JPS6261641A - Preparation of monolithic methanol steam-reforming catalyst - Google Patents

Preparation of monolithic methanol steam-reforming catalyst

Info

Publication number
JPS6261641A
JPS6261641A JP19934985A JP19934985A JPS6261641A JP S6261641 A JPS6261641 A JP S6261641A JP 19934985 A JP19934985 A JP 19934985A JP 19934985 A JP19934985 A JP 19934985A JP S6261641 A JPS6261641 A JP S6261641A
Authority
JP
Japan
Prior art keywords
catalyst
base material
ions
aqueous solution
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19934985A
Other languages
Japanese (ja)
Inventor
Masahito Shimomura
下村 雅人
Shigeru Nojima
繁 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19934985A priority Critical patent/JPS6261641A/en
Publication of JPS6261641A publication Critical patent/JPS6261641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance the durability of a catalyst, by a method wherein a base material is immersed in an acidic aqueous solution containing a copper ion, a zinc ion, an aluminum ion and a zirconium ion and alkali is added to said solution to convert said ions to hydroxides before drying and baking the impregnated base material. CONSTITUTION:A base material such as cordierite, mullite or alumina is immersed in an aqueous solution containing Cu<++>, Zn<++>, Al<3+> and Zr<4+> as catalytically effective components and subsequently immersed in a weak alkaline aqueous solution to convert the metal ions to Cu(OH)2, Zr(OH)2, Al(OH)3 and Zr(OH)4 while the impregnated base material is dried and calcined to obtain a catalyst. Further, even if said catalytically effective components are supported, for example, by graphite to be formed into a catalyst, almost no change is confirmed in catalytic capacity.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はメタノール水蒸気改質反応に用いるモノリス(
monolith )  型触媒の製造法に関するもの
でおる。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a monolith (
This article relates to a method for producing a monolith type catalyst.

水素ガスはアンモニア合成やメタノール合成用原料等の
水素工業、水素化脱硫、水素化分解等の石油精製工業、
ナイロン原料であるシクロヘキサン製造等の有機化学工
業、さらに冶金工業、半導体工業用等糧々の分野で利用
されている。最近では燃料電池発電用燃料等の新しいエ
ネルギー源として水素需要は益々増大している。
Hydrogen gas is used in the hydrogen industry as raw material for ammonia synthesis and methanol synthesis, in the oil refining industry such as hydrodesulfurization and hydrocracking,
It is used in a variety of fields including the organic chemical industry, such as the production of cyclohexane, which is a raw material for nylon, as well as the metallurgical industry and the semiconductor industry. Recently, the demand for hydrogen as a new energy source such as fuel for fuel cell power generation has been increasing.

従来から広く行われている水素製造法として、液化石油
ガス(IIPG)、液化天然ガス(LNG)およびナフ
サからの水蒸気改質法が採用されているが、 (i)  石油系原料の高騰および供給不安定(ii)
  反応温度が高温(800℃〜1000℃ンであるた
め中小規模の水素ガス製造には不適当 等の問題がある。
Steam reforming from liquefied petroleum gas (IIPG), liquefied natural gas (LNG), and naphtha has been adopted as a conventionally widely used hydrogen production method, but (i) Rising prices and supply of petroleum-based raw materials unstable (ii)
Since the reaction temperature is high (800° C. to 1000° C.), there are problems such as unsuitability for small to medium scale hydrogen gas production.

