JPS63278552A - Catalyst for producing methane-containing gas - Google Patents

Catalyst for producing methane-containing gas

Info

Publication number
JPS63278552A
JPS63278552A JP62114296A JP11429687A JPS63278552A JP S63278552 A JPS63278552 A JP S63278552A JP 62114296 A JP62114296 A JP 62114296A JP 11429687 A JP11429687 A JP 11429687A JP S63278552 A JPS63278552 A JP S63278552A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
nickel
methanol
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62114296A
Other languages
Japanese (ja)
Inventor
Makoto Imanari
今成 真
Michihiko Kurashige
倉重 充彦
Makoto Takiguchi
真 滝口
Toshihisa Kanamaru
金丸 利壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIBU GAS KK
Mitsubishi Petrochemicals Engineering Co Ltd
Original Assignee
SEIBU GAS KK
Mitsubishi Petrochemicals Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIBU GAS KK, Mitsubishi Petrochemicals Engineering Co Ltd filed Critical SEIBU GAS KK
Priority to JP62114296A priority Critical patent/JPS63278552A/en
Publication of JPS63278552A publication Critical patent/JPS63278552A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To enhance the thermal durability and low-temp. activity of the title catalyst by depositing nickel and/or nickel oxide, etc., on the pulverized gamma-alumina or hydrated alumina carrier contg. a specified amt. of a sulfur compd. to obtain the catalyst. CONSTITUTION:Nickel and/or nickel oxide or its reduction product are deposited on the pulverized gamma-alumina or hydrated alumina carrier contg. <=1.2wt.% sulfur compd. (as SO4<2->) to obtain the catalyst for producing methane by the gaseous- phase catalytic reaction of methanol. The particle diameter of the carrier is appropriately controlled to about 30-100mu, and the content of the sulfur compd. in the carrier is adequately adjusted to <=1wt.% as SO4<2->. When the obtained catalyst is used for the conversion of methanol into a methane-contg. gas by the gaseous-phase catalytic reaction, the thermal durability is enhanced, and the high low-temp. activity and high methane yield are stably maintained.

Description

【発明の詳細な説明】 技術分野 本発明は、メタノールを原料としてメタン含をガスを製
造する触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a catalyst for producing a methane-containing gas using methanol as a raw material.

近年、大都市圏を中心に都市ガス原料として、LNG 
(液化天然ガス)の導入が図られているが、LNGの場
合マイナス160℃という超低温にして輸送、貯蔵する
必要があって、ハンドリングの面で技術的、経済的に制
約があるので中小都市での採用は間通が多い。したがっ
て、都市ガス原料をLNGから取扱いが容易なメタノー
ルに代え、これを転化したメタンを含をする都市ガスを
経済的に製造する工業的な技術の完成が急がれている。
In recent years, LNG has been used as a raw material for city gas mainly in metropolitan areas.
(liquefied natural gas), but in the case of LNG, it is necessary to transport and store it at an ultra-low temperature of -160℃, and there are technical and economic constraints in terms of handling, so it is not suitable for small and medium-sized cities. There are many mistakes in hiring. Therefore, there is an urgent need to complete an industrial technique for economically producing city gas containing methane by replacing LNG with methanol, which is easy to handle, as the city gas raw material.

