5質量%以下の範囲で含有させた、請求項10又は請求項11のいずれか1項記載の水素発生方法。   12. The hydrogen generation according to claim 10, wherein Si is contained in the thermal spray material in a range of 0.2 mass% to 0.5 mass% with respect to 100 mass% of the aluminum. Method. 前記溶射原料には前記アルミニウム100質量%に対して、Mgを0.2質量%以上2質量%以下の範囲で含有させた、請求項10乃至請求項12のいずれか1項記載の水素発生方法。   13. The hydrogen generation method according to claim 10, wherein Mg is contained in the thermal spray material in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum. . 前記添加金属はBiを含有し、前記溶射原料には前記アルミニウム100質量%に対して0.2質量%以上2質量%以下の範囲でMgを含有させ、前記溶射膜又は前記水素発生材料片を熱処理する請求項10乃至請求項12のいずれか1項記載の水素発生方法。   The additive metal contains Bi, and the thermal spray material contains Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum, and the sprayed film or the hydrogen generating material piece The method for generating hydrogen according to any one of claims 10 to 12, wherein heat treatment is performed. Sn、In又はBiのいずれか一種又は複数種から成る添加金属が、アルミニウム100質量%に対して0.1質量%以上20質量%以下の範囲で含有され、前記添加金属が前記アルミニウム中に分散された構造を有する水素発生材料。   An additive metal composed of one or more of Sn, In, or Bi is contained in a range of 0.1% by mass to 20% by mass with respect to 100% by mass of aluminum, and the additive metal is dispersed in the aluminum. Hydrogen generating material having a structured structure. 前記アルミニウム100質量%に対してSiを0.2質量%以上0.5質量%以下の範囲で含有する請求項15に記載の水素発生材料。   The hydrogen generating material according to claim 15, wherein Si is contained in a range of 0.2 mass% to 0.5 mass% with respect to 100 mass% of the aluminum. 前記アルミニウム100質量%に対してMgを0.2質量%以上2質量%以下の範囲で含有する請求項15又は請求項16のいずれか1項記載の水素発生材料。   The hydrogen generating material according to any one of claims 15 and 16, comprising Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum. 前記添加金属はBiを含有し、前記アルミニウム100質量%に対して0.2質量%以上2質量%以下の範囲でMgを含有し、熱処理がされた請求項15又は請求項16のいずれか1項記載の水素発生材料。
The additive metal contains Bi, contains Mg in a range of 0.2% by mass to 2% by mass with respect to 100% by mass of the aluminum, and is subjected to heat treatment. The hydrogen generating material according to item.
JP2017116358A 2017-06-14 2017-06-14 Hydrogen generating material manufacturing method, fuel cell, hydrogen generating method Active JP6890477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017116358A JP6890477B2 (en) 2017-06-14 2017-06-14 Hydrogen generating material manufacturing method, fuel cell, hydrogen generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017116358A JP6890477B2 (en) 2017-06-14 2017-06-14 Hydrogen generating material manufacturing method, fuel cell, hydrogen generating method

Publications (2)

Publication Number Publication Date
JP2019001674A true JP2019001674A (en) 2019-01-10
JP6890477B2 JP6890477B2 (en) 2021-06-18

Family

ID=65005474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017116358A Active JP6890477B2 (en) 2017-06-14 2017-06-14 Hydrogen generating material manufacturing method, fuel cell, hydrogen generating method

Country Status (1)

Country Link
JP (1) JP6890477B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632801A (en) * 1986-06-21 1988-01-07 Ofic Co Gaseous hydrogen generating material
JPH1060617A (en) * 1996-08-22 1998-03-03 Suruzaa Meteko Japan Kk High speed flame spraying method
JP2002161325A (en) * 2000-11-20 2002-06-04 Ulvac Japan Ltd Aluminum alloy, hydrogen gas generation method, hydrogen gas generator, and electric generator
WO2005093113A1 (en) * 2004-03-25 2005-10-06 Topy Kogyo Kabushiki Kaisha Metallic glass laminate, process for producing the same and use thereof
JP2009051714A (en) * 2007-08-29 2009-03-12 Japan Science & Technology Agency Hydrogen gas generating member and method for producing hydrogen gas
WO2009133837A1 (en) * 2008-04-30 2009-11-05 株式会社アルバック WATER-REACTIVE Al COMPOSITE MATERIAL, WATER-REACTIVE Al FILM, PROCESS FOR PRODUCTION OF THE Al FILM, AND CONSTITUENT MEMBER FOR FILM DEPOSITION CHAMBER
JP2010024480A (en) * 2008-07-17 2010-02-04 Mitsubishi Alum Co Ltd Aluminum alloy material for generating hydrogen and production method therefor
JP2011121826A (en) * 2009-12-11 2011-06-23 Hitachi Maxell Ltd Manufacturing method for hydrogen and manufacturing device of hydrogen and fuel cell system
US20120052001A1 (en) * 2010-08-26 2012-03-01 Woodall Jerry M Energy storage and generation of hydrogen and heat on demand
JP2015229630A (en) * 2014-06-06 2015-12-21 合同会社エネオン総合研究所 Hydrogen-generating alloy, method for production thereof, hydrogen-generating cartridge, hydrogen production device, hydrogen production method, and fuel cell system
JP2016056396A (en) * 2014-09-05 2016-04-21 株式会社アルバック MANUFACTURING METHOD FOR WATER-REACTIVE Al ALLOY SPRAY DEPOSIT, AND FILM DEPOSITION CHAMBER CONSTITUTION MEMBER