これに対して、近年、メタノールは石炭、天然ガスなど
から合成ガスを経由して大規模に装造することができ、
さらに、輸送が容易であることから、メタノールと水蒸
気を反応させて水素ガスを製造する方法が注目されてい
る。また、メタノールの水蒸気改質反応はナフサよシは
るかに低温で水素含有量の多いガスに改質されるため、
この改質反応の熱源として廃熱の利用が可能である。さ
らに、水素、二酸化炭素以外の副生成物がほとんど生じ
ないことから、純水素を得るための分離工程が簡単であ
る優位性を有している。
In contrast, in recent years, methanol can be produced on a large scale from coal, natural gas, etc. via synthetic gas.
Furthermore, since it is easy to transport, a method of producing hydrogen gas by reacting methanol and water vapor is attracting attention. In addition, the steam reforming reaction of methanol is reformed into a gas with a high hydrogen content at a much lower temperature than naphtha.
Waste heat can be used as a heat source for this reforming reaction. Furthermore, since almost no by-products other than hydrogen and carbon dioxide are produced, it has the advantage that the separation process for obtaining pure hydrogen is simple.

(発明が解決しようとする問題点〕 上記メタノール水蒸気改質反応は下式の接触反応による
(Problems to be Solved by the Invention) The methanol steam reforming reaction described above is based on the catalytic reaction of the following formula.

上記プロセスにおいては、一般にベレット状に成型した
触媒を充填し九固定床式反応器により、メタノール水蒸
気改質が行われているが、改質ガスが転化反応器の触媒
層を通過する際の圧力損失が大きく、さらに、触媒ペレ
ットの粉化によって経時的に圧力損失が増大するという
問題が生ずる。転化反応器での圧力損失はガス輸送に要
する動力費増大、さらに、触媒の活性、耐久性の低下原
因ともなるため、上記問題点を解決する触媒の開発が望
まれている。
In the above process, methanol steam reforming is generally carried out in a fixed-bed reactor filled with a pellet-shaped catalyst, but the pressure when the reformed gas passes through the catalyst bed of the conversion reactor The problem is that the loss is large, and furthermore, the pressure loss increases over time due to the powdering of the catalyst pellets. Since the pressure loss in the conversion reactor increases the power cost required for gas transportation and also causes a decrease in the activity and durability of the catalyst, it is desired to develop a catalyst that solves the above problems.

本発明は上記問題点を解決し次モノリス型メタノール水
蒸気改質触媒を提供するものである。
The present invention solves the above problems and provides a monolithic methanol steam reforming catalyst.

(問題点を解決するための手段) 本発明は鋼イオン、亜鉛イオン、アルミニウムイオン、
ジルコニウムイオンを含む酸性水溶液に基材を浸漬させ
、アルカリ添加により水酸化銅、水酸化亜鉛、水酸化ア
ルミニウム、水酸化ジルコニウムに変化させた後、乾燥
、焼成により各酸化物にすることを特徴とするモノリス
型水蒸気改質触媒の製造法に関するものである。
(Means for solving the problems) The present invention provides steel ions, zinc ions, aluminum ions,
It is characterized by immersing the base material in an acidic aqueous solution containing zirconium ions, changing it into copper hydroxide, zinc hydroxide, aluminum hydroxide, and zirconium hydroxide by adding alkali, and then converting it into each oxide by drying and firing. The present invention relates to a method for producing a monolithic steam reforming catalyst.

本発明のモノリス型メタノール水蒸気改質触媒とは、単
一体の形態を有し、使用されるべき反応器O断面を満九
すものであシ、例えば1個またはそれ以上のセットとな
ってガス流動チャンネルを与えるハニカム形態を有する
メタノール水蒸気改質触媒に相当する。
The monolithic methanol steam reforming catalyst of the present invention has the form of a single unit and completely covers the O cross section of the reactor to be used. It corresponds to a methanol steam reforming catalyst with a honeycomb morphology providing flow channels.

上記条件を満足する形態の具体的としては例えば第1図
、第2図および第3図に示されるものがある。第1〜5
図において5は基材、15はガス流路である。11g1
〜3図μあくまで本発明の触媒O形態の例示にすぎず、
これに限定されるものでない。
Specific examples of configurations that satisfy the above conditions include those shown in FIGS. 1, 2, and 3, for example. 1st to 5th
In the figure, 5 is a base material, and 15 is a gas flow path. 11g1
~Figure 3 μ is merely an illustration of the O form of the catalyst of the present invention,
It is not limited to this.