メタノールをメタン化するに際して、最も大きな問題は
、メタン化反応によって生ずる高い反応熱を制御するこ
とが困難であるという点である。特に多管式反応器を用
いてメタン化を行なう場合では、その高い反応熱により
触媒層入口側の一部は常に最’?:4600℃程度の高
温にさらされるのである(第1図)。なお、この図は下
記の反応条件のもとで測定したものである。熱媒体温度
二300℃、LH8V : 1.0hr−’ (メタノ
ールベース)、圧カニ 3 kg/ csi G 1H
20/メタノールモル比−1,0゜この熱によって触媒
は通常活性低下をきたし、そしてその発熱ピーク位置は
順次触媒層出口側ヘシフトしていくのである。したがっ
て使用される触媒には高度の熱的耐久性が必要とされて
いる。又、触媒活性の向上は熱媒体温度の低温化につな
がり、触媒層内最高温度を低下させることができる。よ
って、このことは触媒の長寿命化に有利に働くことはい
うまでもない。
The biggest problem in methanating methanol is that it is difficult to control the high reaction heat generated by the methanation reaction. Particularly when methanation is carried out using a multi-tubular reactor, the part of the inlet side of the catalyst layer is always at its lowest temperature due to the high reaction heat. :It is exposed to high temperatures of around 4,600°C (Figure 1). Note that this figure was measured under the following reaction conditions. Heat medium temperature 2300℃, LH8V: 1.0hr-' (methanol base), pressure crab 3kg/csi G 1H
20/methanol molar ratio -1.0° This heat usually causes a decrease in the activity of the catalyst, and the position of its exothermic peak gradually shifts to the exit side of the catalyst layer. Therefore, the catalysts used are required to have a high degree of thermal durability. Further, improvement in catalyst activity leads to lowering of the heat medium temperature, and the maximum temperature inside the catalyst layer can be lowered. Therefore, it goes without saying that this is advantageous in extending the life of the catalyst.

更に、触媒が高活性を長期間安定に保持でき、熱媒体温
度を350℃以下にすることができる様なものであるな
らば、工業的取扱いに問題の多い硝酸塩浴に代えてホッ
トオイルが使用可能となるので、プロセス的にも有利と
なって、経済的メリットも大きい。
Furthermore, if the catalyst can maintain high activity stably for a long period of time and the heating medium temperature can be kept below 350°C, hot oil can be used instead of a nitrate bath, which has many problems in industrial handling. Since it becomes possible, it is advantageous in terms of process and has great economic merit.

よって、熱的耐久性の良いメタン化反応に用いる触媒の
具備すべき条件は、高温下での反応の履歴を経てもなお
低温活性を維持し高メタン収率を保持する性能が必要と
なる。又このことは経済的なガス化プラントの長期安定
操業に不可欠である。
Therefore, the catalyst used for the methanation reaction with good thermal durability must have the ability to maintain low-temperature activity and maintain a high methane yield even after a reaction history at high temperatures. This is also essential for the long-term stable operation of an economical gasification plant.

先行技術 メタノールの気相接触反応によって、メタン含有ガスに
転化する触媒としては従来下記のような触媒が提案され
ている。
Prior Art The following catalysts have been proposed as catalysts for converting methanol into methane-containing gas through gas phase catalytic reaction.

(1)  活性アルミニウム及び/又はケイソウ土を担
体としたニッケル触媒(特開昭51−122102号公
報) (2)  ニッケルを25〜50重量%、アルミナ熔融
セメントを少なくとも5重量%、二酸化ジルコニウム又
は二酸化チタンを少なくとも5重量%含有する触媒(特
開昭53−35702号、同54−111503号各公
報) (3)  アルカリ土類金属元素の酸化物又は希土類金
属元素の酸化物を含有する担体上にニッケル又はニッケ
ルの酸化物を担持させたことを特徴とするメタノール又
はメタノール、水の混合物を原料としたメタン含有ガス
製造用触媒(特開昭60−209253号、同60−2
09254号各公報)しかし、これらの触媒は、本発明
者らの知る限りでは、初期低温活性に乏しく、高熱反応
後の触媒の低温活性に乏しく、現在迄のところ耐熱性や
メタン収率の面で多く問題を残している。
(1) Nickel catalyst with activated aluminum and/or diatomaceous earth as a carrier (JP-A-51-122102) (2) 25 to 50% by weight of nickel, at least 5% by weight of alumina fused cement, zirconium dioxide or carbon dioxide A catalyst containing at least 5% by weight of titanium (JP-A-53-35702 and JP-A-54-111503) (3) On a carrier containing an oxide of an alkaline earth metal element or an oxide of a rare earth metal element. Catalyst for producing methane-containing gas using methanol or a mixture of methanol and water as a raw material, characterized by supporting nickel or nickel oxide (JP-A-60-209253, JP-A-60-2)
However, as far as the present inventors know, these catalysts have poor initial low-temperature activity, poor low-temperature activity of the catalyst after high-temperature reaction, and have so far suffered from poor heat resistance and methane yield. leaves many problems unsolved.

