JP2002161325A - Aluminum alloy, hydrogen gas generation method, hydrogen gas generator, and electric generator - Google Patents

Aluminum alloy, hydrogen gas generation method, hydrogen gas generator, and electric generator

Info

Publication number
JP2002161325A
JP2002161325A JP2000352719A JP2000352719A JP2002161325A JP 2002161325 A JP2002161325 A JP 2002161325A JP 2000352719 A JP2000352719 A JP 2000352719A JP 2000352719 A JP2000352719 A JP 2000352719A JP 2002161325 A JP2002161325 A JP 2002161325A
Authority
JP
Japan
Prior art keywords
hydrogen gas
generator
aluminum
water
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000352719A
Other languages
Japanese (ja)
Inventor
Masayuki Iijima
正行 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000352719A priority Critical patent/JP2002161325A/en
Publication of JP2002161325A publication Critical patent/JP2002161325A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an easily obtainable raw material for hydrogen gas generator, a method for generating hydrogen gas of high purity easily and effectively, a simple and lightweight hydrogen gas generator therefor, and an electric generator taking advantage of this hydrogen generator. SOLUTION: This method for generating hydrogen gas comprises reacting an aluminum alloy for generating hydrogen gas with water, which consists of an aluminum base material including indium, gallium, or an alloy thereof of 15 wt.% or less against the aluminum base material. The hydrogen gas generator comprises a vessel containing the aluminum alloy and water, a water circulating path, and a means for removing by-products. The electric generator comprises combining the hydrogen gas generator and a fuel cell so as to use the generated hydrogen gas as a hydrogen source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素ガス発生用ア
ルミニウム合金、この合金を用いる水素ガス発生方法及
びそのために用いる水素ガス発生器、並びにこの水素ガ
ス発生器を利用する発電機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy for generating hydrogen gas, a method for generating hydrogen gas using the alloy, a hydrogen gas generator used therefor, and a generator using the hydrogen gas generator.

【0002】[0002]

【従来の技術】従来、水素ガスを発生させる方法とし
て、例えば、(1)天然ガスや石油を用いる部分酸化法
や改質法、また、(2)NaCl又は水の電気分解法な
どによる方法が知られている。
2. Description of the Related Art Conventionally, methods for generating hydrogen gas include, for example, (1) a partial oxidation method or a reforming method using natural gas or petroleum, and (2) a method using NaCl or water electrolysis. Are known.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術の方法
(1)の場合には、高純度の水素ガスが得られないこ
と、この方法を実施する際に1000〜1500℃程度
の高温が必要であること、また、原料として、天然資源
でありかつ枯渇が心配されている化石燃料を用いるとい
う問題がある。方法(2)の場合には、電力を多量に消
費するので製造コストが高くつくこと、製造コストを下
げようと太陽エネルギーを用いて電解したとしても、効
率が悪い上、太陽発電用の高価な設備が必要になってし
まうという問題がある。
In the case of the above-mentioned prior art method (1), high-purity hydrogen gas cannot be obtained, and a high temperature of about 1000 to 1500 ° C. is required when this method is carried out. In addition, there is a problem that a fossil fuel which is a natural resource and is of concern about depletion is used as a raw material. In the case of the method (2), a large amount of electric power is consumed, so that the production cost is high. Even if the electrolysis is performed using solar energy to reduce the production cost, the efficiency is low and the expensive solar power generation is expensive. There is a problem that equipment is required.

【0004】また、水素ガスの貯蔵・供給は水素貯蔵合
金などを用いて行うことも可能であるが、高耐圧の容器
が必要になるので、全体の重量が重たくなり、不便であ
るという問題がある。さらに、発電機を構成する燃料電
池に用いられる水素ガスは一般に水素ガスボンベから供
給されているが、このボンベが破損すると大きな事故の
原因となる。
Although hydrogen gas can be stored and supplied using a hydrogen storage alloy or the like, a problem arises in that a high pressure container is required, so that the overall weight becomes heavy and inconvenient. is there. Further, hydrogen gas used for a fuel cell constituting a generator is generally supplied from a hydrogen gas cylinder. If the cylinder is damaged, a serious accident may be caused.

