JP2010011824A - Cell fusion vessel, cell fusion apparatus, and method for cell fusion using the same - Google Patents

Cell fusion vessel, cell fusion apparatus, and method for cell fusion using the same Download PDF

Info

Publication number
JP2010011824A
JP2010011824A JP2008176764A JP2008176764A JP2010011824A JP 2010011824 A JP2010011824 A JP 2010011824A JP 2008176764 A JP2008176764 A JP 2008176764A JP 2008176764 A JP2008176764 A JP 2008176764A JP 2010011824 A JP2010011824 A JP 2010011824A
Authority
JP
Japan
Prior art keywords
cell
cell fusion
cells
micropores
average diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008176764A
Other languages
Japanese (ja)
Inventor
Tatsu Futami
達 二見
Atsushi Morimoto
篤史 森本
Keitaro Matsumaru
慶太郎 松丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2008176764A priority Critical patent/JP2010011824A/en
Publication of JP2010011824A publication Critical patent/JP2010011824A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new cell fusion vessel capable of more efficiently and surely carrying out cell fusion of two cells in a pair, to provide a cell fusion apparatus, and to provide a method for cell fusion using the same in electric cell fusion. <P>SOLUTION: The cell fusion vessel is provided with a pair of electrodes composed of electroconductive members oppositely disposed in a cell fusion region; and a platy insulator disposed through a platy spacer between the pair of electrodes, and having a plurality of micropores passing through the direction of the oppositely disposed electrodes. In the cell fusion vessel, the insulator is disposed on an electrode surface on the side of either one of cell fusion regions of the electrodes, and each cross section of the micropores is in a shape having the area of an opening surface reducing from the upper part of the opening to the opening bottom contacting the electrode. The cell fusion vessel, the cell fusion apparatus, and the method for cell fusion using the same are used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、細胞融合を効率的に行うための細胞融合容器、細胞融合装置及びそれらを用いた細胞融合方法に関する。   The present invention relates to a cell fusion container, a cell fusion device, and a cell fusion method using them for efficiently performing cell fusion.

従来より、異なる細胞同士を融合させ1つの交雑細胞とする細胞融合技術として、主にポリエチレングリコール(PEG)を用いる化学的融合法が用いられているが、この方法では(i)PEGは細胞に対して強い毒性を持っている、(ii)融合するにあたりPEGの重合度、添加量などの最適な諸条件を見出すのに手間がかかる、(iii)融合に際して高度な技術が要求され、特定の技術に習熟した人にしか使えない、(iv)2細胞の接触は偶発的であり、2細胞一対での細胞融合の制御が困難なため細胞融合確率が極めて低い、等の解決すべき課題があった。   Conventionally, a chemical fusion method mainly using polyethylene glycol (PEG) has been used as a cell fusion technique in which different cells are fused to form one hybrid cell. In this method, (i) PEG is added to cells. (Ii) It takes time and effort to find the optimum conditions such as the degree of polymerization of PEG and the amount added, and (iii) Advanced technology is required for the fusion. Can only be used by those skilled in the art, (iv) contact of two cells is accidental, and it is difficult to control cell fusion with a pair of two cells, so the problem of cell fusion is extremely low. there were.

これに対して、電気的細胞融合法は、高度な技術が不要で、簡単に効率よく融合させることができ、細胞に与える毒性がほとんどなく、高活性をもったままの状態で細胞を融合させることができるという利点がある。電気的細胞融合法は、1981年西ドイツのZimmermannが確立したものであり、その原理は次の通りである。すなわち、平行電極間に交流電圧を印加し、そこに細胞を導入すると、細胞は電流密度の高い方へ引き寄せられ数珠状にならぶ。なお、細胞が数珠状にならんだ状態を一般にパールチェーンと呼ぶ。また、細胞を電流密度の高い方向、すなわち、電気力線が集中する方向に引き寄せる力を一般に誘電泳動と呼ぶ。この状態で数μsec〜数十μsec単位の直流パルス電圧を電極間に印加することにより細胞膜の電気伝導度が瞬間的に低下し、脂質二重層により構成される細胞膜の可逆的乱れとその再構成が行われ、その結果細胞融合が起こるものである。   In contrast, the electric cell fusion method does not require advanced technology, can be easily and efficiently fused, has little toxicity to cells, and fuses cells with high activity. There is an advantage that you can. The electric cell fusion method was established by Zimmermann in West Germany in 1981, and the principle is as follows. That is, when an alternating voltage is applied between parallel electrodes and cells are introduced therein, the cells are attracted toward the higher current density and form a bead shape. A state in which cells are arranged in a bead shape is generally called a pearl chain. Also, the force that draws cells in the direction of high current density, that is, the direction in which the lines of electric force concentrate, is generally called dielectrophoresis. In this state, when a DC pulse voltage of several μsec to several tens μsec is applied between the electrodes, the electric conductivity of the cell membrane is instantaneously reduced, and the reversible disturbance of the cell membrane constituted by the lipid bilayer and its reconstruction As a result, cell fusion occurs.

上記の電気的融合法には、主に微小電極法と平行電極法が用いられている。このうち微小電極法は、2細胞一対の融合を顕微鏡を見ながらマイクロマニュピレーターで細胞を拾い集めては直流パルス電圧を印加する方法であり、極めて確実であり、微小電極法に用いる電極の例も報告されている(例えば、特許文献1参照)が、手間のかかる方法であり、その操作は熟練を要す上、大量の細胞を扱う上では実用的とはいえなかった。また平行電極法は、誘電泳動により複数の細胞を数珠状に配列形成させた後、直流パルス電圧を印加することによって融合させる方法であり、その取り扱いは簡単であるが、数珠状になった複数の細胞が融合するため化学的融合法と同様に2細胞の接触は偶発的であり、2細胞一対での細胞融合の確実な制御が難しいという課題があった。   For the electrical fusion method, a microelectrode method and a parallel electrode method are mainly used. Among these, the microelectrode method is a method of applying a DC pulse voltage by collecting cells with a micromanipulator while looking at a fusion of a pair of two cells while looking through a microscope, and is extremely reliable. Examples of electrodes used in the microelectrode method are also included. Although it is reported (for example, refer to Patent Document 1), it is a time-consuming method, which requires skill and is not practical for handling a large amount of cells. The parallel electrode method is a method in which a plurality of cells are arranged in a bead shape by dielectrophoresis, and then fused by applying a DC pulse voltage. As in the chemical fusion method, the contact of the two cells is accidental, and there is a problem that it is difficult to reliably control the cell fusion in a pair of two cells.

上記平行電極法の課題を解決するために、細胞融合容器の細胞融合領域に対向するように配置された導電部材よりなる一対の電極と、前記一対の電極間に配置され、且つ前記一対の電極方向に貫通した微細孔を有する絶縁体とよりなる細胞融合容器の例が報告されている(例えば、特許文献2参照)。   In order to solve the problem of the parallel electrode method, a pair of electrodes made of a conductive member disposed so as to face a cell fusion region of a cell fusion container, a pair of electrodes disposed between the pair of electrodes, and the pair of electrodes An example of a cell fusion container made of an insulator having fine holes penetrating in the direction has been reported (for example, see Patent Document 2).

図1は上記例の細胞融合容器の断面図を示した概念図である。図1において、例えば樹脂材からなる細胞融合容器の細胞融合領域(1)の両側には、導電部材からなる電極(2)が配置され、これら電極は導電線(3)を介して外部に設けられた電源(4)と接続されている。外部に設けられた電源は電界の強さが約400V/cm〜700V/cm、周波数1MHz程度の高周波交流電圧を出力する交流電源(5)と、約7kV/cm、パルス幅50μsec程度の直流パルス電圧を出力する直流パルス電源(6)と、電極と交流電源又は直流パルス電源の電気的接続を切替える為の切替機構を有する切替スイッチ(7)とから構成されている。   FIG. 1 is a conceptual diagram showing a cross-sectional view of the cell fusion container of the above example. In FIG. 1, for example, electrodes (2) made of conductive members are arranged on both sides of a cell fusion region (1) of a cell fusion container made of a resin material, and these electrodes are provided outside via conductive wires (3). Connected to the power source (4). The power supply provided outside is an AC power supply (5) that outputs a high-frequency AC voltage with an electric field strength of about 400 V / cm to 700 V / cm and a frequency of about 1 MHz, and a DC pulse of about 7 kV / cm and a pulse width of about 50 μsec. A DC pulse power supply (6) for outputting a voltage and a changeover switch (7) having a switching mechanism for switching the electrical connection between the electrode and the AC power supply or the DC pulse power supply.

ここで、交流電源から出力する交流電圧の波形は、特に断りがない限りは一般に正弦波の波形を用いる。細胞融合容器は、電気的に絶縁な材料、例えばシリコーン樹脂からなる隔壁(35)により2つの空間に区分けされている。ここで、絶縁体には最小口径が1μm〜数十μmの微細孔(9)が設けられている。また、細胞A(10)及び細胞B(11)はそれぞれ細胞融合容器の細胞融合領域内の細胞懸濁液内におかれている。   Here, as a waveform of the AC voltage output from the AC power supply, a sine wave waveform is generally used unless otherwise specified. The cell fusion container is divided into two spaces by a partition wall (35) made of an electrically insulating material such as silicone resin. Here, the insulator is provided with a fine hole (9) having a minimum diameter of 1 μm to several tens of μm. The cells A (10) and B (11) are each placed in a cell suspension in the cell fusion region of the cell fusion container.

上記例の動作を図21〜図23を用いて説明する。最初に、電源(4)の切替スイッチ(7)を電界の強さが約400V/cm〜700V/cm、周波数1MHzの高周波電圧を出力する交流電源(5)に接続させる。この状態において電気力線(12)は、図21に示すように微細孔(9)に集中する。細胞A(10)および細胞B(11)は、ここに集中する電気力線(12)のため誘電泳動力を受け、図22に示すように微細孔(9)の中心付近に固定される。ここで細胞A(10)と細胞B(11)は出会い接触する。次に、電源(4)の切替スイッチ(7)を直流パルス電源(6)に切替える。図22に示した状態におかれた細胞A(10)及び細胞B(11)は、直流パルス電圧により細胞A(10)および細胞B(11)の接触点で細胞膜の可逆的破壊が起こり、図23に示すように融合が生ずる。このようにすることで、微細孔において細胞Aと細胞Bを2細胞一対で細胞融合させることができる。   The operation of the above example will be described with reference to FIGS. First, the changeover switch (7) of the power supply (4) is connected to an AC power supply (5) that outputs a high-frequency voltage having an electric field strength of about 400 V / cm to 700 V / cm and a frequency of 1 MHz. In this state, the electric lines of force (12) are concentrated in the fine holes (9) as shown in FIG. The cells A (10) and B (11) receive a dielectrophoretic force due to the electric lines of force (12) concentrated here, and are fixed near the center of the micropore (9) as shown in FIG. Here, cell A (10) and cell B (11) meet and come into contact. Next, the selector switch (7) of the power source (4) is switched to the DC pulse power source (6). The cell A (10) and the cell B (11) placed in the state shown in FIG. 22 undergo reversible destruction of the cell membrane at the contact point of the cell A (10) and the cell B (11) by the DC pulse voltage. Fusion occurs as shown in FIG. By doing in this way, the cell A and the cell B can be cell-fused by a pair of cells in the micropore.