本発明の触媒の有効活性成分は鋼、亜鉛、アルミニウム
、ジルコニウムの4成分を共沈法により調製し、各有効
成分含量比は、原子比で銅100に対して亜鉛は10〜
200、好ましくは40〜150、アルミニウムおよび
ジルコニウムは1〜150、好ましくは2〜100であ
る。なお、触媒は0uO1ZnO1At、O,、Zr0
1 O各酸化物の状態で存在している。
The effective active components of the catalyst of the present invention are prepared by co-precipitating four components: steel, zinc, aluminum, and zirconium, and the content ratio of each active component is from 10 to 10% copper to 100% zinc in atomic ratio.
200, preferably 40-150, aluminum and zirconium 1-150, preferably 2-100. In addition, the catalyst is 0uO1ZnO1At, O,, Zr0
1 O exists in the form of each oxide.

上記触媒調製法、触媒種、組成比選定の理由として、共
沈触媒はアルミナ等の担体に活性金属を担持する含浸触
媒に比べ、メタン等の副生成物の生成が起こシにくい。
The reasons for selecting the catalyst preparation method, catalyst type, and composition ratio are that co-precipitated catalysts are less likely to produce by-products such as methane than impregnated catalysts in which active metals are supported on a carrier such as alumina.

また、上記4成分系触媒は、鋼、亜鉛2成分系触媒に比
べ、低温活性に優れ且つジメチルエーテル等の副生成物
の生成も少ない。なお、上記4成分の有効成分含量比は
厳密に限定されるものではないが、アルミニウム、ジル
コニウム添加により適度なメタノール吸着能や酸性点を
有し、上記組成比において活性、選択性が最適なもので
あることを確認している(特願昭60〜72780J。
Furthermore, the four-component catalyst has excellent low-temperature activity and produces less by-products such as dimethyl ether than the two-component steel and zinc catalysts. Note that the active ingredient content ratio of the above four components is not strictly limited, but one that has appropriate methanol adsorption capacity and acidic points due to the addition of aluminum and zirconium, and has optimal activity and selectivity at the above composition ratio. It has been confirmed that (Patent application No. 60-72780J).

触媒の調製法の注意事項は次のとおりである。Notes on the catalyst preparation method are as follows.

触媒成分金属(鋼、亜鉛、アルミニウム、ジルコニウム
〕の水溶性塩を混合物として、アルカリ金属の炭酸塩ま
たは炭酸水素塩あるいにアンモニア水と混合することに
よって共沈殿が好ましく行われる。このとき、触媒毒の
導入を避けるために、これらの塩(鋼、亜鉛、アルミニ
ウム、ジルコニウム)Fiハロゲン化物ま之は硫黄含有
塩でない方が好ましい。
Co-precipitation is preferably carried out by mixing a water-soluble salt of the catalyst component metal (steel, zinc, aluminum, zirconium) with an alkali metal carbonate or hydrogen carbonate or aqueous ammonia. To avoid the introduction of poisons, these salts (steel, zinc, aluminum, zirconium) Fi halides are preferably not sulfur-containing salts.

共沈殿の温度は好ましくは、50℃〜100℃でおり、
pHの範囲は、5〜9が好ましい。
The temperature of coprecipitation is preferably 50°C to 100°C,
The pH range is preferably 5-9.

沈殿物は触媒からアルカリ金属イオンおよび陰イオンを
排除する丸めによく洗浄することが重要である。
It is important that the precipitate is thoroughly washed to remove alkali metal ions and anions from the catalyst.

以下に具体的な有効触媒活性成分の調製法を記す。A specific method for preparing an effective catalytic active component is described below.