【0005】本発明の課題は、上記した従来技術の問題
点を解決するものであり、容易に入手可能な水素ガス発
生用原料、この原料を用いて高純度の水素ガスを簡単に
かつ効率よく発生させる方法及びそのための簡便な軽量
の水素発生器、並びにこの水素発生器を利用した発電機
を提供することにある。
[0005] An object of the present invention is to solve the above-mentioned problems of the prior art. A raw material for generating hydrogen gas which can be easily obtained, and high-purity hydrogen gas can be easily and efficiently produced using this raw material. An object of the present invention is to provide a method for generating the hydrogen gas, a simple and lightweight hydrogen generator for the method, and a generator using the hydrogen generator.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意努力を重ね、原子状アルミニウム又は特
定の金属を含浸せしめたアルミニウム合金を用いれば簡
単に水素ガスを発生させることができることを見出し、
本発明を完成するに至った。
The inventor of the present invention has made intensive efforts to solve the above-mentioned problems, and can easily generate hydrogen gas by using atomic aluminum or an aluminum alloy impregnated with a specific metal. Find out what you can do,
The present invention has been completed.

【0007】本発明の水素ガス発生用アルミニウム合金
は、アルミニウム基材に、該アルミニウム基材基準で1
5重量%以下、好ましくは0.5〜15重量%、さらに
好ましくは1.0〜10重量%のインジウム、ガリウム
又はそれらの合金が含浸されたものである。かかるアル
ミニウム合金を用いれば、水との反応により容易に水素
を発生せしめることができる。含浸量が15重量%を超
えると水素の発生効率が低下すると共に、合金の重量が
重くなるので水素発生器の重量が重くなってしまうとい
う問題がある。このアルミニウム合金は、例えば、イン
ジウム、ガリウム又はそれらの合金の融解液中に、アル
ミニウム基材の少なくとも一部を、好ましくは酸化を防
ぐため減圧(1〜10Pa)下で浸漬して、該基材中の
少なくとも一部にインジウム、ガリウム又はそれらの合
金を含浸せしめることによって得られる。アルミ基材全
体を浸漬すれば、該融解金属は該基材全体に拡散し得
る。
[0007] The aluminum alloy for hydrogen gas generation of the present invention comprises an aluminum base, and
It is impregnated with 5% by weight or less, preferably 0.5 to 15% by weight, more preferably 1.0 to 10% by weight of indium, gallium or an alloy thereof. If such an aluminum alloy is used, hydrogen can be easily generated by reaction with water. If the impregnated amount exceeds 15% by weight, there is a problem that the hydrogen generation efficiency is reduced and the weight of the hydrogen generator is increased because the weight of the alloy is increased. The aluminum alloy is, for example, immersed in a molten liquid of indium, gallium or an alloy thereof, at least a part of the aluminum substrate, preferably under reduced pressure (1 to 10 Pa) to prevent oxidation. It can be obtained by impregnating at least a part thereof with indium, gallium or an alloy thereof. If the entire aluminum substrate is immersed, the molten metal can diffuse throughout the substrate.