要旨 本発明者らは、永年の研究の結果、メタノール又はメタ
ノールと水を原料としてメタン含有ガスを製造する場合
に、熱的耐久性が高く、低温高活性、高選択性を安定に
保持する触媒を見出した。
Abstract As a result of many years of research, the present inventors have developed a catalyst that has high thermal durability and stably maintains high low-temperature activity and high selectivity when producing methane-containing gas using methanol or methanol and water as raw materials. I found out.

即ち、本発明によるメタノールの気相接触反応によるメ
タンの製造のための触媒は、イオウ化合物含有量(So
 2−として>  1. 21i量%以下の微粉状γ−
アルミナまたは微粉状アルミナ水和物担体にニッケルお
よび(または)ニッケルの酸化物ないしその還元物を担
持させてなること、を特徴とするものである。
That is, the catalyst for the production of methane by vapor phase catalytic reaction of methanol according to the present invention has a sulfur compound content (So
2->1. 21i amount% or less of fine powder γ-
It is characterized in that nickel and/or nickel oxide or its reduction product is supported on alumina or a finely powdered alumina hydrate carrier.

効果 本発明触媒は、前記したように、メタノールをメタン含
有ガスに気相接触反応によって転化させる際に熱的耐久
性が高く、そして低温高活性、高メタン収率を安定に保
持するものである。
Effects As described above, the catalyst of the present invention has high thermal durability when converting methanol to a methane-containing gas by gas phase catalytic reaction, and stably maintains high low-temperature activity and high methane yield. .

本発明触媒は担体のイオウ化合物含量を低く抑えたとこ
ろに一つの特徴があるところ、この点は触媒毒の含量を
低下させることと軌を−にするようにみえるかも知れな
いが、上記の諸効果、特に耐熱性の向上効果、は単に触
媒毒の含量を低下させたということからは予想されない
ことである。
One of the characteristics of the catalyst of the present invention is that the content of sulfur compounds in the carrier is kept low. Although this point may seem to be in conflict with the reduction of the content of catalyst poisons, the above points The effect, especially the effect of improving heat resistance, is not expected from simply lowering the content of catalyst poison.

〔発明の詳細な説明〕[Detailed description of the invention]

触  媒 担体 担体として用いる微粉状γ−アルミナもしくはアルミナ
水和物とは、粒径がほぼ30〜100μであり、適当な
アルミナ源化合物から適当な方法、たとえば「元素別触
媒便覧」第33頁から第39頁に記載されている方法、
によってつくることができる。ここで「微粉状」とは、
48メツシユ篩を実質的に全量通過することを意味する
The finely powdered γ-alumina or alumina hydrate used as the catalyst carrier has a particle size of approximately 30 to 100μ, and is prepared by an appropriate method from an appropriate alumina source compound, for example, from page 33 of “Elemental Catalyst Handbook”. The method described on page 39,
It can be created by Here, "fine powder" means
This means that substantially the entire amount passes through the 48 mesh sieve.

本発明による触媒の特徴は、この担体中のイオウ化合物
含有量が、So 2−として1.2重量%以下、好まし
くは1重量%以下、さらに好ましくは0.8重量%以下
、であるということである。
The catalyst according to the invention is characterized in that the content of sulfur compounds in the carrier is 1.2% by weight or less, preferably 1% by weight or less, more preferably 0.8% by weight or less as So2-. It is.

担体中のイオウ化合物含有量の測定は、螢光X線分析法
によったものである。
The sulfur compound content in the carrier was measured by fluorescent X-ray analysis.