蒸留水にNaAt01  を加えて溶かす。次に濃硝酸
を滴下すると、At(OH)mを沈殿するが攪拌により
再び溶解する。さらに、Cu(Hog)1・5H10、
Zn(NOs)m・6Hmo、Zr0(NO3)1・2
H10を所定組成比になるように添加する。この溶液を
85℃に加熱し、Na1CO11モル溶液を徐々に添加
し共沈殿物を得る。このようにして得られるスラリーを
85℃でpH==7.0一定になるまで攪拌する。この
スラリーを硝酸イオンが検知できなくなるまで洗浄濾過
し、−晩110℃で乾燥し、その後300℃で3時間取
焼する。
Add NaAt01 to distilled water and dissolve. Next, when concentrated nitric acid is added dropwise, At(OH)m precipitates, but is dissolved again by stirring. Furthermore, Cu(Hog)1・5H10,
Zn(NOs)m・6Hmo, Zr0(NO3)1・2
H10 is added to a predetermined composition ratio. This solution is heated to 85° C., and a 11 molar solution of Na1CO is gradually added to obtain a coprecipitate. The slurry thus obtained is stirred at 85° C. until the pH is constant at 7.0. The slurry is washed and filtered until nitrate ions are no longer detectable, dried at 110° C. overnight, and then quenched at 300° C. for 3 hours.

ま念、これらの触媒の有効成分を、コージェライト、ム
ライト、アルミナなどの基材を○um+、znl+、)
、1m+、Zr’十 を含む水溶液に浸漬し、次いで、
弱アルカリ水溶液に浸漬することにより基材中の金属イ
オンを、それぞれau(OH)x、Zr(OH)1. 
At(OHJs、 Zr(OH)4としたのち乾燥、爆
焼により使用することができる。
Please note that the active ingredients of these catalysts are based on cordierite, mullite, alumina, etc. ○um+, znl+,)
, 1m+, immersed in an aqueous solution containing Zr'10, and then
By immersing it in a weak alkaline aqueous solution, the metal ions in the base material are converted to au(OH)x, Zr(OH)1.
At(OHJs) can be used by converting it into Zr(OH)4, followed by drying and explosion.

さらに、これらの触媒の有効成分に、たとえばグラファ
イトなどの滑剤を加えてペレット、ハニカム等に成型し
ても触媒性能においてほとんど変化しないことが確認さ
れている。
Furthermore, it has been confirmed that even if a lubricant such as graphite is added to the active ingredients of these catalysts and the catalyst is formed into pellets, honeycombs, etc., there is almost no change in catalyst performance.

更に、基材に、その強度を高め、かつ適度な酸性度を保
有させることによって金属担持量を増大させる九めに、
Y型ゼオライトを含有させることもできる。Y型ゼオラ
イトを含有させる時には基材100重量部に対しY型ゼ
オライト30〜1重量部、好ましくは20〜5重量部が
よい。
Furthermore, the amount of metal supported can be increased by increasing the strength of the base material and having appropriate acidity.
Y-type zeolite can also be included. When Y-type zeolite is contained, it is preferably 30 to 1 part by weight, preferably 20 to 5 parts by weight, per 100 parts by weight of the base material.

つぎ九本発明の実施例によって、さらに説明する。The present invention will now be further explained with reference to nine embodiments.

実施例1 ペレット状触媒および本発明の方法で製造した触媒につ
き、活性ならびに触媒層における圧力損失特性の比較を
行つ喪。
Example 1 Comparison of activity and pressure drop characteristics in the catalyst layer for a pelletized catalyst and a catalyst produced by the method of the present invention.