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632801A (en) * 1986-06-21 1988-01-07 Ofic Co Gaseous hydrogen generating material
JPH1060617A (en) * 1996-08-22 1998-03-03 Suruzaa Meteko Japan Kk High speed flame spraying method
JP2002161325A (en) * 2000-11-20 2002-06-04 Ulvac Japan Ltd Aluminum alloy, hydrogen gas generation method, hydrogen gas generator, and electric generator
WO2005093113A1 (en) * 2004-03-25 2005-10-06 Topy Kogyo Kabushiki Kaisha Metallic glass laminate, process for producing the same and use thereof
JP2009051714A (en) * 2007-08-29 2009-03-12 Japan Science & Technology Agency Hydrogen gas generating member and method for producing hydrogen gas
WO2009133837A1 (en) * 2008-04-30 2009-11-05 株式会社アルバック WATER-REACTIVE Al COMPOSITE MATERIAL, WATER-REACTIVE Al FILM, PROCESS FOR PRODUCTION OF THE Al FILM, AND CONSTITUENT MEMBER FOR FILM DEPOSITION CHAMBER
JP2010024480A (en) * 2008-07-17 2010-02-04 Mitsubishi Alum Co Ltd Aluminum alloy material for generating hydrogen and production method therefor
JP2011121826A (en) * 2009-12-11 2011-06-23 Hitachi Maxell Ltd Manufacturing method for hydrogen and manufacturing device of hydrogen and fuel cell system
US20120052001A1 (en) * 2010-08-26 2012-03-01 Woodall Jerry M Energy storage and generation of hydrogen and heat on demand
JP2015229630A (en) * 2014-06-06 2015-12-21 合同会社エネオン総合研究所 Hydrogen-generating alloy, method for production thereof, hydrogen-generating cartridge, hydrogen production device, hydrogen production method, and fuel cell system
JP2016056396A (en) * 2014-09-05 2016-04-21 株式会社アルバック MANUFACTURING METHOD FOR WATER-REACTIVE Al ALLOY SPRAY DEPOSIT, AND FILM DEPOSITION CHAMBER CONSTITUTION MEMBER

Also Published As

Publication number Publication date
JP6890477B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
US8668897B2 (en) Compositions and methods for hydrogen generation
EP1249427B1 (en) Solid compositions comprising an alkali metal borohydride and an ammonium salt, which generate hydrogen gas upon combustion
WO2006073113A1 (en) Hydrogen generating material, hydrogen generator and fuel cell
CN105057688B (en) A kind of production method of ultra-fine Pb-free coating glass putty
FR2845376A1 (en) SOLID COMBUSTION HYDROGEN GENERATING COMPOSITIONS COMPRISING ALKALINE OR ALKALINE EARTH BOROHIDE AND STRONTIUM SR NITRATE (NO3) 2
FR2845377A1 (en) SOLID COMBUSTION HYDROGEN GENERATING COMPOSITIONS COMPRISING AN ALKALINE OR ALKALINE EARTH BOROHIDE AND AN OXIDIZING SALT BASED ON AMMONIUM PERCHLORATE, ALKALINE OR ALKALINE EARTH
WO2023009380A3 (en) Lithium lanthanum zirconium oxide (llzo) materials
CN105039792A (en) Rapid hydrogen production agent and preparation method and application thereof
KR20170055958A (en) A Burner Evaporator For a Fuel Cell System
Pacios et al. Roadmap for Competitive Production of Solid‐State Batteries: How to Convert a Promise into Reality
JP5753987B1 (en) Hydrogen generating alloy, method for producing hydrogen generating alloy, hydrogen generating cartridge, hydrogen producing apparatus, hydrogen producing method, and fuel cell system
JP2019001674A (en) Hydrogen generating material manufacturing method, fuel cell, and hydrogen generating method
CN110112431A (en) A kind of preparation method of coating type thermal cell compound electric pole piece
JPWO2010131709A1 (en) Negative electrode material and lithium secondary battery using the same
CA2878903C (en) Method for utilizing aluminum as fuel
Ma et al. Solid oxide fuel cell development by using novel plasma spray techniques
CN102412408B (en) Preparation method of SOFC electrolyte surface micro-convex structure and product thereof
JP2006521666A (en) Method for producing a layer system comprising a metallic support and an anode functional layer
TWI356102B (en)
JPH0757739A (en) Manufacture of fuel electrode for high temperature type fuel cell
CN111564624A (en) Preparation method of magnesium seawater activated anode material and anode material
JP2010163332A (en) Method for generating hydrogen using magnesium, and apparatus therefor
JPH05202460A (en) Method for thermally spraying perovskite type oxide, thermal-sprayed film, solid electrolyte type fuel cell and manufacture thereof
CN102306812B (en) Method for recycling electrolyte substrate waste material of molten carbonate fuel cell
CN108155349A (en) A kind of electrode slice of nano silica-magnesia battery and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210525

R150 Certificate of patent or registration of utility model

Ref document number: 6890477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150