触媒の製造 本発明による触媒は、上記のような担体にニッケルおよ
び(または)ニッケルの酸化物ないしその還元物を担持
させてなるものである。ここで、「酸化物の還元物」と
は、出発酸化物よりも酸化階程が低下したものから金属
水素化物までのものを包含するものである。
Manufacture of Catalyst The catalyst according to the present invention has nickel and/or nickel oxide or its reduced product supported on the above-mentioned carrier. Here, the term "reduced oxide" includes those whose oxidation stage is lower than that of the starting oxide, up to metal hydrides.

前記のような担体にこれらの触媒成分を担持させて本発
明触媒を得る方法は任意2であって、従来から用いられ
ている方法を採用することができる。
The method for obtaining the catalyst of the present invention by supporting these catalyst components on the carrier as described above is arbitrary, and any conventionally used method can be adopted.

例えば、ニッケルの硝酸塩、塩化物、硫酸塩、有機酸な
いしキレートなどの塩類の溶液に、重炭酸アルカリ又は
炭酸アルカリ等のアルカリを加えて沈殿させ、沈殿を濾
過、洗浄ののち、微粉状担体と混練し、乾燥、焼成、成
型および水素還元すれば、本発明による触媒を得ること
ができる。
For example, to a solution of salts such as nickel nitrates, chlorides, sulfates, organic acids or chelates, an alkali such as alkali bicarbonate or alkali carbonate is added to precipitate, and the precipitate is filtered and washed, and then formed into a fine powder carrier. The catalyst according to the invention can be obtained by kneading, drying, calcining, shaping and hydrogen reduction.

必須成分であるニッケルおよび担体の量比は所期の目的
が達成される限り任意であるが、一般に、Ni担持率で
25〜75%の範囲が適当である。
The quantitative ratio of nickel, which is an essential component, and the carrier is arbitrary as long as the intended purpose is achieved, but in general, a range of 25 to 75% in terms of Ni loading rate is appropriate.

上記方法において、沈澱時に微粉状担体を共存させてお
いてもなんらさしつかえはない。
In the above method, there is no problem in allowing a fine powder carrier to coexist during precipitation.

また、本発明でいう「触媒」は、担持工程での担体が微
粉状であれば、そのメタノール改質反応での使用時は柱
状、錠剤状、ハニカム状、板状その他の成型物であって
もよいことはいうまでもない。さらにまた、本発明の趣
旨を損なわない限り、ニッケルの外に、他の金属成分を
プロモーター等の目的で存在させることもできる。
In addition, the "catalyst" as used in the present invention may be a columnar, tablet-shaped, honeycomb-shaped, plate-shaped or other molded product when used in the methanol reforming reaction, if the carrier in the supporting step is in the form of fine powder. Needless to say, this is a good thing. Furthermore, other metal components may be present in addition to nickel for the purpose of promoters, etc., as long as the spirit of the present invention is not impaired.

メタノール改質 以上のようにして得られた触媒は、メタノール又はメタ
ノールと水の混合物を原料として、メタン含有ガスに改
質する反応に対し、連続高温反応においても低温高活性
、高メタン収率を保持する優れた性能を有するものであ
る。
Methanol reforming The catalyst obtained in the above manner has high low-temperature activity and high methane yield even in continuous high-temperature reactions for the reaction of reforming methanol or a mixture of methanol and water into a methane-containing gas as a raw material. It has excellent retention performance.

尚、メタノール−水からメタンを製造する場合、次の反
応式に従えばメタンの理論モル収率は75モル%である
When producing methane from methanol-water, the theoretical molar yield of methane is 75 mol% according to the following reaction formula.