ペレット状触媒については、OuO−ZnO−ムl@O
@ −Zr01にグラファイトを添加し打錠成型機によ
り9.5■φXILOmに成型した。成型し九触謀を円
筒製触媒層(断面積1&4m”、長さ16m)に充填し
、この触媒層2段を装填し九反応器を用いて第11!!
に示す条件下でメタノール水蒸気改質反応を行った。
For pelleted catalysts, OuO-ZnO-mul@O
Graphite was added to @-Zr01 and molded into 9.5 φXILOm using a tablet molding machine. The molded nine reactors were packed into a cylindrical catalyst bed (cross-sectional area of 1&4 m, length 16 m), and two stages of this catalyst bed were loaded and a nine reactor was used to prepare the 11th reactor.
A methanol steam reforming reaction was carried out under the conditions shown below.

一方、本発明の方法による触媒製造は次のよ?IC行つ
九。断面1m舅らなシ30000個のガス流動チャンネ
ルを有する断面400mX400■、長さ900■のコ
ージェライト製ハニカム基材を水200kli!に0u
(NOs)寓−3H寓0、Zn(NOl)1 ・ 6H
10、NaAt01.    Zr0(NOs)1 ・
 2H10を各々約160に9、約180に9、約14
に9、約28ゆ溶解させた水溶液中シて30分浸漬し、
次いで3 M (D Na1CO1水溶液中に2時間浸
漬したのち、110℃で12時間乾燥し、500℃で3
時間焼成した。ζO触媒8個を直列に装填した反応器を
用いて、第1表に示す条件下でメタノール水蒸気改質反
応を行った。
On the other hand, how to produce a catalyst using the method of the present invention? Go to IC9. A cordierite honeycomb base material with a cross section of 400 m x 400 cm and a length of 900 cm, which has a cross section of 1 m and 30,000 gas flow channels, is heated to 200 kli of water! ni0u
(NOs) 3H 0, Zn(NOl) 1/6H
10, NaAt01. Zr0(NOs)1 ・
2H10 respectively about 9 to 160, 9 to about 180, and about 14
9. Soak in an aqueous solution containing about 28 ml of water for 30 minutes,
Then, it was immersed in a 3M (D Na1CO1 aqueous solution for 2 hours, dried at 110°C for 12 hours, and dried at 500°C for 3 hours.
Baked for an hour. A methanol steam reforming reaction was carried out under the conditions shown in Table 1 using a reactor loaded with eight ζO catalysts in series.

なお、触媒の有効成分組成比はペレット状触媒、本発明
触媒共に原子比でCu : Zn :ムシ:Zr  =
 100 : 70 : 10 : 10である。また
、活性評価は0HSOH/馬0=1.5(モル比)の混
合溶液を用い、予熱部で気化させ触媒層へ通送した。
The active component composition ratio of the catalyst is Cu:Zn:Musi:Zr=Cu:Zn:Musi:Zr=
The ratio is 100:70:10:10. In addition, for the activity evaluation, a mixed solution of 0HSOH/H0 = 1.5 (molar ratio) was used, which was vaporized in a preheating section and sent to the catalyst layer.

第1表  反応条件 ペレット状触媒を用いた場合ならびに本発明方法で製造
し九触媒を用いた場合について、触媒充填時および触媒
装填後11%000時間を経過し九時点における触媒層
での圧力損失、メタノール反厄率、生成物組成1に第2
六に示す。
Table 1 Reaction Conditions Pressure loss in the catalyst bed at the time of catalyst loading and at time 9 after 11%,000 hours had elapsed after catalyst loading for the case where a pelletized catalyst was used and the case where a nine-catalyst manufactured by the method of the present invention was used. , methanol reaction rate, product composition 1 and 2nd
Shown in 6.

第2表 メタノール水蒸気改質反応の分析結果ペレット
状触媒と同様に本発明の方法で製造された触媒に関して
も長期間にわたって初期活性が維持され、ペレット状触
媒を上回るメタノール転化率が達成されていることは第
2表に示した結果から明らかである。
Table 2 Analysis results of methanol steam reforming reaction Similar to the pellet catalyst, the catalyst produced by the method of the present invention maintains its initial activity for a long period of time, achieving a methanol conversion rate higher than that of the pellet catalyst. This is clear from the results shown in Table 2.