【0008】本発明の水素ガス発生方法は、上記原子状
アルミニウム又はアルミニウム合金と水とを反応させて
水素ガスを発生させることからなる。この方法によれ
ば、エネルギーをほとんど使わずに、水だけを用いて水
素ガスを発生できる。アルミニウムは容易に入手可能な
材料でありかつ電力の安い地域で再生可能であるので、
また、インジウムなどの金属はアルミニウムと水との反
応には関与せずかつ重量が重いためその回収が容易であ
って再利用可能であるので、さらにまた、水は地球上に
無尽蔵に存在するので、上記水素ガス発生方法によれ
ば、高純度の水素を簡単な方法で効率よく発生させるこ
とができ、水温は特に制限されない。この方法は周辺雰
囲気に有害物質をまき散らすこともないので、地球の環
境に優しいものであるといえよう。アルミニウムと水と
の反応によりアルミニウム合金等の表面に析出した水酸
化アルミニウムを主体とする副生物は、この反応を継続
させるために必要に応じて取り除くことが好ましい。例
えば、水を循環させ、水を攪拌し、又は超音波等を照射
して取り除くことが可能である。
[0008] The hydrogen gas generating method of the present invention comprises reacting the atomic aluminum or aluminum alloy with water to generate hydrogen gas. According to this method, hydrogen gas can be generated using only water with little use of energy. Aluminum is a readily available material and is renewable in low power areas,
In addition, since metals such as indium do not participate in the reaction between aluminum and water and are heavy, they can be easily recovered and reused, and water is inexhaustible on the earth. According to the hydrogen gas generation method, high-purity hydrogen can be efficiently generated by a simple method, and the water temperature is not particularly limited. This method is environmentally friendly because it does not disperse harmful substances into the surrounding atmosphere. By-products mainly composed of aluminum hydroxide precipitated on the surface of an aluminum alloy or the like by a reaction between aluminum and water are preferably removed as necessary in order to continue this reaction. For example, it is possible to circulate the water, stir the water, or remove it by irradiating ultrasonic waves or the like.

【0009】本発明の水素ガス発生器は、容器内に水と
上記原子状アルミニウム又はアルミニウム合金とが収容
されてなり、該容器には、該原子状アルミニウム又はア
ルミニウム合金と水との反応により生成した水素ガスの
取り出し口及び該水を循環させて該容器内に戻す循環路
が設けられていると共に、この循環路の途中に該反応に
より生成した副生物を除去する手段が設けられているこ
とからなり、これにより連続的に水素ガスを発生させる
ことができる。
In the hydrogen gas generator of the present invention, water and the above atomic aluminum or aluminum alloy are contained in a container, and the container is formed by the reaction of the atomic aluminum or aluminum alloy with water. A hydrogen gas outlet and a circulation path for circulating the water and returning it to the container, and a means for removing by-products generated by the reaction in the middle of the circulation path. , Whereby hydrogen gas can be continuously generated.

【0010】本発明の発電機は、上記水素ガス発生器と
燃料電池とを組み合わせてなる発電機であって、水素ガ
ス発生器により発生した水素ガスを燃料電池の水素源と
して用いるように構成されている。アルミニウム合金等
の量に応じて発生する水素ガスの量が定まるので、アル
ミニウム合金等の量を所定量に維持し、上記したように
連続して水素ガスを発生させることのできる水素ガス発
生器を用いれば、発生する水素ガスを燃料電池に供給す
ることにより継続して一定の発電が可能となる。すなわ
ち、燃料電池に利用する場合に、その電池の水素ガス使
用量に合わせて簡便で軽量の水素ガス発生器、ひいては
発電機として構築することが可能である。
A power generator according to the present invention is a power generator comprising a combination of the above-mentioned hydrogen gas generator and a fuel cell, wherein the hydrogen gas generated by the hydrogen gas generator is used as a hydrogen source for the fuel cell. ing. Since the amount of hydrogen gas generated is determined according to the amount of the aluminum alloy or the like, the hydrogen gas generator capable of maintaining the amount of the aluminum alloy or the like at a predetermined amount and continuously generating the hydrogen gas as described above is used. If used, constant power generation is possible by supplying the generated hydrogen gas to the fuel cell. That is, when used for a fuel cell, it is possible to construct a simple and lightweight hydrogen gas generator, and eventually a generator, according to the amount of hydrogen gas used by the cell.