4CHOH+H20→ 3CH4+Co2+3H20 実験例 実施例−1 N 1(NOs )2 ・6 H20495trを含む
水溶液と、沈澱剤として重炭酸ナトリウム287g(硝
酸ニッケルの2倍モル)を含む水溶液とを反応させて、
30℃で沈澱を生じさせる。沈澱物を濾過し、更に純水
で充分に洗浄した。次に、この沈澱物のスラリーと、担
体としてアルミナ水和物であるパイヤライト(S042
−含有率:0.1重量%)179gとをよく混練した。
4CHOH+H20→ 3CH4+Co2+3H20 Experimental Example Example-1 An aqueous solution containing N1(NOs)2.6H20495tr and an aqueous solution containing 287g of sodium bicarbonate (twice the mole of nickel nitrate) as a precipitant were reacted.
Precipitation occurs at 30°C. The precipitate was filtered and further washed thoroughly with pure water. Next, a slurry of this precipitate and alumina hydrate (S042
- Content: 0.1% by weight) and 179 g were thoroughly kneaded.

これを混線しながら乾燥し、600℃で3時間焼成し、
成型(3φX4mm)を行って、触媒−1を得た。同様
に担体として、それぞれベーマイトゲル(So 2−含
有率70.22重量%)130.、γ−アルミナ(So
 2−含を率;0.29重量%)114i、γ−アルミ
ナ(S04 含有率:0.54重量%)114g−を用
いて触媒を調製して、触媒−2,3および4を得た。触
媒−1〜4はいずれもニッケル担持率:50重量%であ
る。
This was dried while being mixed, then baked at 600℃ for 3 hours.
Molding (3φ×4mm) was performed to obtain catalyst-1. Boehmite gel (So2 content 70.22% by weight) 130. , γ-alumina (So
Catalysts 2, 3 and 4 were prepared using 114i of γ-alumina (S04 content: 0.29% by weight) and 114g of γ-alumina (S04 content: 0.54% by weight). All of Catalysts-1 to 4 had a nickel support rate of 50% by weight.

これらの触媒を反応器に充填後400℃で2時間水素気
流中で還元した。そして表−1に示す条件で初期活性評
価試験を行なって、表−2の結果を得た。
These catalysts were charged into a reactor and then reduced at 400° C. for 2 hours in a hydrogen stream. An initial activity evaluation test was conducted under the conditions shown in Table 1, and the results shown in Table 2 were obtained.

更にこれらの触媒を反応熱媒体温度を580℃にした以
外は表−1に示した条件で高温反応を45時間実施した
後に活性評価試験を行なって表−3の結果を得た。
Further, these catalysts were subjected to high-temperature reactions for 45 hours under the conditions shown in Table 1, except that the reaction heat medium temperature was 580°C, and then an activity evaluation test was conducted to obtain the results shown in Table 3.

尚、以下に述べる比較例、実施例−2についても触媒の
水素還元及び活性評価はこの方法により実施した。
Note that hydrogen reduction and activity evaluation of the catalyst were also carried out using this method in Comparative Example and Example-2 described below.

比較例 実験例−1と同じ方法で触媒調製を行なうに当り担体と
してそれぞれベーマイトゲル (S042−含有率=1.4重量%)130g、べ−マ
イトゲル(S 04  含有率:2.5重量%)130
g、γ−アルミナ(S04 含有率:2.5重量%)1
14gを用いて触媒を調製して比較触媒−1〜3を得た
。これらはいずれもニッケル担持率:50重量%である
。これらの活性評価試験結果を表−2および表−3に実
施例−1と併せて示した。
Comparative Example Catalysts were prepared in the same manner as in Experimental Example-1, using 130 g of boehmite gel (S042 content = 1.4 wt%) and boehmite gel (S04 content: 2.5 wt%) as carriers, respectively. 130
g, γ-alumina (S04 content: 2.5% by weight) 1
A catalyst was prepared using 14 g to obtain Comparative Catalysts-1 to 3. All of these have a nickel loading rate of 50% by weight. The results of these activity evaluation tests are shown in Tables 2 and 3 together with Example 1.

