JPS63278549A - In-liquid electric discharge device - Google Patents

In-liquid electric discharge device

Info

Publication number
JPS63278549A
JPS63278549A JP11401887A JP11401887A JPS63278549A JP S63278549 A JPS63278549 A JP S63278549A JP 11401887 A JP11401887 A JP 11401887A JP 11401887 A JP11401887 A JP 11401887A JP S63278549 A JPS63278549 A JP S63278549A
Authority
JP
Japan
Prior art keywords
discharge
generated
liq
electrode
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11401887A
Other languages
Japanese (ja)
Inventor
Yoichi Matsumoto
陽一 松本
Koichi Minamiyama
南山 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Seiryo Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Seiryo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Seiryo Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11401887A priority Critical patent/JPS63278549A/en
Publication of JPS63278549A publication Critical patent/JPS63278549A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges

Abstract

PURPOSE:To efficiently form a high electric field zone over a wide region with low energy by completely covering the discharge electrode to be impressed with a high-voltage pulse with an insulating material ('Teflon(R)', silicon, etc.) pierced with several to several hundreds micropores. CONSTITUTION:When a high-voltage pulse is impressed on plural discharge electrodes 14 provide in a cell 11 from a pulse power source 15, an electric discharge is generated from the micropores 17 piercing the insulating material 16 surrounding the discharge electrode 14. Consequently, ionization is caused in the vicinity of the micropore, and a streamer 18 is produced. By this method, an in-liq. electric discharge is generated with low energy and without being affected by the conductivity of a soln. In addition, contact probability with the soln. is enhanced, and the chemical reaction of a liq., sterilization, cytolysis, etc., can be efficiently carried out since the discharge can be generated over the wide region in the liq.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高電圧パルスの印加により液中放電を行なわせ
、化学反応あるいは殺菌、細胞破壊等を行なわせる装置
に好適な液中数N装置に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is an in-liquid number N device which is suitable for a device which performs a chemical reaction, sterilization, cell destruction, etc. by applying a high voltage pulse to cause an in-liquid discharge. Regarding.

〔従来の技術〕[Conventional technology]

従来、気体中で放電を行なわせる装置は広く知られてい
る。しかし溶液、特にs1!性の高い水その他の溶液中
で放電を行なわせる装置は実現困難とされてきた。その
理由は、高電圧を印加しようとしでも上記溶液中では、
低電圧で大電流が流れてしまう上、電気分解が起り、ガ
スを発生する場合もあるため不可能であると考えられた
ためである。しかし最近、間欠的に、例えばパルス状に
荷電を行なうことにより、上記溶液中でも高電圧の印加
が可能であることが判明した。このような溶液に対する
高電圧パルスの印加による液中放電技術は、化学分野お
よびバイオ分野において今までになかった新しい展開が
期待されるため、その開発が強く望まれている。かかる
液中放電に関する従来の技術として強いてあげれば第2
図に示すような装置がある。この装置はセル1内の溶液
2中に平板電極3と針電極4とを対向して設け、両極間
にパルス電源5から高電圧パルスを印加するものである
BACKGROUND ART Conventionally, devices for causing discharge in gas are widely known. But the solution, especially s1! It has been considered difficult to realize a device that allows discharge to occur in water or other solutions with high susceptibility. The reason is that even if you try to apply a high voltage, in the above solution,
This was thought to be impossible because a large current would flow at a low voltage and electrolysis could occur, producing gas. However, it has recently been found that it is possible to apply a high voltage even in the above solution by performing charging intermittently, for example in a pulsed manner. The development of submerged discharge technology based on the application of high voltage pulses to such solutions is strongly desired, as it is expected to bring unprecedented new developments in the chemical and biological fields. As a conventional technique regarding such submerged discharge, the second
There is a device as shown in the figure. In this device, a flat plate electrode 3 and a needle electrode 4 are provided facing each other in a solution 2 in a cell 1, and a high voltage pulse is applied between the two electrodes from a pulse power source 5.

この装置においては、針電極4の先端に高密度 ′の電
界が形成され、その部分の溶液が電離し、電圧の程度に
応じてストリーマおよびスパークが発生する。
In this device, a high-density electric field is formed at the tip of the needle electrode 4, the solution in that area is ionized, and streamers and sparks are generated depending on the voltage level.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来例の装置では平板電極3と針電tj4
とを対向配置するものであるため、高密度の電界の影響
を受ける範囲が針電極4の先端近傍に限られる。このた
め、化学反応あるいは微生物のマヒ、殺菌等を効率的に
進める上で不都合が多い。この点を解消すべく、単に針
電極4の数を増したり、平板電極3の面積を増加させて
も、下式のSが増加することから電極間の液抵抗Rが小
さくなり、高電界(高電圧)印加が不可能となる。
However, in the conventional device described above, the flat electrode 3 and the needle electrode tj4
Since the needle electrodes 4 and 4 are arranged facing each other, the range affected by the high-density electric field is limited to the vicinity of the tip of the needle electrode 4. For this reason, there are many inconveniences in efficiently proceeding with chemical reactions, paralysis of microorganisms, sterilization, etc. To solve this problem, even if we simply increase the number of needle electrodes 4 or the area of flat plate electrodes 3, S in the equation below increases, so the liquid resistance R between the electrodes decreases, and a high electric field ( High voltage) cannot be applied.