しかしながら、前記特許文献2に記載された細胞融合容器を用いて細胞融合を行う方法は、微細孔の直径が細胞Aの直径より大きくかつ細胞Bの直径より大きい場合、それぞれの細胞が微細孔にトラップされ接触する際に、図3に示すように、電気力線の向きと同一方向に細胞Aと細胞Bが接触する確率が減るため、細胞融合の確率が低くなるという課題があった。また、逆に微細孔の直径が細胞Aの直径より小さくかつ細胞Bの直径より小さい場合、両方の細胞は微細孔にトラップされ接触し融合されるが、融合後、図4に示すように微細孔から細胞が外れなくなり、微細孔から細胞を取り出すことができなくなる上、無理に取り出そうとすると、融合した細胞が壊れてしまうという課題があった。   However, in the method of performing cell fusion using the cell fusion container described in Patent Document 2, when the diameter of the micropore is larger than the diameter of the cell A and larger than the diameter of the cell B, each cell becomes a micropore. When trapped and contacted, as shown in FIG. 3, there is a problem that the probability of cell fusion decreases because the probability that the cell A and the cell B contact in the same direction as the direction of the electric lines of force decreases. On the contrary, when the diameter of the micropore is smaller than the diameter of the cell A and smaller than the diameter of the cell B, both cells are trapped and contacted and fused in the micropore, but after the fusion, as shown in FIG. There was a problem that the cells could not be removed from the pores, and the cells could not be taken out from the micropores, and the fused cells were broken when trying to forcibly remove them.

さらに、前記特許文献2に記載された細胞融合容器を用いて細胞融合を行う方法は、前記微細孔において2細胞一対を同時に固定することが難しいという課題があった。例えば、細胞Aを微細孔に入れた後、さらに細胞Bを微細孔に入れるために細胞融合容器内に細胞Bを含有する細胞懸濁液を導入すると、導入する際の送液により、あらかじめ微細孔に固定しておいた細胞Aが微細孔から脱離してしまう。また、細胞Aと細胞Bを同時に微細孔に固定するには細胞懸濁液の送液に熟練を要し非常に困難であった。さらに、前記特許文献2に記載された方法により複数の細胞を同時に細胞融合させる場合、絶縁体上にアレイ状に形成した複数の微細孔に、2細胞を一対ずつ固定する必要がある。   Furthermore, the method of performing cell fusion using the cell fusion container described in Patent Document 2 has a problem that it is difficult to fix two cell pairs simultaneously in the micropores. For example, when a cell suspension containing cells B is introduced into a cell fusion container in order to further introduce cells B into the micropores after the cells A are put into the micropores, the cells are preliminarily refined by liquid feeding at the time of introduction. The cells A fixed in the pores are detached from the micropores. In addition, it is very difficult to fix the cells A and B to the micropores at the same time because it requires skill in feeding the cell suspension. Furthermore, when a plurality of cells are fused simultaneously by the method described in Patent Document 2, it is necessary to fix two cells one by one in a plurality of micropores formed in an array on an insulator.

ここでアレイ状とは、複数の微細孔の縦と横の間隔がほぼ等間隔に配置されていることを意味する。しかしながら、交流電源を接続して細胞を微細孔に固定する際に、複数の細胞が集中して固定される微細孔や、細胞が全く固定されない微細孔があり、複数のアレイ状に形成された微細孔で目的とする2細胞一対の細胞融合を行うことが非常に難しいという課題があった。   Here, the array shape means that the vertical and horizontal intervals of the plurality of micro holes are arranged at almost equal intervals. However, when an AC power supply is connected and cells are fixed in the micropores, there are micropores in which a plurality of cells are concentrated and fixed, or micropores in which cells are not fixed at all, and are formed in a plurality of arrays. There was a problem that it was very difficult to perform the desired cell fusion of a pair of two cells with micropores.

一方、アレイ状に形成した複数の微細孔に1つずつ細胞を固定する方法の例が報告されている(例えば、特許文献3参照)。特許文献3記載の方法は、微細孔(特許文献3では、マイクロウエルと記載されている)の内径と深さがそれぞれ細胞(特許文献3では、被検体リンパ球と記載されている)の直径の1〜2倍の大きさの複数の微細孔に、複数の細胞を含む液を微細孔を覆うように加え、微細孔内に細胞が沈むのを待つ過程と、微細孔外の細胞を洗い流す洗浄の過程を繰り返し行うことで1つの微細孔に1つの細胞を固定している。   On the other hand, an example of a method of fixing cells one by one in a plurality of micropores formed in an array has been reported (for example, see Patent Document 3). In the method described in Patent Document 3, the inner diameter and depth of a micropore (described as a microwell in Patent Document 3) are the diameters of cells (described as a subject lymphocyte in Patent Document 3), respectively. A process of adding a liquid containing a plurality of cells to a plurality of micropores 1 to 2 times larger than the size of the micropore so as to cover the micropores and waiting for the cells to sink into the micropores, and washing away the cells outside the micropores One cell is fixed to one micropore by repeating the washing process.

しかしながら、前記特許文献3に記載された方法により1つの微細孔に1つの細胞を固定する方法は、重力により細胞が沈むのを待つ時間が5分程度と長いこと、微細孔内に細胞が沈むのを待つ過程と微細孔外の細胞を洗い流す洗浄過程を繰り返す必要があり操作が煩雑な上さらに時間を要すること、微細孔に入らなかった細胞を洗い流す過程で細胞が失われる可能性があるため、細胞すべてを有効に使用することが難しいという課題があった。一般に、細胞融合を行う場合は、細胞の活性を維持するためにその処理時間はできる限り短いことが好ましく、また、細胞1つ1つが持つ特異性を見出すためには、できる限り細胞の喪失がないことが好ましい。   However, the method of fixing one cell in one micropore by the method described in Patent Document 3 has a long waiting time of about 5 minutes for the cell to sink by gravity, and the cell sinks in the micropore. It is necessary to repeat the process of waiting for and washing the cells outside the micropores, which is cumbersome and requires more time, and cells may be lost in the process of washing cells that did not enter the micropores There is a problem that it is difficult to use all the cells effectively. In general, when performing cell fusion, it is preferable that the treatment time is as short as possible in order to maintain the activity of the cell, and in order to find the specificity of each cell, the loss of the cell is as much as possible. Preferably not.

上記従来の技術における問題点や課題を解決するために、本発明者らは、後述する比較例に示したように、細胞融合用チャンバーの細胞融合領域に対向するように配置された導電部材よりなる一対の電極と、前記一対の電極方向に貫通した複数の微細孔を有する絶縁体を有し、前記絶縁体が、前記電極のうちどちらか一方の電極の細胞融合領域側の電極面上に配置されている細胞融合装置を用い、前記細胞融合領域内に第1の細胞を導入し、交流電圧を印加することで前記微細孔内に第1の細胞を固定した後、第2の細胞を導入して、前記第1の細胞に第2の細胞を微細孔の位置において接触させ、直流パルス電圧を印加することで細胞融合する方法を検討した。本検討において、融合させる細胞の大きさに対して微細孔の大きさを最適化し、細胞を微細孔に固定する際に印加する交流電圧の波形の形状を最適化することで、アレイ状に形成した複数の微細孔において、1つの微細孔につき1つの細胞を極めて容易に固定できることを見出し、2細胞1対を融合させ、1/10000の融合確率を得た。これは、通常の電気的細胞融合における融合確率0.2/10000の5倍の融合確率であり、効率的な2細胞一対での融合を確認することができた(例えば、特許文献4参照)。   In order to solve the problems and problems in the above-described conventional technology, the present inventors, as shown in the comparative example described later, from a conductive member arranged to face the cell fusion region of the cell fusion chamber. A pair of electrodes, and an insulator having a plurality of fine holes penetrating in the direction of the pair of electrodes, and the insulator is on the cell fusion region side electrode surface of one of the electrodes The first cell is introduced into the cell fusion region using the arranged cell fusion device, and the first cell is fixed in the micropore by applying an alternating voltage, and then the second cell is Then, a method of cell fusion was studied by bringing a second cell into contact with the first cell at the position of the micropore and applying a DC pulse voltage. In this study, the size of the micropores is optimized for the size of the cells to be fused, and the waveform of the AC voltage applied when fixing the cells to the micropores is optimized to form an array. In the plurality of micropores, it was found that one cell could be fixed very easily per one micropore, and a pair of two cells were fused to obtain a fusion probability of 1/10000. This is a fusion probability that is 5 times the fusion probability of 0.2 / 10000 in normal electric cell fusion, and an efficient fusion in a pair of two cells could be confirmed (for example, see Patent Document 4). .

しかしながら一般に、細胞の直径の範囲に広がりがあり、例えば、第1の細胞の例であるマウス脾臓細胞は、図2(a)に示すように直径約6.2μmの細胞が最も多いが、直径約5.5μm〜直径約10.0μmまで細胞の直径の範囲に広がりがあり、平均直径は約6.7μmである。また、第2の細胞の例であるマウスミエローマ細胞は、図2(b)に示すように直径約11.3μmの細胞が最も多いが、直径約9.0μm〜直径約15.0μmまで細胞の直径の範囲に広がりがあり、平均直径は約11.8μmである。なお、各細胞の直径分布はベックマン・コールター製・コールターZ2型を用いて測定した。ここで特許文献4では、第1の細胞である脾臓細胞の平均直径に合わせて微細孔の直径を決定するが、この場合、微細孔より大きい直径を有する脾臓細胞を微細孔に入れることができず、結果として融合確率が低くなってしまうという課題があった。   However, in general, the range of cell diameters is wide. For example, mouse spleen cells, which are examples of the first cell, have the largest number of cells having a diameter of about 6.2 μm as shown in FIG. The range of cell diameters ranges from about 5.5 μm to about 10.0 μm in diameter, with an average diameter of about 6.7 μm. In addition, mouse myeloma cells, which are examples of the second cell, have the largest number of cells having a diameter of about 11.3 μm, as shown in FIG. 2 (b), but the cells have a diameter of about 9.0 μm to about 15.0 μm. The range of diameters is broad and the average diameter is about 11.8 μm. In addition, the diameter distribution of each cell was measured using the Beckman Coulter make and Coulter Z2 type. Here, in Patent Document 4, the diameter of the micropore is determined in accordance with the average diameter of the spleen cell as the first cell. In this case, spleen cells having a diameter larger than the micropore can be put into the micropore. As a result, there is a problem that the fusion probability is lowered.

また一般に電気的細胞融合法は、数μsec〜数十μsec単位の直流パルス電圧を電極間に印加することにより細胞膜の電気伝導度が瞬間的に低下し、脂質二重層により構成される細胞膜の可逆的乱れを2細胞の接触面で生じさせ、細胞膜の再構成を行い細胞融合を行う。この場合、直流パルス電圧の大きさは、一般に脾臓細胞の平均直径に合わせて決定する。ここで、下記(式1)に示すように、細胞膜の可逆的乱れを生じさせる直流パルス電圧Vpは、細胞の直径Rが小さくなるほど、高い電圧を必要とする。ここで、Vmは細胞膜の破壊電圧(一般に約1V程度)、dは電極間距離である。   In general, in the electric cell fusion method, the electric conductivity of the cell membrane is instantaneously reduced by applying a DC pulse voltage of several μsec to several tens of μsec between the electrodes, and the reversibility of the cell membrane composed of lipid bilayers is reduced. Cell disruption is generated at the contact surface of the two cells, and the cell membrane is reconstituted to perform cell fusion. In this case, the magnitude of the DC pulse voltage is generally determined in accordance with the average diameter of the spleen cells. Here, as shown in the following (formula 1), the DC pulse voltage Vp causing reversible disturbance of the cell membrane requires a higher voltage as the cell diameter R becomes smaller. Here, Vm is a cell membrane breakdown voltage (generally about 1 V), and d is a distance between electrodes.