実施例−2 担体として触媒−2と同じ担体、ベーマイトゲル(S0
4 含有率:0.22重量%)を用い、沈澱剤として無
水炭酸ナトリウムを用いた以外は実施例−1の方法で触
媒を調製して触媒−5を得た。この触媒のニッケル担持
率は50重量%である。この触媒の初期活性評価試験結
果と高温反応後の活性評価試験結果を表−4に併せて示
した。
Example-2 The same carrier as catalyst-2, boehmite gel (S0
Catalyst-5 was prepared by the method of Example-1 except that anhydrous sodium carbonate was used as the precipitant. The nickel loading rate of this catalyst was 50% by weight. The initial activity evaluation test results of this catalyst and the activity evaluation test results after high temperature reaction are also shown in Table 4.

表−4Table-4

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、多管式反応器の触媒層内温度の分布を示す図
である。
FIG. 1 is a diagram showing the temperature distribution within the catalyst layer of a multi-tubular reactor.

Claims (1)

【特許請求の範囲】[Claims] イオウ化合物含有量(SO_4^2^−として)1.2
重量%以下の微粉状γ−アルミナまたは微粉状アルミナ
水和物担体にニッケルおよび(または)ニッケルの酸化
物ないしその還元物を担持させてなることを特徴とする
、メタノールの気相接触反応によるメタンの製造のため
の触媒。
Sulfur compound content (as SO_4^2^-) 1.2
Methane obtained by gas phase catalytic reaction of methanol, characterized by supporting nickel and/or nickel oxide or its reduction product on a fine powder γ-alumina or fine powder alumina hydrate carrier in a weight percent or less Catalyst for the production of.
JP62114296A 1987-05-11 1987-05-11 Catalyst for producing methane-containing gas Pending JPS63278552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114296A JPS63278552A (en) 1987-05-11 1987-05-11 Catalyst for producing methane-containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114296A JPS63278552A (en) 1987-05-11 1987-05-11 Catalyst for producing methane-containing gas

Publications (1)

Publication Number Publication Date
JPS63278552A true JPS63278552A (en) 1988-11-16

Family

ID=14634313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114296A Pending JPS63278552A (en) 1987-05-11 1987-05-11 Catalyst for producing methane-containing gas

Country Status (1)

Country Link
JP (1) JPS63278552A (en)

Similar Documents

Publication Publication Date Title
JP5285776B2 (en) Catalyst for producing synthesis gas from natural gas and carbon dioxide and method for producing the same
US20040142817A1 (en) Modified theta-alumina-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
JPS592537B2 (en) Carbon monoxide conversion catalyst and method for producing the catalyst
JPH08127544A (en) Production of methane from carbon dioxide and hydrogen
JP2004209408A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JPS63278552A (en) Catalyst for producing methane-containing gas
JPS5948140B2 (en) Catalyst for steam reforming of hydrocarbons
JPH0361494B2 (en)
JP4013689B2 (en) Hydrocarbon reforming catalyst, hydrocarbon cracking apparatus, and fuel cell reformer
JPH0371174B2 (en)
JP4776403B2 (en) Hydrocarbon reforming catalyst
JPS60220143A (en) Catalyst for preparing methane-containing gas
JPS6246482B2 (en)
KR102186052B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same
JPS63209752A (en) Methanol reforming catalyst
JPS60209253A (en) Catalyst for manufacturing gas containing methane
JP3199757B2 (en) Catalyst for producing methane-containing gas
JPH0440063B2 (en)
JPS6261641A (en) Preparation of monolithic methanol steam-reforming catalyst
KR100406363B1 (en) A method for preparation of nickel-alumina catalyst, a nickel-alumina catalyst prepared thereby and a method for refor ming carbon dioxide with methan by using the same
DK202370256A1 (en) Method for preparing a catalytic converter by displacement of water gas at high temperature and method for reducing carbon monoxide content
JPS61138535A (en) Catalyst for producing gas containing methane
JPS62180752A (en) Catalyst for producing methane-containing gas
JPS60220144A (en) Catalyst for preparing methane-containing gas
DK202170489A1 (en) Methods for preparing high temperature water gas shifting catalyst, catalyst and process for reducing carbon monoxide