R−ρ(L/S) ここで、Rは電極間の液の抵抗[Ω1、ρは液の比抵抗
[Ω・α]、Lは電極間距離[m] 、SはN8!の流
れる部分の断面積[cd]である。したがって高密度の
電界域をいかに広げるか、また、低エネルギーでいかに
効率よくストリーマ、スパークを発生させる高電界域を
作るかが問題であった。
R-ρ(L/S) Here, R is the resistance of the liquid between the electrodes [Ω1, ρ is the specific resistance of the liquid [Ω・α], L is the distance between the electrodes [m], and S is N8! is the cross-sectional area [cd] of the flowing part. Therefore, the problem was how to widen the high-density electric field region and how to create a high electric field region that efficiently generates streamers and sparks with low energy.

そこで本発明は、低エネルギーで効率よく、広いli域
に亙り高電界域を作ることのできる液中放電装置を提供
することを目的とする。
Therefore, an object of the present invention is to provide a submerged discharge device that can efficiently create a high electric field region over a wide Li region with low energy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決し目的を達成するために、次
のような手段を講じた。すなわち、高電圧パルスが印加
される放電電極を、数個から数百個の微小穴をあけた絶
縁物(テフロン、シリコン等)で完全に被覆した。
In order to solve the above-mentioned problems and achieve the object, the present invention takes the following measures. That is, the discharge electrode to which a high voltage pulse is applied was completely covered with an insulator (Teflon, silicon, etc.) with several to several hundred microscopic holes.

〔作用〕[Effect]

このような手段を講じたことにより、電極面積が微小穴
の部分のみに絞られ、電界がこのごく小さな穴に集中す
る。このため液が広範囲に亙って電離しストリーマが効
率よく発生することになる。
By taking such measures, the electrode area is narrowed down to only the microscopic hole, and the electric field is concentrated in this very small hole. Therefore, the liquid is ionized over a wide range, and streamers are efficiently generated.

〔実施例〕〔Example〕

第1図は本発明の一実施例の構成を示す図である。図中
11はセル、12は溶液、13は対向電極、14は放電
電極、15はパルス電源、16は絶縁物、17は微小穴
(ピンホール)、18は発生したストリーマである。図
示の如く、高電圧パルスが印加される放電電極14を、
数個から数百個の微小穴17をあけた絶縁物16(テフ
ロン。
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention. In the figure, 11 is a cell, 12 is a solution, 13 is a counter electrode, 14 is a discharge electrode, 15 is a pulse power source, 16 is an insulator, 17 is a microhole (pinhole), and 18 is a generated streamer. As shown in the figure, the discharge electrode 14 to which a high voltage pulse is applied is
An insulator 16 (Teflon) with several to several hundred microscopic holes 17 drilled therein.

シリコン等)で完全に被覆したものとなっている。It is completely coated with silicone, etc.).

このように構成された本装置においては、パルス電源1
5からセル11内に配設された複数の放電電極14へ高
電圧パルスを印加すると、放電電極14の周囲を取巻い
ている絶縁物16にあけられた微小穴17から放電が行
なわれる。このため、その近傍においては電離が起こり
、ストリーマ18が発生する。
In this device configured in this way, a pulse power source 1
When a high voltage pulse is applied from 5 to a plurality of discharge electrodes 14 disposed within the cell 11, discharge occurs from microholes 17 formed in an insulator 16 surrounding the discharge electrodes 14. Therefore, ionization occurs in the vicinity, and streamers 18 are generated.

かくして本装置によれば、溶液の導電度に影響されずに
小さなエネルギーで液中放電が可能となる。また溶液と
の接触確率が^まり、液中の広い領域で放電を発生させ
得るため、液の化学反応や殺菌、am破壊等を能率よく
行なえるものとなる。
Thus, according to the present device, it is possible to perform submerged discharge with small energy without being affected by the conductivity of the solution. In addition, the probability of contact with the solution is reduced, and discharge can be generated in a wide area within the solution, so that chemical reactions, sterilization, AM destruction, etc. of the solution can be carried out efficiently.

なお、本発明は前記実施例に限定されるものではなく、
本発明の要旨を逸脱しない範囲で種々の変形実施可能で
あるのは勿論である。
Note that the present invention is not limited to the above embodiments,
Of course, various modifications can be made without departing from the spirit of the invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高電圧パルスが印加される放電電極を
、数個から数百個の微小穴をあけた絶縁物(テフロン、
シリコン等)で完全に被覆したため、 (1)液の導電度に関係なく小さなエネルギーで液中放
電の発生が可能となる。
According to the present invention, the discharge electrode to which a high voltage pulse is applied is made of an insulator (Teflon,
(1) In-liquid discharge can be generated with small energy regardless of the conductivity of the liquid.