Vp = (4×Vm×d)/(3×R) ・・・ (式1)
従って、平均直径より小さい脾臓細胞は、設定した直流パルス電圧では細胞膜の可逆的乱れが生じないため細胞融合しない。また、平均直径より大きい脾臓細胞は、設定した直流パルス電圧では細胞膜が修復できないまで完全に破壊されてしまい細胞が死んでしまうため細胞融合しない。その結果として融合確率が低くなってしまうという課題があった。
Vp = (4 × Vm × d) / (3 × R) (Formula 1)
Therefore, spleen cells smaller than the average diameter do not undergo cell fusion because reversible disturbance of the cell membrane does not occur at the set DC pulse voltage. In addition, spleen cells larger than the average diameter will not be fused because they will be completely destroyed until the cell membrane cannot be repaired with the set DC pulse voltage, and the cells will die. As a result, there is a problem that the fusion probability is lowered.

特公平7−40914号公報Japanese Patent Publication No. 7-40914 特公平7−4218号公報Japanese Patent Publication No. 7-4218 特許第3723882号公報Japanese Patent No. 3723882 特開2007−295912公報JP 2007-295912 A

本発明の目的は、かかる従来の実状に鑑みて提案されたものであり、電気的細胞融合において、2細胞一対での細胞融合をより効率的により確実に実施できる新規な細胞融合容器、細胞融合装置およびそれらを用いた細胞融合方法を提供することを目的とする。   The object of the present invention has been proposed in view of the conventional situation, and in the electric cell fusion, a novel cell fusion container and cell fusion capable of more efficiently and surely carrying out cell fusion of a pair of two cells. An object is to provide a device and a cell fusion method using them.

本発明は上記課題を解決する手段として、細胞融合領域内に対向して配置される導電部材からなる一対の電極と、一対の電極間に平板状のスペーサーを介して配置され、かつ対向して配置された電極の方向に貫通した複数の微細孔を有した平板状の絶縁体を備えた細胞融合容器であって、絶縁体が電極のいずれか一方の細胞融合領域側の電極面上に配置されており、微細孔の各々の断面が開口上部より電極と接する開口底部に向かって開口面の面積が小さくなる形状である細胞融合容器を用いること、この細胞融合容器と細胞融合容器の前記一対の電極に交流電圧及び直流パルス電圧を印加する電源と、交流電源と直流パルス電源とを切替える切替機構とを有する細胞融合装置を用いること、この細胞融合装置を用いて第1の細胞と当該第1の細胞の平均直径よりも大きい平均直径を有する第2の細胞とを細胞融合する方法であって、細胞融合領域内に第1の細胞を導入し、交流電圧を印加することで微細孔内に第1の細胞を固定した後、細胞融合領域内に第2の細胞を導入して、交流電圧を印加することで第1の細胞に第2の細胞を微細孔の位置において接触させ、直流パルス電圧を印加する細胞融合方法を用いることで、上記の従来技術の課題を解決することができることを見出し、遂に本発明を完成するに至った。以下、本発明を詳細に説明する。   As a means for solving the above-mentioned problems, the present invention provides a pair of electrodes made of conductive members arranged opposite to each other in the cell fusion region, and a plate-like spacer disposed between the pair of electrodes and facing each other. A cell fusion container comprising a flat insulator having a plurality of micropores penetrating in the direction of the arranged electrode, the insulator being arranged on the electrode surface on the cell fusion region side of one of the electrodes And using the cell fusion container in which the cross section of each micropore has a shape in which the area of the opening surface decreases from the top of the opening toward the bottom of the opening contacting the electrode, the pair of the cell fusion container and the cell fusion container A cell fusion device having a power source for applying an AC voltage and a DC pulse voltage to the electrode of the first electrode and a switching mechanism for switching between the AC power source and the DC pulse power source, and the first cell and the first cell using the cell fusion device. 1 A method of cell fusion with a second cell having an average diameter larger than the average diameter of the cell, wherein the first cell is introduced into the cell fusion region, and an alternating voltage is applied to the second cell in the micropore. After fixing one cell, a second cell is introduced into the cell fusion region, and an AC voltage is applied to bring the second cell into contact with the first cell at the position of the micropore. It has been found that the above-described problems of the prior art can be solved by using a cell fusion method in which the above is applied, and the present invention has finally been completed. Hereinafter, the present invention will be described in detail.

本発明は、細胞融合領域内に対向して配置される導電部材からなる一対の電極と、前記一対の電極間に平板状のスペーサーを介して配置され、かつ前記対向して配置された電極の方向に貫通した複数の微細孔を有した平板状の絶縁体を備えた細胞融合容器であって、前記絶縁体が前記電極のいずれか一方の細胞融合領域側の電極面上に配置されており、前記微細孔の各々の断面が開口上部より前記電極と接する開口底部に向かって開口面の面積が小さくなる形状である細胞融合容器である。   The present invention relates to a pair of electrodes made of conductive members arranged opposite to each other in a cell fusion region, and a plate-like spacer arranged between the pair of electrodes, and the electrodes arranged opposite to each other A cell fusion container comprising a flat insulator having a plurality of fine holes penetrating in the direction, wherein the insulator is disposed on the electrode surface on the cell fusion region side of one of the electrodes In the cell fusion container, the cross-section of each of the micropores has a shape in which the area of the opening surface decreases from the top of the opening toward the bottom of the opening in contact with the electrode.

また本発明は、上記細胞融合容器において、微細孔の各々の断面が、開口上部より前記電極と接する開口底部に向かって2段階以上の直径と深さとなる形状である細胞融合容器である。   Further, the present invention is the cell fusion container according to the above-mentioned cell fusion container, wherein each cross section of the micropore has a shape having a diameter and a depth of two or more steps from the top of the opening toward the bottom of the opening in contact with the electrode.

また本発明は、微細孔の各々の断面が開口上部側と開口底部側とで2段階の直径と深さとなる形状を有しており、異なる平均直径の2種の細胞を細胞融合する細胞融合容器であって、開口底部側の微細孔の直径が細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以上かつ平均直径の大きい細胞の平均直径以下、当該微細孔の深さが細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以下であり、開口上部側の微細孔の直径が細胞融合する2細胞のうち平均直径の大きい細胞の平均直径より大きい、上記の細胞融合容器である。   Further, the present invention has a shape in which each cross-section of the micropore has a shape having a two-stage diameter and depth on the upper opening side and the lower opening side, and cell fusion that fuses two types of cells having different average diameters. Among the two cells in which the diameter of the micropore on the bottom side of the opening is a cell fusion, the depth of the micropore is equal to or greater than the average diameter of the cells having a small average diameter and the average diameter of the cells having a large average diameter. In the above cell fusion container, the diameter of the micropores having a small average diameter is less than the average diameter of the two cells, and the diameter of the micropore on the upper side of the opening is larger than the average diameter of the cells having the large average diameter among the two cells to be fused is there.

また本発明は、絶縁体に形成される複数の微細孔が、絶縁体の面において、いずれの微細孔からも隣合う微細孔の位置が同じ位置に形成されている、上記の細胞融合容器であり、
また本発明は、絶縁体に形成される複数の微細孔が絶縁体の面において、アレイ状に形成されている、上記の細胞融合容器である。
Further, the present invention provides the cell fusion container according to the above, wherein the plurality of micropores formed in the insulator are formed at the same position on the surface of the insulator and adjacent to any micropore. Yes,
Moreover, this invention is said cell fusion container in which the several micropore formed in an insulator is formed in the array form in the surface of the insulator.

また本発明は、微細孔の隣合う間隔が微細孔に入れる直径の小さい細胞の平均直径の0.5倍以上6倍以下である、上記の細胞融合容器である。   Moreover, this invention is said cell fusion container whose space | interval which adjoins a micropore is 0.5 to 6 times the average diameter of the small diameter cell put into a micropore.

また本発明は、スペーサーが、前記細胞融合領域を形成する貫通孔を有する、上記の細胞融合容器である。   Moreover, this invention is said cell fusion container whose spacer has a through-hole which forms the said cell fusion area | region.

また本発明は、スペーサーが、細胞を導入する導入流路および細胞を排出する排出流路を有する、上記の細胞融合容器である。   Moreover, this invention is said cell fusion container in which a spacer has the introduction flow path which introduce | transduces a cell, and the discharge flow path which discharges | emits a cell.

また本発明は、上記の細胞融合容器と、細胞融合容器の一対の電極に電圧を印加する電源と、を備えた細胞融合装置であって、この電源が、細胞融合容器の一対の電極に交流電圧を印加するための交流電源及び直流パルス電圧を印加するための直流パルス電源からなり、交流電源と前記直流パルス電源とを切替える切替機構を有する、細胞融合装置である。   The present invention also provides a cell fusion device comprising the above cell fusion container and a power source for applying a voltage to the pair of electrodes of the cell fusion container, wherein the power source exchanges with the pair of electrodes of the cell fusion container. A cell fusion device comprising an AC power source for applying a voltage and a DC pulse power source for applying a DC pulse voltage, and having a switching mechanism for switching between the AC power source and the DC pulse power source.

また本発明は、上記の細胞融合装置を用いて第1の細胞と当該第1の細胞の平均直径よりも大きい平均直径を有する第2の細胞とを細胞融合する方法であって、細胞融合領域内に第1の細胞を導入し、交流電圧を印加することで微細孔内に第1の細胞を固定した後、細胞融合領域内に第2の細胞を導入して、交流電圧を印加することで第1の細胞に第2の細胞を微細孔の位置において接触させ、直流パルス電圧を印加する、細胞融合方法である。   The present invention also provides a method for cell fusion of a first cell and a second cell having an average diameter larger than the average diameter of the first cell using the cell fusion device described above. The first cell is introduced into the cell, and the first cell is fixed in the micropore by applying an alternating voltage, and then the second cell is introduced into the cell fusion region and the alternating voltage is applied. In the cell fusion method, the second cell is brought into contact with the first cell at the position of the micropore and a DC pulse voltage is applied.

以下に、図を用いて本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to the drawings.

本発明の細胞融合容器およびこの細胞融合容器を備えた細胞融合装置は、上記の通りである。   The cell fusion container of the present invention and the cell fusion device provided with this cell fusion container are as described above.

ここで、本発明の細胞融合容器と細胞融合装置の構成について、図6を用いて詳しく説明する。   Here, the configuration of the cell fusion container and the cell fusion device of the present invention will be described in detail with reference to FIG.

図6は、本発明の細胞融合装置の概念図を示した図である。なお、図6は本発明の細胞融合装置の各部品の構成を分かりやすくするために離した状態にて図示している。また、後述する図7では本発明の細胞融合装置を本来の構成として各部品を組み上げた状態とした上で、AA’断面図として図示した。図において、本発明の細胞融合装置は、細胞融合容器(13)と電源(4)で構成されている。   FIG. 6 is a diagram showing a conceptual diagram of the cell fusion device of the present invention. FIG. 6 shows the components of the cell fusion device of the present invention in a separated state for easy understanding. In FIG. 7 to be described later, the cell fusion device of the present invention is shown as an AA ′ cross-sectional view after the components are assembled as an original configuration. In the figure, the cell fusion device of the present invention comprises a cell fusion container (13) and a power source (4).