さらに、ペレット状触媒を用いた場合には触媒装填後、
18000時間を経過した時点で触媒層での圧力損失が
510−H!Oと触媒装填時の約5倍に増大しているの
に対し、本発明の方法で製造した触媒を用いた場合には
触媒装填時の圧力損失がペレット状触媒を用い九場合よ
りも小さく、触媒装填後18000時間を経過した時点
においても圧力損失■増大が認められないO 実施例2 実施例1と同一の基材についてcu(F+o3)、・5
110  、   Zn(NOI)1 ・4H10、N
aAt01 、  ZrO(Now)r2馬0  の溶
解量を実施例IKおける場合の1/3とし、含浸、焼成
を1回、3回、10回行つ九のちそれぞれ焼成し、基材
100重量に対する0uO1ZnO、Al40g 、 
 Zr01の総重量部がそれぞれa2.1&4.2&8
の触媒ム、B、Oを得た。これらの触媒を用いて実施例
1に示す条件下でメタノール水蒸気改質反応を行った結
果、触媒装填時のメタノール転化率が、触媒Aでは81
2僑、触媒Bでは9五3s1触媒○では9歳0%であシ
、基材100重量部に対して、0uO1ZnO、ム40
s s  Z rO*の総重量が20重量部以上にして
も触媒活性に顕著な変化は認められず、高活性のtまで
あることを確認した。
Furthermore, when using a pellet catalyst, after loading the catalyst,
After 18,000 hours, the pressure loss in the catalyst layer was 510-H! The pressure drop when loading the catalyst using the method of the present invention is smaller than when using a pelletized catalyst. No increase in pressure loss was observed even after 18,000 hours had passed after loading the catalyst. Example 2 For the same base material as Example 1, cu(F+o3), 5
110, Zn(NOI)1 4H10, N
The dissolved amount of aAt01, ZrO(Now)r2ma0 was set to 1/3 of that in Example IK, and impregnation and firing were performed once, 3 times, and 10 times, and then fired, respectively, to give 0uO1ZnO based on 100 weight of the base material. , Al40g,
The total weight part of Zr01 is a2.1 & 4.2 & 8 respectively
Catalysts B and O were obtained. As a result of carrying out a methanol steam reforming reaction using these catalysts under the conditions shown in Example 1, the methanol conversion rate at the time of catalyst loading was 81 for catalyst A.
2. Catalyst B was 953s1 Catalyst ○ was 9 years old 0%, based on 100 parts by weight of the base material, 0uO1ZnO, Mu40
Even when the total weight of s s Z rO* was increased to 20 parts by weight or more, no significant change was observed in the catalyst activity, and it was confirmed that the catalyst activity remained high up to t.

実施例3 ハニカム基材をα−アルミナに代えて実施例1と同様の
調製方法調製条件により0uO1ZnO、ム140s%
 Zr01を基材に担持させ触媒りを得た。
Example 3 Using the same preparation method and conditions as in Example 1 except that the honeycomb base material was replaced with α-alumina, 0uO1ZnO, 140s% of aluminum was prepared.
A catalyst was obtained by supporting Zr01 on a base material.

なお、共沈法により調製し九活性体であるム40sは1
塁であり、ハニカム基材であるallタイプとは異なる
In addition, Mu40s, which is nine active forms prepared by the coprecipitation method, has 1
This is different from the all type, which is a honeycomb base material.

この触媒を第1表に示す反応条件にて、メタノール水蒸
気改質反応を行った結果、触媒装填時のメタノール転化
率は9&8囁であり、13000時間経過後も9五3僑
と実施例1で記したコージェライトOノ・ニカム基材と
同様の性能を示した。
As a result of carrying out a methanol steam reforming reaction using this catalyst under the reaction conditions shown in Table 1, the methanol conversion rate at the time of loading the catalyst was 9 & 8 whispers, and even after 13,000 hours, it was 953 and Example 1. It showed the same performance as the cordierite O-Nicum base material described above.