【0011】ところで、原子状アルミニウムは水と反応
し、水素ガスと水酸化アルミニウムとを生成する。しか
し、金属アルミニウムを室温で空気中に放置すると、そ
の表面は酸化膜で覆われて、水とは直接反応できない。
この場合、表面の酸化膜を削り取り、金属アルミニウム
の表面を水と接触させても、アルミニウムの表面に直ぐ
に酸化膜ができてしまい室温では反応は進行しない。そ
こで、アルミニウムにインジウム、ガリウム、又はそれ
らの合金などの金属を含浸せしめてアルミニウム合金と
すると、この合金中の金属アルミニウムが、原子状アル
ミニウムと同様に、水と反応することができるようにな
る。この原理は不明であるが、インジウムなどの金属は
アルミニウム内での拡散係数が大きく、かつ原子半径が
大きいので、拡散した経路に水が進入し、アルミニウム
との反応が連続して起きるものと考えられる。
By the way, atomic aluminum reacts with water to generate hydrogen gas and aluminum hydroxide. However, when metal aluminum is left in the air at room temperature, its surface is covered with an oxide film and cannot directly react with water.
In this case, even if the oxide film on the surface is scraped off and the surface of metallic aluminum is brought into contact with water, an oxide film is immediately formed on the surface of aluminum and the reaction does not proceed at room temperature. Thus, when aluminum is impregnated with a metal such as indium, gallium, or an alloy thereof to form an aluminum alloy, the metal aluminum in the alloy can react with water in the same manner as atomic aluminum. Although the principle is unknown, it is thought that metals such as indium have a large diffusion coefficient in aluminum and a large atomic radius, so that water enters the diffused path and the reaction with aluminum occurs continuously. Can be

【0012】[0012]

【実施例】以下、実施例に基づいて本発明を詳細に説明
するが、本発明の範囲はこれらの例によって限定される
ものではない。 (実施例1)図1に示すような工程を経て水素ガスを発
生せしめた。まず、棒状の純アルミニウムの一端を削
り、新鮮なアルミニウム表面を露出させ、その露出面を
インジウムガリウム融解液(30℃)中に浸漬し、純ア
ルミニウム基準で1、3、10重量%のインジウムガリ
ウムを含浸せしめて、3種類のインジウムガリウム含浸
アルミニウム合金を作製した。この合金のそれぞれにつ
いて、その一端のインジウムガリウム含浸部分から細片
を削り取り、各削片を直ぐに水の中に入れた。3種類の
削片とも水と反応し、白い水酸化アルミニウムとガスを
発生した。このガスを集めて火を近づけると酸素と反応
し水ができたので、水素ガスであることが確認された。
水素ガスの発生量は、インジウムガリウム合金の含浸量
が増えるに従って増大した。 (実施例2)実施例1で得られた3重量%インジウムガ
リウム含浸アルミニウム合金の削片0.27g/分を容
器内に収容された水の中に入れた。反応が起こり、水酸
化アルミニウムと水素ガスが連続して生成した。この反
応中に、水は容器外に設けられた循環路を介して循環す
るようにし、また、その循環路の途中に設けた濾過手段
により該反応で生成した水酸化アルミニウムなどの副生
物を除去するようにした。得られた水素ガスの発生量
は、約220cc/分であった。このようにして発生し
た水素ガスを該容器に設けた水素ガス取り出し口を介し
て既知の空気水素燃料電池に供給し、発電を行った。こ
の発電機の供給電力は10W/hであった。
EXAMPLES The present invention will be described in detail below with reference to examples, but the scope of the present invention is not limited by these examples. (Example 1) Hydrogen gas was generated through the steps shown in FIG. First, one end of a rod-shaped pure aluminum is shaved, a fresh aluminum surface is exposed, and the exposed surface is immersed in a molten indium gallium solution (30 ° C.). To prepare three types of indium gallium-impregnated aluminum alloys. For each of the alloys, strips were scraped from the indium gallium impregnated portion at one end and each chip was immediately placed in water. All three types of chips reacted with water to produce white aluminum hydroxide and gas. When this gas was collected and brought close to the fire, it reacted with oxygen to form water, so it was confirmed that the gas was hydrogen gas.
The amount of hydrogen gas generated increased as the impregnation amount of the indium gallium alloy increased. (Example 2) 0.27 g / minute of the 3% by weight indium gallium-impregnated aluminum alloy chip obtained in Example 1 was placed in water contained in a container. The reaction occurred, and aluminum hydroxide and hydrogen gas were continuously produced. During this reaction, water is circulated through a circulation path provided outside the container, and a by-product such as aluminum hydroxide generated in the reaction is removed by a filtration means provided in the circulation path. I did it. The amount of hydrogen gas generated was about 220 cc / min. The hydrogen gas generated in this manner was supplied to a known air-hydrogen fuel cell through a hydrogen gas outlet provided in the container to generate power. The power supplied to this generator was 10 W / h.