細胞融合容器は、図6に示すように上部電極(14)と下部電極(15)の間に、スペーサー(16)を配置することで細胞融合領域(1)を確保し、微細孔(9)を形成した絶縁体(8)を下部電極の細胞融合領域側に配置した構造を有する。   As shown in FIG. 6, the cell fusion container secures the cell fusion region (1) by arranging the spacer (16) between the upper electrode (14) and the lower electrode (15), and the micropore (9). Insulator (8) having a structure is arranged on the cell fusion region side of the lower electrode.

上部電極と下部電極の材質は導電部材であって化学的に安定な部材であれば特に制限はなく、白金、金、銅などの金属やステンレスなどの合金及び、ITO(Indium Tin Oxide:酸化インジウムスズ)等の透明導電性材料を成膜したガラス基板や樹脂基板、セラミックス基板などでもよいが、微粒子懸濁液の導入を観察するには、ITOなどの透明導電性材料を成膜したガラス基板を電極として用いることが好ましい。   The material of the upper electrode and the lower electrode is not particularly limited as long as it is a conductive member and is a chemically stable member, such as platinum, gold, copper, or an alloy such as stainless steel, and ITO (Indium Tin Oxide). A glass substrate, a resin substrate, a ceramic substrate or the like on which a transparent conductive material such as tin) is formed may be used. However, in order to observe the introduction of the fine particle suspension, a glass substrate on which a transparent conductive material such as ITO is formed. Is preferably used as the electrode.

上部電極と下部電極の面積等の寸法には特に制限はないが、取り扱いやすいサイズとして、例えば、縦70mm×横40mm×厚さ1mm程度のサイズが好ましい。細胞融合容器(13)の上部電極と下部電極には導電線(3)を介して電源(4)が接続されている。   There are no particular limitations on the dimensions of the upper electrode and the lower electrode, but a size that is easy to handle is preferably, for example, a size of about 70 mm long × 40 mm wide × 1 mm thick. A power source (4) is connected to the upper electrode and the lower electrode of the cell fusion container (13) via a conductive wire (3).

スペーサーは、上記微粒子懸濁液導入容器と同様に、上部電極と下部電極が直接接触しないように設けられ、かつ細胞融合容器に細胞懸濁液を入れておくスペースを確保するための細胞融合領域を形成する貫通孔を有しているものであり、その材質は絶縁材料であればよく、例えばガラス、セラミック、樹脂等がある。またスペーサーには、細胞融合容器に細胞を導入、排出するため、細胞を導入する導入流路(29)及びそれに連通する導入口(19)と、細胞を排出する排出流路(30)及びそれに連通する排出口(20)が設けられている。   The spacer is provided so that the upper electrode and the lower electrode are not in direct contact with each other as in the case of the fine particle suspension introduction container, and a cell fusion region for securing a space for storing the cell suspension in the cell fusion container. The material may be any insulating material, such as glass, ceramic, resin, and the like. In addition, the spacer includes an introduction channel (29) for introducing cells and an introduction port (19) communicating therewith, a discharge channel (30) for discharging cells, and a cell for introducing and discharging cells to and from the cell fusion container. A communicating outlet (20) is provided.

また、絶縁体(8)には微細孔(9)が形成されている。絶縁体の材質は、例えばガラス、セラミック、樹脂等の絶縁材料であれば特に制限はないが、貫通した微細孔を形成させる必要があることから、樹脂等の比較的加工が容易な材料が好ましい。樹脂に貫通した微細孔を形成する手段としては、形成する微細孔の位置にレーザーを照射する方法や、微細孔の位置に貫通孔を形成するためのピンを有する金型を用いて成形する方法などの既知の方法を用いればよい。また、絶縁体にUV硬化性樹脂などを用いる場合は、微細孔に相当するパターンを描画した露光用フォトマスクを用いて一般的なフォトリソグラフィー(露光)とエッチング(現像)により貫通した微細孔を形成することができる。絶縁体に複数の微細孔を形成する場合は、絶縁体にUV硬化性樹脂を用いて、一般的なフォトリソグラフィーとエッチングによる方法で微細孔を形成することが好ましい。   In addition, fine holes (9) are formed in the insulator (8). The material of the insulator is not particularly limited as long as it is an insulating material such as glass, ceramic, or resin, but a material that is relatively easy to process, such as a resin, is preferable because it is necessary to form through holes. . As a means for forming fine holes penetrating the resin, a method of irradiating a laser at the position of the fine hole to be formed, or a method of molding using a mold having a pin for forming the through hole at the position of the fine hole A known method such as the above may be used. In addition, when UV curable resin or the like is used for the insulator, a fine hole penetrating through general photolithography (exposure) and etching (development) using an exposure photomask on which a pattern corresponding to the fine hole is drawn is formed. Can be formed. When forming a plurality of fine holes in the insulator, it is preferable to form the fine holes by a general photolithography and etching method using a UV curable resin for the insulator.

ここで図7は、図6の細胞融合容器のAA’断面図を示した概略図である。上部電極(14)、スペーサー(16)、絶縁体(8)、下部電極(15)を図7のように貼り合わせる手段としては、それぞれを接着剤で貼り合わせたり、加圧した状態で過熱して融着させる方法や、スペーサーを表面粘着性のあるPDMS(poly−dimethylsiloxane)やシリコンシートのような樹脂を用いて作製することで圧着することにより貼り合わせる方法など、既知の方法を用いればよい。このようにすることで図7に示した細胞融合領域(1)を形成することができる。   Here, FIG. 7 is a schematic view showing an AA ′ cross-sectional view of the cell fusion container of FIG. 6. As a means for bonding the upper electrode (14), the spacer (16), the insulator (8), and the lower electrode (15) as shown in FIG. 7, each of them is bonded with an adhesive or heated in a pressurized state. For example, a known method may be used, such as a method in which the spacer is fused and a method in which the spacer is bonded using a surface adhesive PDMS (poly-dimethylsiloxane) or a resin such as a silicon sheet. . In this way, the cell fusion region (1) shown in FIG. 7 can be formed.

また、本発明の細胞融合容器に形成した微細孔の各々の断面形状は、前記絶縁体の微細孔開口部において、開口上部より前記電極と接する開口底部に向かって2段階以上の直径と深さとなる形状となることが好ましく、さらに2段階以上の直径と深さとなる形状であることが好ましく、特に開口上部側と開口底部側とで2段階の直径と深さとなる形状を有することが好ましい。なお開口上部あるいは開口底部とは、その例とし図7で説明すれば、絶縁体(8)に設けられた開口部分となる微細孔(9)において、上部電極(14)側を開口上部あるいは開口上部側とし、下部電極(15)と接する側を開口底部あるいは開口底部側となる。   The cross-sectional shape of each of the micropores formed in the cell fusion container of the present invention has a diameter and depth of two or more steps from the top of the opening toward the bottom of the opening in contact with the electrode. It is preferable to have a shape with a diameter and depth of two or more steps, and it is particularly preferable to have a shape with a two-step diameter and depth on the opening upper side and the opening bottom side. The upper part of the opening or the lower part of the opening is, as an example, described with reference to FIG. 7. In the fine hole (9) serving as the opening provided in the insulator (8), the upper electrode (14) side is the upper part of the opening or the opening. The side that is in contact with the lower electrode (15) is the opening bottom or the opening bottom.

さらに図7に示すように、前記絶縁体が配置された前記電極面である下部電極(15)に向かって前記微細孔の平面形状に内接する最大円の直径が小さくなるように2段階以上の前記直径と深さを有しており、前記2段階以上の前記直径と前記深さを有する微細孔が、2段階の前記直径と前記深さを有する微細孔であって、開口底部側の微細孔すなわち前記絶縁体が配置された前記電極面である下部電極(15)の側に位置する段の微細孔(以下、1段目の微細孔(17)と称する。)の直径が細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以上かつ平均直径の大きい細胞の平均直径以下であり、前記絶縁体が配置された前記電極面である下部電極(15)の側に位置する段の微細孔(1段目の微細孔)の深さが細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以下であり、開口上部側の微細孔すなわち前記細胞融合領域(1)の側に位置する段の微細孔(以下、2段目の微細孔(21)と称する。)の直径が細胞融合する2細胞のうち平均直径の大きい細胞の平均直径より大きいことを特徴としている。なお本発明の細胞融合容器が対象とする細胞融合の対象とするものは、異なる平均直径の2種の細胞であり、後述するように、2種の細胞の各々が所定の細胞直径の分布を有するものである。   Further, as shown in FIG. 7, the diameter of the largest circle inscribed in the planar shape of the fine hole is reduced toward two or more steps toward the lower electrode (15) that is the electrode surface on which the insulator is disposed. The fine holes having the diameter and the depth, and the fine holes having the diameter and the depth in two or more stages are fine holes having the diameter and the depth in two stages, and are fine on the bottom side of the opening. The diameter of the hole, that is, the micropore on the lower electrode (15) side which is the electrode surface on which the insulator is disposed (hereinafter referred to as the first micropore (17)) fuses the cells. Of the two cells, the average diameter is not less than the average diameter of cells having a small average diameter and not more than the average diameter of cells having a large average diameter, The depth of micropores (first micropores) fuses cells 2 A micropore on the upper side of the opening, that is, a micropore on the stage located on the side of the cell fusion region (1) (hereinafter referred to as the second micropore (21)). The diameter is larger than the average diameter of the cells having a larger average diameter among the two cells to be fused. The cell fusion target of the cell fusion container of the present invention is two types of cells having different average diameters, and each of the two types of cells has a predetermined cell diameter distribution as described later. I have it.

ここで、微細孔の段階の数に特に制限はないが、段数が多すぎると微細孔の製作が難しくなる上、それに見合った顕著な効果が得られないことから、段数は2段階が好ましい。また、微細孔の平面形状は特に制限はなく、円状であっても良いし、三角形状、四角形状のような多角形状、星形状のような複雑な多角形状であってもよい。多角形状の場合、頂点の角が鋭角の場合は、その部分に電気力線が集中することで細胞を引き寄せる誘電泳動力が大きくなる効果がある。また、複数の微細孔を形成した場合は、各微細孔に均等に細胞が固定される必要があり、微細孔に細胞を引き寄せる誘電泳動力が平面方向に均一であることが好ましいことから、微細孔形状は点対称であることが好ましい。従って、微細孔の製作のし易さも考慮すると、微細孔の平面形状は正方形状あるいは円状であることが好ましい。   Here, the number of stages of the fine holes is not particularly limited. However, if the number of stages is too large, it is difficult to manufacture the microholes, and a remarkable effect corresponding to the number of stages cannot be obtained. Moreover, the planar shape of the fine holes is not particularly limited, and may be a circular shape, a polygonal shape such as a triangular shape or a quadrangular shape, or a complex polygonal shape such as a star shape. In the case of a polygonal shape, when the apex corner is an acute angle, there is an effect of increasing the dielectrophoretic force for attracting cells by concentrating the lines of electric force at that portion. In addition, when a plurality of micropores are formed, it is necessary that cells be fixed uniformly in each micropore, and it is preferable that the dielectrophoretic force that attracts the cells to the micropores is uniform in the plane direction. The hole shape is preferably point-symmetric. Therefore, considering the ease of manufacturing the microholes, the planar shape of the micropores is preferably square or circular.