(2)液中放電の数が多くなるため、液との接触確率が
増し、液中の広い範囲に屋り液中放電域を形成できるた
め、化学反応あるいは殺菌、lB胞破壊等を促進できる
(2) Since the number of submerged discharges increases, the probability of contact with the liquid increases, and a submerged discharge area can be formed over a wide range in the liquid, which can promote chemical reactions, sterilization, and LB cell destruction. .

といった効果を奏する液中放ffi装置を提供すること
ができる。
It is possible to provide an in-liquid emitting ffi device that achieves the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す図、第2図は従
来の技術を示す図である。 11・・・セル、12・・・溶液、13・・・対向電極
、14・・・放電電橋、15・・・パルスll源、16
・・・絶縁物、17・・・微小穴(ピンホール)、18
・・・発生したストリーマ。 出願人代理人 弁理士 鈴江武彦 1z 第1図 第2図
FIG. 1 is a diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional technique. DESCRIPTION OF SYMBOLS 11... Cell, 12... Solution, 13... Counter electrode, 14... Discharge bridge, 15... Pulse II source, 16
... Insulator, 17 ... Microhole (pinhole), 18
...The streamer that occurred. Applicant's agent Patent attorney Takehiko Suzue 1z Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 溶液を入れるセルと、このセルに入っている溶液中に配
設され微小穴を有する絶縁物で被覆された放電電極と、
この放電電極に対向配置された対向電極と、前記放電電
極と対向電極との間にパルス電圧を印加するパルス電源
とを具備したことを特徴とする液中放電装置。
a cell containing a solution; a discharge electrode disposed in the solution contained in the cell and covered with an insulator having microholes;
A submerged discharge device comprising: a counter electrode disposed to face the discharge electrode; and a pulse power source that applies a pulse voltage between the discharge electrode and the counter electrode.
JP11401887A 1987-05-11 1987-05-11 In-liquid electric discharge device Pending JPS63278549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11401887A JPS63278549A (en) 1987-05-11 1987-05-11 In-liquid electric discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11401887A JPS63278549A (en) 1987-05-11 1987-05-11 In-liquid electric discharge device

Publications (1)

Publication Number Publication Date
JPS63278549A true JPS63278549A (en) 1988-11-16

Family

ID=14626988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11401887A Pending JPS63278549A (en) 1987-05-11 1987-05-11 In-liquid electric discharge device

Country Status (1)

Country Link
JP (1) JPS63278549A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001349A (en) * 2000-06-21 2002-01-08 Kobe Steel Ltd High-voltage treating apparatus of liquid
JP2002001350A (en) * 2000-06-21 2002-01-08 Kobe Steel Ltd Liquid treating method and its apparatus
JP2002018446A (en) * 2000-07-07 2002-01-22 Kobe Steel Ltd Method and apparatus for treating liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001349A (en) * 2000-06-21 2002-01-08 Kobe Steel Ltd High-voltage treating apparatus of liquid
JP2002001350A (en) * 2000-06-21 2002-01-08 Kobe Steel Ltd Liquid treating method and its apparatus
JP2002018446A (en) * 2000-07-07 2002-01-22 Kobe Steel Ltd Method and apparatus for treating liquid

Similar Documents

Publication Publication Date Title
AR247765A1 (en) Electrolytic cell for generating sterilization solutions having increased ozone content.
JP5889433B2 (en) Water treatment apparatus and water treatment method
DE60322523D1 (en) IEN TRANSLATING ELECTRIC FIELDS AND ELECTRODE POLARITY INVERT
KR910016623A (en) Submerged ozone generator
KR950034576A (en) Electrolytic water generation method and apparatus therefor
DE69721079D1 (en) METHOD AND DEVICE FOR ION GENERATION
US10283327B2 (en) Apparatus and methods for generating reactive gas with glow discharges
US8926914B2 (en) Liquid medium plasma discharge generating apparatus
GB1496496A (en) Electrochromic displays having self-supporting pigment layers
Stara et al. The study of H 2 O 2 generation by DC diaphragm discharge in liquids
JPS62151174A (en) Cell disintegration apparatus using high-voltage pulse
JPS63278549A (en) In-liquid electric discharge device
JP2010011824A (en) Cell fusion vessel, cell fusion apparatus, and method for cell fusion using the same
JP2002516088A (en) Methods and devices for penetration of biological objects
DK0479840T3 (en) Electrolytic cell for gas generating electrolytic processes
KR930022429A (en) Plasma address electro-optical device
JP2008054630A (en) Cell fusion device and cell fusion method using the same
JPS61219386A (en) Method for agglomerating polarizable fine particle and apparatus therefor
Kumagai et al. Plasma‐on‐Chip: device for non‐thermal atmospheric pressure plasma irradiation to single cells
WO2021091037A1 (en) Water treatment device using underwater plasma discharge
KR20150006604A (en) Apparatus for generating liquid plasma torch
KR900010878A (en) Structure of Plasma Display Device and Driving Method thereof
KR870011709A (en) Method and apparatus for forming amorphous thin film
JP2013180249A (en) Water purification device
JPS6424835A (en) Discharge process and apparatus for modifying surface of solid