【0013】[0013]

【発明の効果】上記したように、本発明のインジウム等
の金属が含浸されたアルミニウム合金によれば、エネル
ギーをほとんど使わずに、水だけを用いることにより水
素ガスを発生できる。アルミニウムは容易に入手可能な
材料でありかつ電力の易い地域で再生可能であるので、
また、インジウムなどの金属はアルミニウムと水との反
応には関与せずかつ重量が重いためその回収が容易であ
って再利用可能であるので、さらにまた、水は地球上に
無尽蔵に存在するので、本発明の水素ガス発生方法によ
れば、高純度の水素を簡単な方法で効率よく発生させる
ことができる。この方法は周辺雰囲気に有害物質をまき
散らすこともないので、地球の環境に優しいものである
といえよう。さらに、該アルミニウム合金の大きさ(重
量)に応じて発生する水素ガスの量が定まるので、燃料
電池に利用する場合に、その電池の水素ガス使用量に合
わせて簡便で軽量の水素ガス発生器を構築することが可
能である。さらにまた、このような水素ガス発生器を用
いれば、簡便で軽量の発電機を提供することができる。
As described above, according to the aluminum alloy impregnated with a metal such as indium of the present invention, hydrogen gas can be generated by using only water and almost no energy. Aluminum is a readily available material and is renewable in areas where power is easy,
In addition, since metals such as indium do not participate in the reaction between aluminum and water and are heavy, they can be easily recovered and reused, and water is inexhaustible on the earth. According to the hydrogen gas generation method of the present invention, high-purity hydrogen can be efficiently generated by a simple method. This method is environmentally friendly because it does not disperse harmful substances into the surrounding atmosphere. Further, since the amount of hydrogen gas generated is determined according to the size (weight) of the aluminum alloy, when used in a fuel cell, a simple and lightweight hydrogen gas generator is used in accordance with the amount of hydrogen gas used in the battery. It is possible to construct Furthermore, if such a hydrogen gas generator is used, a simple and lightweight generator can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水素ガス発生方法を説明するための
工程図。
FIG. 1 is a process chart for explaining a hydrogen gas generating method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム基材に、該アルミニウム基
材基準で15重量%以下のインジウム、ガリウム又はそ
れらの合金が含浸されてなる水素ガス発生用アルミニウ
ム合金。
1. An aluminum alloy for hydrogen gas generation, wherein an aluminum substrate is impregnated with indium, gallium or an alloy thereof at 15% by weight or less based on the aluminum substrate.
【請求項2】 原子状アルミニウム又は請求項1記載の
アルミニウム合金と水とを反応させて水素ガスを発生さ
せることを特徴とする水素ガス発生方法。
2. A method for producing hydrogen gas, comprising reacting atomic aluminum or the aluminum alloy according to claim 1 with water to produce hydrogen gas.
【請求項3】 容器内に水と原子状アルミニウム又は請
求項1記載のアルミニウム合金とが収容されてなり、該
容器には、該原子状アルミニウム又はアルミニウム合金
と水との反応により生成した水素ガスの取り出し口及び
該水を循環させて該容器内に戻す循環路が設けられてお
り、この循環路の途中に該反応により生成した副生物を
除去する手段が設けられていることを特徴とする連続的
に水素ガスを発生させる水素ガス発生器。
3. A container containing water and atomic aluminum or the aluminum alloy according to claim 1, wherein said container contains hydrogen gas produced by a reaction between said atomic aluminum or aluminum alloy and water. And a circulation path for circulating the water and returning it to the inside of the container is provided, and a means for removing a by-product generated by the reaction is provided in the middle of the circulation path. A hydrogen gas generator that continuously generates hydrogen gas.
【請求項4】 請求項3記載の水素ガス発生器と燃料電
池とを組み合わせてなる発電機であって、該水素ガス発
生器により発生した水素ガスを該燃料電池の水素源とし
て用いるように構成されていることを特徴とする発電
機。
4. A power generator comprising a combination of the hydrogen gas generator according to claim 3 and a fuel cell, wherein the hydrogen gas generated by the hydrogen gas generator is used as a hydrogen source for the fuel cell. A generator characterized by being made.
JP2000352719A 2000-11-20 2000-11-20 Aluminum alloy, hydrogen gas generation method, hydrogen gas generator, and electric generator Pending JP2002161325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000352719A JP2002161325A (en) 2000-11-20 2000-11-20 Aluminum alloy, hydrogen gas generation method, hydrogen gas generator, and electric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000352719A JP2002161325A (en) 2000-11-20 2000-11-20 Aluminum alloy, hydrogen gas generation method, hydrogen gas generator, and electric generator