1段目の微細孔の直径は、細胞融合する2細胞のうち平均直径の小さい細胞が1段目の微細孔に入り、平均直径の大きい細胞は1段目の微細孔に入らないことが好ましいことから、細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以上かつ平均直径の大きい細胞の平均直径以下であることが好ましい。   Regarding the diameter of the first stage micropores, it is preferable that cells having a small average diameter enter the first stage micropores among the two cells to be fused, and cells having a large average diameter do not enter the first stage micropores. Therefore, it is preferable that the cell diameter is greater than or equal to the average diameter of the cells having a small average diameter and less than or equal to the average diameter of the cells having a large average diameter.

また、1段目の微細孔(17)の深さは、あまり深すぎると、1段目の微細孔に固定される平均直径の小さい細胞と、2段目微細孔(21)に固定される平均直径の大きい細胞と接触することができなくなるので、平均直径の小さい細胞の平均直径以下であれば特に制限はないが、あまり浅すぎると微細孔での電気力線の集中効果が弱くなり、細胞を確実に微細孔に固定することが難しくなることから、1段目の微細孔の深さの最小値は1μm程度であることが好ましい。   In addition, if the depth of the first stage micropore (17) is too deep, cells having a small average diameter fixed to the first stage micropore and the second stage micropore (21) are fixed. Since it becomes impossible to contact cells with a large average diameter, there is no particular limitation as long as it is less than the average diameter of cells with a small average diameter, but if it is too shallow, the effect of concentrating the electric lines of force in the micropores will be weakened, Since it becomes difficult to reliably fix the cells to the micropores, the minimum depth of the first micropores is preferably about 1 μm.

また、2段目の微細孔(21)の直径は、平均直径の大きい細胞が2段目の微細孔に入ることができればよいので、平均直径の大きい細胞の平均直径より大きければ特に制限はないが、あまり大きすぎると、微細孔に多数の細胞が入ってしまい、2種類の細胞の1対1での融合が難しくなることから、2段目の微細孔の直径は、平均直径の大きい細胞の平均直径の2倍以下であることが好ましい。また、2段目の微細孔の深さは特に制限はないが、あまり浅すぎると微細孔での電気力線の集中効果が弱くなり、細胞を確実に微細孔に固定することが難しくなり、あまり深すぎると、はじめに2段目の微細孔に固定した平均直径の小さい細胞と、微細孔表面(31)の付近に固定した平均直径の大きい細胞が接触することができず、細胞融合できなくなることから、2段目の微細孔の深さの最小値は1μm程度、さらに好ましくは平均直径の小さい細胞の平均直径程度であることが好ましく、また2段目の微細孔の深さの最大値は平均直径の小さい細胞の平均直径程度であることが好ましい。具体的には、例えば融合する細胞として、平均直径の小さい細胞にマウス脾臓細胞(平均直径:約6μm)、平均直径の大きい細胞にマウス癌細胞(平均直径:約10μm)を用いた場合、1段目の微細孔の直径は約8.5μm、1段目の微細孔の深さは約4μm、2段目の微細孔の直径は約12μm、2段目の微細孔の深さは約6μmとなる。このような態様とすることで、微細孔に固定する平均直径の小さい細胞の直径の範囲に広がりがあったとしても、設定した直流パルス電圧で融合できる細胞の直径の範囲が広がり、融合確率を高くすることが可能となる。   Further, the diameter of the second stage micropore (21) is not particularly limited as long as cells having a large average diameter can enter the second stage micropores, so long as it is larger than the average diameter of the cells having a large average diameter. However, if it is too large, a large number of cells will enter the micropores, making it difficult to fuse the two types of cells on a one-to-one basis. The average diameter is preferably not more than twice the average diameter. In addition, the depth of the micropores in the second stage is not particularly limited, but if it is too shallow, the concentration effect of the electric lines of force in the micropores is weakened, making it difficult to reliably fix the cells in the micropores. If it is too deep, cells with a small average diameter that are first fixed in the second micropores and cells with a large average diameter that are fixed in the vicinity of the micropore surface (31) cannot come into contact with each other, and cell fusion becomes impossible. Accordingly, the minimum value of the depth of the second stage micropores is preferably about 1 μm, more preferably about the average diameter of cells having a small average diameter, and the maximum value of the depth of the second stage micropores. Is preferably about the average diameter of cells having a small average diameter. Specifically, for example, when a mouse spleen cell (average diameter: about 6 μm) is used as a cell having a small average diameter and a mouse cancer cell (average diameter: about 10 μm) is used as a cell having a large average diameter as cells to be fused, The diameter of the fine hole in the step is about 8.5 μm, the depth of the fine hole in the first step is about 4 μm, the diameter of the fine hole in the second step is about 12 μm, and the depth of the fine hole in the second step is about 6 μm. It becomes. By adopting such an embodiment, even if there is a wide range of diameters of cells with a small average diameter fixed to the micropores, the range of cell diameters that can be fused with the set DC pulse voltage is expanded, and the fusion probability is increased. It becomes possible to make it higher.

ここで本発明における微細孔の断面形状の効果を説明する前に、本発明の細胞融合方法の特徴を説明する。   Before describing the effect of the cross-sectional shape of the micropores in the present invention, the characteristics of the cell fusion method of the present invention will be described.

本発明の細胞融合方法は、上記細胞融合装置を用い、図6に示した細胞融合領域内に第1の細胞を導入し、交流電圧を印加することで微細孔内に第1の細胞を固定した後、細胞融合領域内に当該第1の細胞の平均直径よりも大きい平均直径を有する第2の細胞を導入して、交流電圧を印加することで第1の細胞に第2の細胞を微細孔の位置において接触させ、直流パルス電圧を印加して細胞融合する細胞融合方法である。   The cell fusion method of the present invention uses the above cell fusion device to introduce the first cell into the cell fusion region shown in FIG. 6 and immobilize the first cell in the micropore by applying an alternating voltage. Then, a second cell having an average diameter larger than the average diameter of the first cell is introduced into the cell fusion region, and an alternating voltage is applied to finely adjust the second cell to the first cell. This is a cell fusion method in which cells are fused by applying a direct-current pulse voltage at the position of the hole.

すなわち、第2の細胞の平均直径が第1の細胞の平均直径より大きいことが好ましく、細胞を導入する際は平均直径の小さい細胞を第1の細胞として最初に導入し、平均直径の大きい細胞を第2の細胞として次に導入することが好ましい。このようにすることで、平均直径の異なる2種類の細胞の細胞膜を修復可能な程度に可逆的に破壊できるように、それぞれの大きさに合った電圧を印加することが初めて可能となり、高い融合確率を得ることがきる。この本発明の細胞融合方法の特徴である、「第2の細胞の平均直径が第1の細胞の平均直径より大きいことが好ましく、細胞を導入する際は平均直径の小さい細胞を第1の細胞として最初に導入し、平均直径の大きい細胞を第2の細胞として次に導入する」ことが好ましい理由及び、本発明の細融合容器の特徴である、「前記2段階の直径と深さを有する微細孔において、前記絶縁体が配置された前記電極面側に位置する段の微細孔(1段目の微細孔)の直径が細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以上かつ平均直径の大きい細胞の平均直径以下であり、前記1段目の微細孔の深さが細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以下であり、前記細胞融合領域側に位置する段(2段目の微細孔)の微細孔の直径が細胞融合する2細胞のうち平均直径の大きい細胞の平均直径より大きい」ことが好ましい理由を、以下でさらに詳細に説明する。   That is, it is preferable that the average diameter of the second cell is larger than the average diameter of the first cell. When introducing the cell, a cell having a small average diameter is first introduced as the first cell, and a cell having a large average diameter is introduced. Is then preferably introduced as a second cell. In this way, it is possible for the first time to apply a voltage suitable for each size so that the cell membranes of two types of cells with different average diameters can be reversibly destroyed so that they can be repaired. You can get a probability. The feature of the cell fusion method of the present invention is that “the average diameter of the second cells is preferably larger than the average diameter of the first cells. It is preferable to introduce first as a cell, and then introduce a cell having a large average diameter as a second cell next, and the characteristic of the fine fusion container of the present invention, “having the two-stage diameter and depth. In the micropore, the diameter of the micropore on the electrode surface side on which the insulator is disposed (the micropore on the first stage) is equal to or greater than the average diameter of the cells having a small average diameter among the two cells to be fused. The average diameter of cells having a large average diameter is not more than the average diameter, and the depth of the micropores in the first stage is not more than the average diameter of cells having a small average diameter among the two cells to be fused, and is located on the cell fusion region side. Micro hole of step (second stage micro hole) Diameter larger average diameter greater than "it is preferable for reasons of cell average diameter of 2 cells cell fusion is described in further detail below.

まず、特許文献4に記載されている微細孔の断面形状が1段階である場合の効果と課題について説明する。   First, effects and problems when the cross-sectional shape of the micropore described in Patent Document 4 is one stage will be described.

微細孔の断面形状が1段階の微細孔では、微細孔に電気力線の集中が生じるため、微細孔付近の電界強度は、図12に示すように微細孔内の電極面の電界強度が最も高く、絶縁膜面からもう一方の電極に向けて次第に電界強度が弱くなる。図12は、一方の電極に任意の膜厚の絶縁膜に任意の直径と深さを有する微細孔を1個配置し、電極間に任意の電圧を印加した場合の電界強度を有限要素法を用いて計算した。縦軸が電界強度を最大の電界強度で正規化した値であり、横軸は電極間の位置である。横軸の原点に絶縁膜を配置した電極が存在している。絶縁膜面は図中の点線で示した位置に相当し、横軸の原点から点線までの範囲が絶縁膜厚に相当する。計算によれば、絶縁膜の材質や厚み、微細孔の大きさや深さにあまり大きく依存せず、図12に示すように微細孔内の電極面の電界強度は、絶縁膜面の電界強度より約20%程度高い結果となる。   In the case of a microhole having a one-step cross-sectional shape, the lines of electric force are concentrated in the microhole, so that the electric field strength in the vicinity of the microhole is the highest in the electric field strength of the electrode surface in the microhole as shown in FIG. The electric field strength gradually decreases from the insulating film surface toward the other electrode. FIG. 12 shows a finite element method for calculating the electric field strength when an arbitrary voltage is applied between electrodes by arranging one minute hole having an arbitrary diameter and depth in an insulating film of an arbitrary thickness on one electrode. Used to calculate. The vertical axis is the value obtained by normalizing the electric field intensity with the maximum electric field intensity, and the horizontal axis is the position between the electrodes. There is an electrode in which an insulating film is arranged at the origin of the horizontal axis. The insulating film surface corresponds to the position indicated by the dotted line in the figure, and the range from the origin of the horizontal axis to the dotted line corresponds to the insulating film thickness. According to the calculation, the electric field strength of the electrode surface in the microhole is less than the electric field strength of the insulating film surface as shown in FIG. 12 without much depending on the material and thickness of the insulating film and the size and depth of the microhole. The result is about 20% higher.