実施例4 また、ハニカム基材であるコージェライトKYM&ゼオ
ライトをコージェライトに対して重量比で10 vt%
添加させ、湿式混合させ死後、ノ・ 。
Example 4 In addition, cordierite KYM & zeolite, which is a honeycomb base material, was added at a weight ratio of 10 vt% to cordierite.
Added, wet mixed, and after death.

二カムを成型した。Y型ゼオライト含有の本基材を実施
例1と同様の調製方法、調製条件により、CuO1Zn
O、ムt303、ZrO2を基材に担持させ触媒Eを得
た。尚、YWゼオライト添加の目的として基材の醗性度
向上により活性金属が容易に共沈され共沈収率の増加に
よるメタノール転化率活性の向上を狙ったものである。
Two cams were molded. This base material containing Y-type zeolite was prepared using the same preparation method and conditions as in Example 1 to prepare CuO1Zn.
Catalyst E was obtained by supporting O, Mut303, and ZrO2 on a base material. The purpose of adding YW zeolite is to improve the methanol conversion activity by increasing the co-precipitation yield by easily co-precipitating active metals by improving the degree of melting of the base material.

この触媒を講1表に示す反応条件にて、メタノール水蒸
気改質反応を行つ九結果、触媒充填時のメタノール転化
率は95.391であり、18000時間経過後もq 
4.8 wt%と実施例1で記したコージェライトのみ
のハニカム基材を上回る性能を示した。
As a result of carrying out a methanol steam reforming reaction using this catalyst under the reaction conditions shown in Table 1, the methanol conversion rate at the time of catalyst loading was 95.391, and even after 18,000 hours, q
4.8 wt%, which showed performance superior to that of the honeycomb base material made of only cordierite described in Example 1.

以上詳述し九とおり、本発明の方法で製造した触媒はメ
タノール水蒸気改質反応において従来のペレット状触媒
を使用し九場合に生じた触媒層での圧力損失が経時的に
増大するという問題を解決するものであり、触媒の耐久
性向上、ガス輸送に要する動力費の低減に有効である。
As detailed above, the catalyst produced by the method of the present invention solves the problem of pressure loss increasing over time in the catalyst layer that occurs when conventional pellet catalysts are used in methanol steam reforming reactions. It is effective in improving the durability of the catalyst and reducing the power cost required for gas transportation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第5図は本発明によるモノリスを触媒
の形状を説明する図である。 復代理人  内 1)  明 復代理人  葦 原 亮 − 復代理人  安 西 篤 夫
FIG. 1, FIG. 2, and FIG. 5 are diagrams explaining the shape of a monolith catalyst according to the present invention. Sub-Agents 1) Meifuku Agent Ryo Ashihara − Sub-Agent Atsuo Anzai

Claims (1)

【特許請求の範囲】[Claims] 銅イオン、亜鉛イオン、アルミニウムイオン、ジルコニ
ウムイオンを含む酸性水溶液に基材を浸漬させ、アルカ
リ添加により水酸化銅、水酸化亜鉛、水酸化アルミニウ
ム、水酸化ジルコニウムに変化した後、乾燥、焼成によ
り各酸化物にすることを特徴とするモノリス型メタノー
ル水蒸気改質触媒の製造方法。
The base material is immersed in an acidic aqueous solution containing copper ions, zinc ions, aluminum ions, and zirconium ions, and by adding alkali, it changes into copper hydroxide, zinc hydroxide, aluminum hydroxide, and zirconium hydroxide, and then is dried and fired to form each. A method for producing a monolithic methanol steam reforming catalyst characterized by converting it into an oxide.
JP19934985A 1985-09-11 1985-09-11 Preparation of monolithic methanol steam-reforming catalyst Pending JPS6261641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19934985A JPS6261641A (en) 1985-09-11 1985-09-11 Preparation of monolithic methanol steam-reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19934985A JPS6261641A (en) 1985-09-11 1985-09-11 Preparation of monolithic methanol steam-reforming catalyst