Publications (1)

Publication Number Publication Date
JP2002161325A true JP2002161325A (en) 2002-06-04

Family

ID=18825574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000352719A Pending JP2002161325A (en) 2000-11-20 2000-11-20 Aluminum alloy, hydrogen gas generation method, hydrogen gas generator, and electric generator

Country Status (1)

Country Link
JP (1) JP2002161325A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012301A (en) * 2001-06-28 2003-01-15 Ulvac Japan Ltd Composition for hydrogen gas generation, production method for hydrogen gas, production apparatus for hydrogen gas and generator
JP2004123517A (en) * 2002-09-11 2004-04-22 Masao Watanabe Method of producing gaseous hydrogen using mechano-corrosive reaction
GB2435046A (en) * 2006-02-09 2007-08-15 Schlumberger Holdings Controllably reactive material
WO2008004428A1 (en) 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP2008024590A (en) * 2002-09-11 2008-02-07 Hydro-Device Co Ltd Hydrogen-generating material and method for production thereof
JP2008290928A (en) * 2007-05-24 2008-12-04 Liangfeng Plastic Machinery Co Method for producing hydrogen by using different metal
WO2009028143A1 (en) 2007-08-29 2009-03-05 Japan Science And Technology Agency Hydrogen gas generating member and hydrogen gas producing method therefor
JP2009132588A (en) * 2007-11-06 2009-06-18 Kobelco Kaken:Kk Hydrogen generator
JP2009215114A (en) * 2008-03-11 2009-09-24 Kobelco Kaken:Kk Cartridge for hydrogen generation
JP2010070408A (en) * 2008-09-17 2010-04-02 Hiroshi Kubota Hydrogen generating material and method for producing the same
US7951463B2 (en) 2004-03-10 2011-05-31 Ulvac, Inc. Water collapsible aluminum film
US8211248B2 (en) 2009-02-16 2012-07-03 Schlumberger Technology Corporation Aged-hardenable aluminum alloy with environmental degradability, methods of use and making
US8220554B2 (en) 2006-02-09 2012-07-17 Schlumberger Technology Corporation Degradable whipstock apparatus and method of use
US8231947B2 (en) 2005-11-16 2012-07-31 Schlumberger Technology Corporation Oilfield elements having controlled solubility and methods of use
US20130145961A1 (en) * 2010-08-27 2013-06-13 Ulvac, Inc. Water-reactive al-based composite material, water-reactive al-based thermally sprayed film, process for production of such al-based thermally sprayed film, and constituent member for film-forming chamber
US8567494B2 (en) 2005-08-31 2013-10-29 Schlumberger Technology Corporation Well operating elements comprising a soluble component and methods of use
JP2017128498A (en) * 2016-01-19 2017-07-27 楊中▲リョウ▼ Hydrogen and oxygen separation type energy generation system
US9789544B2 (en) 2006-02-09 2017-10-17 Schlumberger Technology Corporation Methods of manufacturing oilfield degradable alloys and related products
JP2019001674A (en) * 2017-06-14 2019-01-10 株式会社アルバック Hydrogen generating material manufacturing method, fuel cell, and hydrogen generating method
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
US10546978B2 (en) 2003-09-18 2020-01-28 Cree, Inc. Molded chip fabrication method and apparatus
CN115818568A (en) * 2022-11-25 2023-03-21 王凯 Cracking agent for cracking water vapor to produce hydrogen, preparation, use and reactivation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089296A (en) * 1973-12-12 1975-07-17
JPS531695A (en) * 1976-06-28 1978-01-09 Japan Atom Energy Res Inst Method and apparatus for producing hydrogen
JPS6393839A (en) * 1986-10-06 1988-04-25 Mitsubishi Alum Co Ltd Aluminum alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089296A (en) * 1973-12-12 1975-07-17
JPS531695A (en) * 1976-06-28 1978-01-09 Japan Atom Energy Res Inst Method and apparatus for producing hydrogen
JPS6393839A (en) * 1986-10-06 1988-04-25 Mitsubishi Alum Co Ltd Aluminum alloy