一般に電気的細胞融合法は、前述したように、細胞融合させるための直流パルス電圧を印加することで細胞膜の電気伝導度が瞬間的に低下し、脂質二重層から構成される細胞膜の可逆的乱れとその再構成が行われることで細胞融合させる。ここで(式1)に示したように、一般に細胞の平均直径が小さいほど細胞膜の可逆的乱れを生じさせる直流パルス電圧は高くなる。従って、平均直径の小さい細胞を第1の細胞として微細孔に入れ、平均直径の大きい細胞を第2の細胞として微細孔に固定された第1の細胞の上から固定すれば、印加する直流パルス電圧は同じでも、図12に示すように、微細孔内の電界強度が微細孔表面の電界強度より高いために、図8に示したように、微細孔(9)の中に固定された平均直径の小さい第1の細胞(18)には、より高い電圧が印加され、微細孔表面(31)に固定された平均直径の大きい第2の細胞(22)には第1の細胞に印加される電圧よりも20%程度低い電圧が印加される。このようにすることで、平均直径の異なる2種類の細胞の細胞膜を修復可能な程度に可逆的に破壊できるように、それぞれの大きさに合った電圧をそれぞれの細胞に印加することが初めて可能となり、高い融合確率を得ることがきる。   In general, as described above, in the electric cell fusion method, by applying a DC pulse voltage for cell fusion, the electric conductivity of the cell membrane is instantaneously reduced, and the reversible disturbance of the cell membrane composed of lipid bilayers. And the cell is fused by reconfiguration. Here, as shown in (Formula 1), generally, the smaller the average cell diameter, the higher the DC pulse voltage that causes reversible disturbance of the cell membrane. Therefore, if a cell having a small average diameter is put in the micropore as a first cell and a cell having a large average diameter is fixed as a second cell from above the first cell fixed in the micropore, a DC pulse to be applied is applied. Although the voltage is the same, as shown in FIG. 12, since the electric field strength in the micropores is higher than the electric field strength on the surface of the micropores, the average fixed in the micropores (9) as shown in FIG. A higher voltage is applied to the first cell (18) having a small diameter, and a second cell (22) having a large average diameter fixed to the micropore surface (31) is applied to the first cell. A voltage that is about 20% lower than the applied voltage is applied. In this way, it is possible for the first time to apply a voltage appropriate for each cell to each cell so that the cell membranes of two types of cells with different average diameters can be reversibly destroyed. Thus, a high fusion probability can be obtained.

しかしながら図9に示すように、第1の細胞(18)の直径の範囲に広がりがある場合、断面形状が1段階の微細孔では、第1の細胞のうち直径の比較的大きい細胞は微細孔(9)に入らないため、第2の細胞(22)が第1の細胞の更に上か横に配置されてしまい、特許文献4に記載されているような効果を十分得られず、細胞融合しない細胞が存在する為、融合確率が低下してしまうという課題があった。   However, as shown in FIG. 9, when the range of the diameter of the first cell (18) is wide, in the micropore having a one-step cross-sectional shape, a cell having a relatively large diameter among the first cells is a micropore. Since it does not enter (9), the second cell (22) is arranged further above or next to the first cell, and the effect described in Patent Document 4 cannot be obtained sufficiently, and cell fusion Because there are cells that do not, there is a problem that the fusion probability decreases.

そこで本発明者らが鋭意検討した結果、前記微細孔の断面形状が、前記絶縁体が配置された前記電極面に向かって前記微細孔の平面形状に内接する最大円の直径が小さくなる様に2以上の段階、好ましくは2段階の前記直径と深さを有するような微細孔の断面形状とすることで、この課題を解決するに至った。   Therefore, as a result of intensive studies by the present inventors, the cross-sectional shape of the micropore is such that the diameter of the maximum circle inscribed in the planar shape of the micropore toward the electrode surface on which the insulator is disposed is reduced. The cross-sectional shape of the micropore having two or more stages, preferably two stages of the diameter and depth, has led to solving this problem.

ここで、前記2段階の直径と深さを有する微細孔は、前記絶縁体が配置された前記電極面側に位置する段の微細孔(1段目の微細孔)の直径が細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以上かつ平均直径の大きい細胞の平均直径以下であり、前記1段目の微細孔の深さが細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以下であり、前記細胞融合領域側に位置する段(2段目の微細孔)の微細孔の直径が細胞融合する2細胞のうち平均直径の大きい細胞の平均直径より大きいことがより好ましい。   Here, in the micropores having the two-stage diameter and depth, the diameters of the micropores (first micropores) located on the electrode surface side where the insulator is disposed are fused 2. The average of the cells having a smaller average diameter among the two cells that are not less than the average diameter of the cells having the smaller average diameter and not larger than the average diameter of the cells having the larger average diameter, and the depth of the first micropore is cell fusion. More preferably, the diameter is equal to or smaller than the diameter, and the diameter of the micropore in the stage located on the cell fusion region side (second stage micropore) is larger than the average diameter of the cells having a larger average diameter among the two cells to be fused.

次に、本出願の特徴である、各々の微細孔の断面形状が絶縁体の微細孔開口部において、開口上部より前記電極と接する開口底部に向かって2段階以上の直径と深さとなる形状となることが好ましく、さらに2段階以上の直径と深さとなる形状であることが好ましく、特に開口上部側と開口底部側とで2段階の直径と深さとなる形状を有することが好ましい理由とその効果にについて図10〜図13を用いて説明する。   Next, the feature of the present application is that the shape of the cross-section of each microhole is a shape having a diameter and depth of two or more steps from the top of the opening toward the bottom of the opening in contact with the electrode at the opening of the microhole in the insulator. It is preferable that the shape has a diameter and depth of two or more steps, and it is particularly preferable to have a shape having a two-step diameter and depth on the opening upper side and the opening bottom side and the effect thereof. Will be described with reference to FIGS.

まず、細胞融合容器に最初に導入する平均直径が小さい第1の細胞の直径が、前記2段階の直径と深さを有する微細孔のうち、前記絶縁体が配置された前記電極面側に位置する段の微細孔(1段目の微細孔(17))の直径と等しいか小さい場合の例を図10に示した。また、このときの微細孔付近の電界強度を図13に示した。図13に示すように、1段目の微細孔(17)の電界強度が最も高く、次に2段目の微細孔(21)の電界強度は1段目の微細孔の電界強度に比べて15%程度低く、さらに微細孔表面(31)の電界強度は2段目の微細孔の電界強度よりさらに20%程度低い。この場合、細胞融合容器に導入する平均直径が大きい第2の細胞が、前記2段階の直径と深さを有する微細孔のうち、前記細胞融合領域側に位置する段の微細孔(2段目の微細孔)に入って前期第1の細胞と接触する。ただし、1段目の微細孔の深さが第1の細胞の平均直径よりも大きい場合は、2段目の微細孔に入った第2の細胞と接触することができなくなるため、1段目の微細孔の深さは、第1の細胞の平均直径よりも小さいことが好ましい。この状態で直流パルス電圧を印加すると、特許文献4と同様に、1段目の微細孔の中の電界強度が、2段目の微細孔の中の電界強度より高いために、1段目の微細孔内に固定された平均直径の小さい第1の細胞には、より高い電圧が印加され、2段目の微細孔に固定された平均直径の大きい第2の細胞には第1の細胞に印加される電圧よりも15%程度低い電圧が印加される。このようにすることで、平均直径の異なる2種類の細胞の細胞膜を修復可能な程度に可逆的に破壊できるように、それぞれの大きさに合った電圧をそれぞれの細胞に印加することが初めて可能となり、高い融合確率を得ることがきる。   First, the diameter of the first cell having a small average diameter first introduced into the cell fusion container is positioned on the electrode surface side where the insulator is disposed among the fine holes having the two-stage diameter and depth. FIG. 10 shows an example of the case where the diameter of the microhole (the first micropore (17) of the first stage) is equal to or smaller than the diameter. In addition, the electric field strength in the vicinity of the fine holes at this time is shown in FIG. As shown in FIG. 13, the electric field strength of the first-stage microhole (17) is the highest, and then the electric field strength of the second-stage microhole (21) is higher than the electric field strength of the first-stage microhole. The electric field strength of the micropore surface (31) is about 15% lower and about 20% lower than the electric field strength of the second micropore. In this case, the second cell having a large average diameter introduced into the cell fusion container is a micropore (second step) located on the cell fusion region side among the micropores having the two-stage diameter and depth. And contact with the first cell. However, if the depth of the first stage micropores is larger than the average diameter of the first cells, it will not be possible to contact the second cells that have entered the second stage micropores. The depth of the micropores is preferably smaller than the average diameter of the first cells. When a DC pulse voltage is applied in this state, the electric field strength in the first microhole is higher than the electric field strength in the second microhole, as in Patent Document 4, so that the first stage A higher voltage is applied to the first cells having a small average diameter fixed in the micropores, and the first cells are applied to the second cells having a large average diameter fixed in the second micropores. A voltage about 15% lower than the applied voltage is applied. In this way, it is possible for the first time to apply a voltage appropriate for each cell to each cell so that the cell membranes of two types of cells with different average diameters can be reversibly destroyed. Thus, a high fusion probability can be obtained.

次に、細胞融合容器に最初に導入する平均直径が小さい第1の細胞の直径が、前記1段目の微細孔の直径より大きい場合の例を図11に示した。このときの微細孔付近の電界強度は前述の例の図13と同じである。この場合、第1の細胞(18)は1段目の微細孔(17)の上側、すなわち、2段目の微細孔(21)に固定される。引き続き、細胞融合容器に平均直径の大きい第2の細胞(22)を導入すると、第2の細胞は図11に示すように微細孔表面(31)に配置され、前期第1の細胞と接触する。この状態で直流パルス電圧を印加すると、2段目の微細孔の中の電界強度が、微細孔表面の電界強度より高いために、2段目の微細孔内に固定された平均直径の小さい第1の細胞には、より高い電圧が印加されるものの、1段目の微細孔の中に固定される場合よりも15%程度低い電圧が印加されるので、1段目の微細孔の中に入る程度の直径の比較的小さい第1の細胞よりも、1段目の微細孔には入らず、2段目の微細孔の中で固定される程度の直径の比較的大きい第1の細胞の細胞膜を修復できない程度まで破壊してしまうほどの電圧は印加されず、細胞膜が修復可能な可逆的乱れを生じさせる程度の電圧が印加される。また、微細孔表面に固定された平均直径の大きい第2の細胞には第1の細胞に印加される電圧よりも、さらに20%程度低い電圧が印加される。このようにすることで、第1の細胞の直径の範囲に広がりがある場合であったとしても、平均直径の異なる2種類の細胞の細胞膜を修復可能な程度に可逆的に破壊できるように、それぞれの大きさに合った電圧をそれぞれの細胞に印加することが初めて可能となり、高い融合確率を得ることができる。   Next, FIG. 11 shows an example in which the diameter of the first cell having a small average diameter first introduced into the cell fusion container is larger than the diameter of the first micropore. At this time, the electric field strength in the vicinity of the fine holes is the same as that in FIG. In this case, the first cell (18) is fixed to the upper side of the first-stage micropore (17), that is, the second-stage micropore (21). Subsequently, when the second cell (22) having a large average diameter is introduced into the cell fusion container, the second cell is arranged on the micropore surface (31) as shown in FIG. 11, and comes into contact with the first cell in the previous period. . When a DC pulse voltage is applied in this state, the electric field strength in the second micropore is higher than the electric field strength on the surface of the micropore, so that the first average diameter fixed in the second micropore is small. Although a higher voltage is applied to one cell, a voltage that is about 15% lower than that in the case where the cell is fixed in the first micropore is applied to the first cell. The first cells having a relatively large diameter that does not enter the first stage micropores and are fixed in the second stage micropores than the first cells having a relatively small diameter to enter. A voltage that destroys the cell membrane to such an extent that it cannot be repaired is not applied, but a voltage that causes reversible disturbance that can repair the cell membrane is applied. Further, a voltage about 20% lower than the voltage applied to the first cell is applied to the second cell having a large average diameter fixed to the surface of the micropore. By doing so, even if there is a spread in the range of the diameter of the first cell, so that the cell membrane of two types of cells with different average diameters can be reversibly destroyed to the extent that it can be repaired, It becomes possible for the first time to apply a voltage suitable for each size to each cell, and a high fusion probability can be obtained.