Publications (1)

Publication Number Publication Date
JPS6261641A true JPS6261641A (en) 1987-03-18

Family

ID=16406283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19934985A Pending JPS6261641A (en) 1985-09-11 1985-09-11 Preparation of monolithic methanol steam-reforming catalyst

Country Status (1)

Country Link
JP (1) JPS6261641A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314768A (en) * 2000-05-10 2001-11-13 Ishikawajima Harima Heavy Ind Co Ltd Method for manufacturing methanol reforming catalyst
JP2002126538A (en) * 2000-10-30 2002-05-08 Mitsubishi Heavy Ind Ltd Honeycomb type methanol reforming catalyst
JP2012161787A (en) * 2011-01-17 2012-08-30 National Institute Of Advanced Industrial Science & Technology Method for producing fine particle aggregate, steam-reforming catalyst, method for producing steam-reforming catalyst, and method for producing hydrogen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314768A (en) * 2000-05-10 2001-11-13 Ishikawajima Harima Heavy Ind Co Ltd Method for manufacturing methanol reforming catalyst
JP4586235B2 (en) * 2000-05-10 2010-11-24 株式会社Ihi Method for producing methanol reforming catalyst
JP2002126538A (en) * 2000-10-30 2002-05-08 Mitsubishi Heavy Ind Ltd Honeycomb type methanol reforming catalyst
JP4690535B2 (en) * 2000-10-30 2011-06-01 三菱重工業株式会社 Honeycomb type methanol reforming catalyst
JP2012161787A (en) * 2011-01-17 2012-08-30 National Institute Of Advanced Industrial Science & Technology Method for producing fine particle aggregate, steam-reforming catalyst, method for producing steam-reforming catalyst, and method for producing hydrogen

Similar Documents

Publication Publication Date Title
JP5285776B2 (en) Catalyst for producing synthesis gas from natural gas and carbon dioxide and method for producing the same
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
US3119667A (en) Process for hydrogen production
EP2300359B1 (en) Process for operating hts reactor
US4451578A (en) Iron oxide catalyst for steam reforming
FI72273C (en) Autothermal reforming catalyst and reforming process.
WO2008134484A2 (en) Catalyst and method for converting natural gas to higher carbon compounds
EP2318131B1 (en) Catalyst for direct production of light olefins and preparation method thereof
CA2629078C (en) Process conditions for pt-re bimetallic water gas shift catalysts
US3945944A (en) Catalyst for the production of hydrogen and/or methane
US4215998A (en) Catalyst and process for production of methane-containing gases
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
KR100277048B1 (en) Hydrogen Production Method and Catalysts Used Thereon
JP2023514029A (en) Catalyst for CO2 methanation reaction with high activity and long-term stability, and method thereof
KR102186058B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
KR101245484B1 (en) Water gas shift catalysts and method for producing syngas by Water gas shift reaction using the same
JPS6261641A (en) Preparation of monolithic methanol steam-reforming catalyst
KR20080060739A (en) Metallic structured catalyst and its manufacturing method and manufacturing method for liquid fuel production in fischer-tropsch synthesis using thereof
JP4013689B2 (en) Hydrocarbon reforming catalyst, hydrocarbon cracking apparatus, and fuel cell reformer
JP3276679B2 (en) Steam reforming catalyst and hydrogen production method
JPH08176034A (en) Synthesis of methanol
JPS6261643A (en) Preparation of monolithic methanol steam-reforming catalyst
JP4776403B2 (en) Hydrocarbon reforming catalyst
JPH0371174B2 (en)
JPS60220143A (en) Catalyst for preparing methane-containing gas