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012301A (en) * 2001-06-28 2003-01-15 Ulvac Japan Ltd Composition for hydrogen gas generation, production method for hydrogen gas, production apparatus for hydrogen gas and generator
JP2008024590A (en) * 2002-09-11 2008-02-07 Hydro-Device Co Ltd Hydrogen-generating material and method for production thereof
JP2004123517A (en) * 2002-09-11 2004-04-22 Masao Watanabe Method of producing gaseous hydrogen using mechano-corrosive reaction
US10546978B2 (en) 2003-09-18 2020-01-28 Cree, Inc. Molded chip fabrication method and apparatus
US7951463B2 (en) 2004-03-10 2011-05-31 Ulvac, Inc. Water collapsible aluminum film
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
US8567494B2 (en) 2005-08-31 2013-10-29 Schlumberger Technology Corporation Well operating elements comprising a soluble component and methods of use
US8231947B2 (en) 2005-11-16 2012-07-31 Schlumberger Technology Corporation Oilfield elements having controlled solubility and methods of use
US8220554B2 (en) 2006-02-09 2012-07-17 Schlumberger Technology Corporation Degradable whipstock apparatus and method of use
US9789544B2 (en) 2006-02-09 2017-10-17 Schlumberger Technology Corporation Methods of manufacturing oilfield degradable alloys and related products
GB2435046A (en) * 2006-02-09 2007-08-15 Schlumberger Holdings Controllably reactive material
US8211247B2 (en) 2006-02-09 2012-07-03 Schlumberger Technology Corporation Degradable compositions, apparatus comprising same, and method of use
GB2435046B (en) * 2006-02-09 2010-04-07 Schlumberger Holdings Temporary plugs for use in wellbores
WO2008004428A1 (en) 2006-07-05 2008-01-10 Central Glass Company, Limited Hydrogen generating method, hydrogen generating alloy and method for manufacturing hydrogen generating alloy
JP5511186B2 (en) * 2006-07-05 2014-06-04 勲 伊藤 Hydrogen generating method, hydrogen generating alloy, and hydrogen generating alloy manufacturing method
JP2008290928A (en) * 2007-05-24 2008-12-04 Liangfeng Plastic Machinery Co Method for producing hydrogen by using different metal
JP2009051714A (en) * 2007-08-29 2009-03-12 Japan Science & Technology Agency Hydrogen gas generating member and method for producing hydrogen gas
WO2009028143A1 (en) 2007-08-29 2009-03-05 Japan Science And Technology Agency Hydrogen gas generating member and hydrogen gas producing method therefor
US9617622B2 (en) 2007-08-29 2017-04-11 Japan Science And Technology Agency Hydrogen gas generating member and hydrogen gas producing method therefor
JP2009132588A (en) * 2007-11-06 2009-06-18 Kobelco Kaken:Kk Hydrogen generator
JP2009215114A (en) * 2008-03-11 2009-09-24 Kobelco Kaken:Kk Cartridge for hydrogen generation
JP2010070408A (en) * 2008-09-17 2010-04-02 Hiroshi Kubota Hydrogen generating material and method for producing the same
US8211248B2 (en) 2009-02-16 2012-07-03 Schlumberger Technology Corporation Aged-hardenable aluminum alloy with environmental degradability, methods of use and making
TWI473885B (en) * 2010-08-27 2015-02-21 Ulvac Inc A water-reactive aluminum melt film, a water-reactive aluminum melt film, a method for producing the water-reactive aluminum melt film, and a constituent member for a film forming chamber
US8945296B2 (en) * 2010-08-27 2015-02-03 Ulvac, Inc. Water-reactive Al-based composite material, water-reactive Al-based thermally sprayed film, process for production of such Al-based thermally sprayed film, and constituent member for film-forming chamber
CN103228814A (en) * 2010-08-27 2013-07-31 株式会社爱发科 Water-reactive al composite material, water-eactive thermally sprayed al film, process for production of thermally sprayed al film, and structural member for film-<wbr/>forming chamber
US20130145961A1 (en) * 2010-08-27 2013-06-13 Ulvac, Inc. Water-reactive al-based composite material, water-reactive al-based thermally sprayed film, process for production of such al-based thermally sprayed film, and constituent member for film-forming chamber
JP2017128498A (en) * 2016-01-19 2017-07-27 楊中▲リョウ▼ Hydrogen and oxygen separation type energy generation system
JP2019001674A (en) * 2017-06-14 2019-01-10 株式会社アルバック Hydrogen generating material manufacturing method, fuel cell, and hydrogen generating method
CN115818568A (en) * 2022-11-25 2023-03-21 王凯 Cracking agent for cracking water vapor to produce hydrogen, preparation, use and reactivation method thereof
CN115818568B (en) * 2022-11-25 2024-04-09 王凯 Cracking agent for hydrogen production by cracking water vapor, preparation, use and reviving method thereof