また、本発明の細胞融合容器は、1つの微細孔に1つの細胞を固定した方がより高い融合再生確率を得ることが可能となることから、前記した絶縁体に形成される複数の微細孔が、絶縁体の面において、いずれの微細孔からも隣合う微細孔の位置が同じ位置に形成されていること、すなわち図6に示すように、複数の微細孔が絶縁体の面においてアレイ状に形成されていることが好ましい。ここでアレイ状とは、微細孔の縦と横の間隔がほぼ等間隔に配置されていることを意味する。微細孔をアレイ状に配置することで、電極間に印加した電圧によって生じる電界がすべての微細孔にほぼ均等に生じるため、微細孔に細胞が固定される確率も各微細孔で等しくなり、1つの微細孔に1つの細胞を固定できる確率が高くなる。   In addition, since the cell fusion container of the present invention can obtain a higher fusion regeneration probability when one cell is fixed in one micropore, a plurality of micropores formed in the insulator described above. However, on the surface of the insulator, the positions of the adjacent microholes from any one of the microholes are formed at the same position, that is, as shown in FIG. 6, a plurality of microholes are arrayed on the surface of the insulator. It is preferable to be formed. Here, the array shape means that the vertical and horizontal intervals of the fine holes are arranged at substantially equal intervals. By arranging the micropores in an array, the electric field generated by the voltage applied between the electrodes is generated almost uniformly in all the micropores, so that the probability that the cells are fixed in the micropores is the same in each micropore. The probability that one cell can be fixed in one micropore increases.

また、1つの微細孔に1つの細胞を固定するためには、アレイ状に形成した微細孔の間隔が狭すぎても広すぎても不適当となることがある。微細孔の間隔が狭すぎる場合は、1つの微細孔に複数の細胞が固定される確率が高くなり結果として細胞の入らない微細孔が生じる確率が高くなることがある。また、微細孔の間隔が広すぎる場合には、微細孔と微細孔の間に細胞が残されてしまい、細胞の入らない微細孔が生じる確率が高くなることがある。従ってより具体的には、微細孔の隣合う間隔が、微細孔に固定する細胞の直径の0.5〜6倍の範囲であることが好ましく、さらには微細孔の間隔が固定する細胞の直径の1〜2倍程度であることがより好ましい。   In addition, in order to fix one cell in one micropore, it may be inappropriate if the interval between micropores formed in an array is too narrow or too wide. When the interval between the micropores is too narrow, there is a high probability that a plurality of cells are fixed in one micropore, and as a result, there is a high probability that micropores that do not contain cells are generated. Moreover, when the space | interval of a micropore is too wide, a cell will remain between a micropore and a micropore which a cell does not enter may become high. Therefore, more specifically, it is preferable that the interval between adjacent micropores is in the range of 0.5 to 6 times the diameter of the cells fixed in the micropores, and further the cell diameter in which the interval between the micropores is fixed. More preferably, it is about 1 to 2 times.

また、本発明の細胞融合装置に用いる交流電源は、例えば、ピーク電圧が1V〜20V程度、周波数100kHz〜3MHz程度の正弦波、矩形波、三角波、台形波等の交流電圧を出力できる交流電源であれば特に制限はなく、また直流パルス電源は、50V〜1000V、パルス幅10μsec〜50μsec程度の直流パルス電圧を出力できる直流パルス電源であれば特に制限は無い。   The AC power supply used in the cell fusion device of the present invention is, for example, an AC power supply that can output an AC voltage such as a sine wave, a rectangular wave, a triangular wave, or a trapezoidal wave having a peak voltage of about 1 V to 20 V and a frequency of about 100 kHz to 3 MHz. The DC pulse power supply is not particularly limited as long as it is a DC pulse power supply that can output a DC pulse voltage of about 50 V to 1000 V and a pulse width of about 10 μsec to 50 μsec.

本発明の細胞融合装置を用いた場合、1つの微細孔に1つの細胞を固定した方がより高い融合再生確率を得ることが可能となる。ここで、1つの微細孔につき1つの細胞を固定するための交流電圧の波形としては、矩形波であることが好ましい。その理由として、図14〜図17に示すように、交流電圧の波形が正弦波(図14)、三角波(図15)、台形波(図16)に比べて、矩形波(図17)は瞬時に設定したピーク電圧Vp(38)に到達するため、細胞が微細孔に速やかに動くため、細胞が重なって微細孔に入る確率が低くなり、従って、1つの微細孔につき1つの細胞を固定する確率が高くなる。また、細胞は電気的にコンデンサーと見なすことができ、矩形波のピーク電圧が変化しない間は、微細孔に入った細胞には電流が流れにくくなるため、電気力線が生じにくく、細胞の入った微細孔には誘電泳動力が発生しにくくなるため、一度微細孔に細胞が入ると、別の細胞がその微細孔に入る確率が低くなり、電気力線が生じ誘電泳動力が発生している空の微細孔に、順次、細胞が入っていくためである。   When the cell fusion device of the present invention is used, it is possible to obtain a higher fusion regeneration probability by fixing one cell in one micropore. Here, the waveform of the alternating voltage for fixing one cell per one micropore is preferably a rectangular wave. The reason for this is that, as shown in FIGS. 14 to 17, the waveform of the AC voltage is instantaneous compared to the sine wave (FIG. 14), the triangular wave (FIG. 15), and the trapezoidal wave (FIG. 16). Reaches the peak voltage Vp (38) set to, so that the cells move rapidly into the micropores, so the probability that the cells overlap and enter the micropores is low, and thus one cell is fixed per micropore. Probability increases. In addition, cells can be regarded as capacitors electrically, and while the peak voltage of the rectangular wave does not change, it is difficult for current to flow into the cells that have entered the micropores. Since the dielectrophoretic force is less likely to be generated in the micropores, once a cell enters the micropore, the probability that another cell enters the micropore is reduced, and electric lines of force are generated to generate dielectrophoretic force. This is because cells sequentially enter the empty micropores.

また、本発明の細胞融合装置に用いる交流電圧の波形は、直流成分を有しないことが好ましい。これは、直流成分により発生した静電気力により細胞が特定の方向に偏った力を受けて移動するため誘電泳動力により細胞を微細孔に固定することが困難になること、また細胞を含有する懸濁液に含まれるイオンが電極表面で電気反応を生じて発熱が起こり、それにより細胞が熱運動を起こすため、誘電泳動力により細胞の動きを制御することができなくなり細胞を微細孔に引き寄せることが困難となるためである。   Moreover, it is preferable that the waveform of the alternating voltage used for the cell fusion device of the present invention does not have a direct current component. This is because the cells move by receiving a biased force in a specific direction due to the electrostatic force generated by the DC component, and it becomes difficult to fix the cells in the micropores due to the dielectrophoretic force. Ions contained in the suspension cause an electrical reaction on the electrode surface, generating heat, causing the cells to undergo thermal motion, and the cell movement cannot be controlled by the dielectrophoretic force, attracting the cells to the micropores. This is because it becomes difficult.

ところで、本発明の細胞融合方法では、1つの微細孔に第1の細胞を固定した後、固定した第1の細胞のさらに上から第2の細胞を固定する。第2の細胞には誘電泳動力、重力、及び第1の細胞の静電気力が作用し第1の細胞と接触する。しかしながら、前述した理由により、微細孔を第1の細胞が塞いでしまうため電流が流れにくくなることで電気力線の発生が抑制され、第2の細胞に作用する誘電泳動力が弱くなる。従って、第2の細胞を、微細孔に固定した第1の細胞に1つずつ接触させる確率が低下する。しかしながら、第2の細胞の濃度を第1の細胞の濃度よりも高くし、細胞融合領域に過剰に導入することで、第1の細胞と第2の細胞の接触確率を上げることが可能である。この場合、図13に示すように、電界強度は微細孔近傍で最も高く、微細孔から離れるに従って弱くなっていくため、直流パルス電圧を適切に調整することで、微細孔近傍で接触した第1の細胞と第2の細胞のみの細胞膜が可逆的乱れを生じ細胞融合する。従って、微細孔近傍で接触した第1の細胞と第2の細胞のみを選択的に細胞融合させることが可能となり、高い融合確率を得られる。また、第1の細胞の数が微細孔の数より多いと微細孔に固定されない細胞が存在し結果として細胞融合に関与する細胞の割合が少なくなるので、第1の細胞の数は微細孔の数と同数かそれ以下が好ましい。また前述したように、第2の細胞の数が第1の細胞の数より少ないと、第2の細胞と接触できない第1の細胞が存在し結果として細胞融合する2細胞1組の組み合わせが少なくなるため、第2の細胞の数が第1の細胞の数より多いほうが好ましいが、第2の細胞の数があまり多すぎると、現実的に細胞を導入できなくなることがあることから、第2の細胞の数は第1の細胞数と同数〜4倍程度の数が好ましい。   By the way, in the cell fusion method of the present invention, after fixing the first cell in one micropore, the second cell is fixed further from above the fixed first cell. Dielectric migration force, gravity, and electrostatic force of the first cell act on the second cell and come into contact with the first cell. However, for the reasons described above, the first cells block the micropores, making it difficult for the current to flow, thereby suppressing the generation of electric lines of force and weakening the dielectrophoretic force acting on the second cells. Therefore, the probability of bringing the second cells into contact with the first cells fixed in the micropores one by one is reduced. However, it is possible to increase the contact probability between the first cell and the second cell by making the concentration of the second cell higher than that of the first cell and introducing it excessively into the cell fusion region. . In this case, as shown in FIG. 13, the electric field strength is highest near the fine hole and becomes weaker as the distance from the fine hole becomes smaller. Therefore, the first pulse contacted in the vicinity of the fine hole can be achieved by appropriately adjusting the DC pulse voltage. The cell membrane of only the second cell and the second cell cause reversible disturbance and cell fusion. Accordingly, it is possible to selectively fuse only the first cell and the second cell that are in contact with each other in the vicinity of the micropore, and a high fusion probability can be obtained. In addition, if the number of first cells is larger than the number of micropores, there are cells that are not fixed in the micropores, and as a result, the proportion of cells involved in cell fusion decreases, so the number of first cells is the number of micropores. The number is preferably equal to or less than the number. As described above, when the number of the second cells is smaller than the number of the first cells, there is a first cell that cannot contact the second cell, and as a result, there are few combinations of one set of two cells that fuse cells. Therefore, it is preferable that the number of the second cells is larger than the number of the first cells. However, if the number of the second cells is too large, it may be impossible to actually introduce the cells. The number of cells is preferably the same number as the first cell number to about 4 times.