Similar Documents

Publication Publication Date Title
JP2002161325A (en) Aluminum alloy, hydrogen gas generation method, hydrogen gas generator, and electric generator
US4160816A (en) Process for storing solar energy in the form of an electrochemically generated compound
Egan et al. Developments in electrode materials and electrolytes for aluminium–air batteries
EP0055330B1 (en) A process for generating energy in the form of heat and hydrogen
US20100323254A1 (en) Energy supply system
US20120010305A1 (en) Method and facility system for providing an energy carrier by application of carbon dioxide as a carbon supplier of electric energy
FR2471676A1 (en) METHOD AND DEVICE FOR ELECTROCHEMICAL ENERGY PRODUCTION
JP4838952B2 (en) Hydrogen gas generator and generator
KR101992798B1 (en) Energy storage using REP with engine
JP2009043487A (en) Generating system
JP2009096707A (en) Method for generating hydrogen, method for producing hydrogen-generating material, hydrogen production apparatus, and fuel cell system
US3067276A (en) Method of regenerating double skeleton catalyst electrodes
JP2010215484A (en) Solid hydrogen fuel manufacturing method of the same and method for using the same
JPH0950820A (en) Fuel cell system, fuel cell, and hydrogen storage system
CN110957513A (en) Direct coal fuel cell power generation system with near-zero carbon emission
JP2006298734A (en) Method for manufacturing tetrahydroborate
US4756979A (en) Power generation systems and methods
US4677040A (en) Power generation systems and methods
CN113371733A (en) Novel process for preparing ammonia from new energy
US20090075137A1 (en) Filter, hydrogen generator and fuel cell power generation system having the same
JP2019151531A (en) Graphite porous structure
KR101986642B1 (en) Fuel cell systme having hydrogen generation apparatus using carbon dioxide
CN113061918A (en) Hydrogen-electricity integrated device for continuous hydrogen production and application thereof
JP2008308764A (en) Hydrogen generator and electrolyte solution therefor
JPH04244035A (en) Production of methanol using nuclear heat

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111