本発明によれば、以下の効果を奏することができる。
(1)本発明の細胞融合容器及び細胞融合装置によれば、微細孔に固定する平均直径の小さい細胞の直径の範囲に広がりがあったとしても、設定した直流パルス電圧で融合できる細胞の直径の範囲が広がり、融合確率を高くすることが可能となる。
(2)本発明の細胞融合容器及び細胞融合装置によれば、平均直径の異なる2種類の細胞の細胞膜を修復可能な程度に可逆的に破壊できるように、それぞれの大きさに合った電圧をそれぞれの細胞に印加することが初めて可能となり、高い融合確率を得ることがきる。
(3)本発明の細胞融合容器及び細胞融合装置によれば、複数の微細孔に固定した2細胞一対の細胞を同時に細胞融合させることが可能となり、2細胞一対での細胞融合を効率的に行うことが可能となる。
(4)本発明の細胞融合容器及び細胞融合装置によれば、1つの微細孔に1つの細胞を固定する確率を高めることができ、微細孔において2細胞を一対で接触させる確率を上げることが可能になる。
(5)本発明の細胞融合方法によれば、微細孔近傍にある2細胞一対を選択的に細胞融合させることができ、2細胞一対での細胞融合を効率的に行うことが可能となる。
(6)本発明の細胞融合方法によれば、平均直径の異なる2種類の細胞の細胞膜を修復可能な程度に可逆的に破壊できるように、それぞれの大きさに合った電圧をそれぞれの細胞に印加することが初めて可能となり、高い融合確率を得ることがきる。
According to the present invention, the following effects can be obtained.
(1) According to the cell fusion container and the cell fusion device of the present invention, the diameter of the cell that can be fused with the set DC pulse voltage even if the range of the diameter of the cell having a small average diameter fixed to the micropore is wide. And the fusion probability can be increased.
(2) According to the cell fusion container and the cell fusion device of the present invention, the voltage suitable for each size is applied so that the cell membranes of two types of cells having different average diameters can be reversibly destroyed to the extent that they can be repaired. It becomes possible for the first time to apply to each cell, and a high fusion probability can be obtained.
(3) According to the cell fusion container and the cell fusion device of the present invention, it is possible to simultaneously fuse a pair of two cells fixed in a plurality of micropores, and efficiently perform cell fusion with a pair of two cells. Can be done.
(4) According to the cell fusion container and the cell fusion device of the present invention, the probability of fixing one cell in one micropore can be increased, and the probability of making a pair of two cells contact in each micropore can be increased. It becomes possible.
(5) According to the cell fusion method of the present invention, two cell pairs in the vicinity of the micropores can be selectively fused, and cell fusion with two cell pairs can be performed efficiently.
(6) According to the cell fusion method of the present invention, a voltage suitable for each size is applied to each cell so that the cell membranes of two types of cells having different average diameters can be reversibly destroyed to the extent that they can be repaired. It becomes possible for the first time to apply, and a high fusion probability can be obtained.

以下、本発明の実施の形態について詳細に説明する。なお本発明は、これらの実施例のみに限定されるものではなく、発明の要旨を逸脱しない範囲で、任意に変更が可能であることは言うまでもない。   Hereinafter, embodiments of the present invention will be described in detail. Needless to say, the present invention is not limited to these examples, and can be arbitrarily changed without departing from the scope of the invention.

(実施例)
図6に実施例に用いた細胞融合装置の概念図を示す。細胞融合装置は大きく分けて、細胞融合容器(13)と電源(4)から構成される。細胞融合容器は、図6に示すように上部電極(14)と下部電極(15)の間に、スペーサー(16)を配置し、複数の円状の微細孔(9)をアレイ状に形成した絶縁体(8)をスペーサーと下部電極で挟んだ構造を有する。また、図6に示した細胞融合容器のAA’断面図、すなわち、微細孔の断面形状を図7に示した。図7に示すように、微細孔の断面形状は、絶縁体が配置された下部電極(15)の側の微細孔の直径が小さく(直径約8.5μm、深さ約4μm)、細胞融合領域(1)側の微細孔の直径が大きく(直径約12μm、深さ約6μm)なるように、2段階の直径を有する微細孔(以下、階段状微細孔と称する)とした。なお、本実施例では、後述するように図18に示すような一般的なフォトリソグラフィーにより階段状微細孔を作製しており、図18に示すように下部電極に階段状微細孔をアレイ状に形成した絶縁体を一体形成した階段状微細孔付き絶縁体一体型下部電極(36)として製作した。
(Example)
The conceptual diagram of the cell fusion apparatus used for the Example at FIG. 6 is shown. The cell fusion device is roughly divided into a cell fusion container (13) and a power source (4). In the cell fusion container, as shown in FIG. 6, a spacer (16) is arranged between the upper electrode (14) and the lower electrode (15), and a plurality of circular micropores (9) are formed in an array. It has a structure in which an insulator (8) is sandwiched between a spacer and a lower electrode. FIG. 7 shows the AA ′ cross-sectional view of the cell fusion container shown in FIG. 6, that is, the cross-sectional shape of the micropores. As shown in FIG. 7, the cross-sectional shape of the micropore is such that the diameter of the micropore on the lower electrode (15) side where the insulator is disposed is small (diameter: about 8.5 μm, depth: about 4 μm), and the cell fusion region (1) The micropores having two-stage diameters (hereinafter referred to as stepped micropores) were formed so that the diameter of the micropores on the side was large (diameter: about 12 μm, depth: about 6 μm). In this embodiment, as will be described later, stepped microholes are produced by general photolithography as shown in FIG. 18, and stepped microholes are formed in an array in the lower electrode as shown in FIG. It was manufactured as an insulator-integrated lower electrode (36) with stepped micropores in which the formed insulator was integrally formed.

上部電極と下部電極は、縦70mm×横40mm×厚さ1mmのパイレックス(登録商標)基板に、ITOを成膜(膜厚150nm)したものを用いた。スペーサーは、縦40mm×横40mm×厚さ1.5mmのシリコンシートの中央を縦20mm×横20mmにくりぬいた形状にして用いた。また、図6に示すように、細胞懸濁液を導入、排出するための導入口(19)と排出口(20)を設けた。ここで、複数の階段状微細孔を有する絶縁体(8)は、図18に示すフォトリソグラフィーとエッチングによる方法により下部電極に一体形成することで下記のように作製した。   The upper electrode and the lower electrode were formed by depositing ITO (film thickness 150 nm) on a Pyrex (registered trademark) substrate 70 mm long × 40 mm wide × 1 mm thick. The spacer was used by hollowing out the center of a silicon sheet having a length of 40 mm, a width of 40 mm, and a thickness of 1.5 mm into a length of 20 mm and a width of 20 mm. Further, as shown in FIG. 6, an introduction port (19) and a discharge port (20) for introducing and discharging the cell suspension were provided. Here, the insulator (8) having a plurality of stepped micropores was fabricated as follows by being integrally formed on the lower electrode by a photolithography and etching method shown in FIG.

まず初めに、ITO(23)を成膜したパイレックス(登録商標)ガラス(24)のITO成膜面にレジスト(25)を4μmの膜厚になるようスピンコーターを用いて塗布し、1分自然乾燥後、ホットプレートを用いてプリベーク(65℃、1分 → 95℃、3分)を行った。レジストにはエポキシ系のネガタイプレジストであるSU−8(化薬マイクロケム製)を用いた。次に、縦30mm×横30mmのエリアに、微細孔と微細孔の縦と横の間隔が20μmで、縦1500個×横1500個のアレイ状に並べた直径φ8.5μmの微細孔パターンを描いた露光用フォトマスク(26)を用いて、UV露光機にてレジストを露光(27)し、現像液(33)で現像した。なお、現像前には、ホットプレートを用いて現像前ベーク(65℃、1分 → 95℃、2分)を行った。露光時間と現像時間は、微細孔の深さがレジストの膜厚と等しい4μmになるように調整し、微細孔の底面にITOが露出するようにした。現像後、イソプロピルアルコール(IPA)にてリンスし、ホットプレートを用いてハードベーク(155℃、30分)を行い、レジストを固め微細孔付き絶縁体一体型下部電極(28)作製した。続いて、作製した微細孔付き絶縁体一体型下部電極(28)上に更にレジスト(25)を6μmの膜厚になるようスピンコーターを用いて塗布し、1分自然乾燥後、ホットプレートを用いてプリベーク(65℃、1分 → 95℃、3分)を行った。レジストには、同様にエポキシ系のネガタイプレジストであるSU−8(化薬マイクロケム製)を用いた。次に、縦1500個×横1500個のアレイ状に並べた直径φ8.5μmの微細孔に対して、微細孔と微細孔の縦と横の間隔が20μmで、縦1500個×横1500個のアレイ状に並べた直径φ12μmの微細孔パターンを描いた露光用フォトマスク(26)を微細孔中心が一致するように重ね合わせ、UV露光機にてレジストを露光(27)し、現像液(33)で現像した。現像前には、ホットプレートを用いて現像前ベーク(65℃、1分 → 95℃、2分)を行った。また、露光時間と現像時間は、微細孔の深さが1段目のレジストと2段目のレジストの膜厚の総和に等しい10μmになるように調整し、微細孔の底面にITOが露出するようにした。現像後、IPAでリンスした基板を階段状微細孔付き絶縁体一体型下部電極(36)とした。このようにして作製した階段状微細孔付き絶縁体一体型下部電極(36)を上部電極(14)、スペーサー(16)とともに図7のように積層し圧着した。スペーサーであるシリコンシートの表面は粘着性があり、圧着することで各部品は密着し、細胞を含有した細胞懸濁液を漏れなく細胞融合容器の中に入れることができた。ここで、スペーサーをくりぬいた面積が縦20mm×横20mmであることから、この空間に存在する微細孔の数は約100万個である。また、電極間に電圧を印加する電源は、交流電源として信号発生器(エヌエフ回路設計ブロック製、WF1966)、パルス電源として細胞融合用電源(ネッパジーン製、LF101)を導電線(3)を介して接続し、交流電源とパルス電源は切り換えスイッチにより電極への接続を切替えられるようにした。   First, a resist (25) was applied to the ITO film-formed surface of Pyrex (registered trademark) glass (24) on which ITO (23) was formed using a spin coater so as to have a film thickness of 4 μm. After drying, prebaking (65 ° C., 1 minute → 95 ° C., 3 minutes) was performed using a hot plate. The resist used was SU-8 (manufactured by Kayaku Microchem), which is an epoxy negative resist. Next, in the area of 30 mm length × 30 mm width, a micro hole pattern with a diameter of 8.5 μm arranged in an array of 1500 vertical x 1500 horizontal, with the vertical and horizontal spacing of the fine holes being 20 μm is drawn. The resist was exposed (27) with a UV exposure machine using the exposure photomask (26), and developed with a developer (33). Prior to development, pre-development baking (65 ° C., 1 minute → 95 ° C., 2 minutes) was performed using a hot plate. The exposure time and development time were adjusted so that the depth of the micropores was 4 μm, which was equal to the resist film thickness, so that the ITO was exposed on the bottom surface of the micropores. After development, the substrate was rinsed with isopropyl alcohol (IPA) and hard-baked (155 ° C., 30 minutes) using a hot plate to harden the resist and produce an insulator-integrated lower electrode (28) with fine holes. Subsequently, a resist (25) is further applied on the produced microporous insulator-integrated lower electrode (28) using a spin coater so as to have a film thickness of 6 μm. After naturally drying for 1 minute, a hot plate is used. And prebaking (65 ° C., 1 minute → 95 ° C., 3 minutes). Similarly, SU-8 (manufactured by Kayaku Microchem), which is an epoxy negative resist, was used as the resist. Next, with respect to the fine holes having a diameter of 8.5 μm arranged in an array of 1500 vertical × 1500 horizontal, the vertical and horizontal distance between the fine holes is 20 μm, and the vertical 1500 × horizontal 1500 An exposure photomask (26) on which fine hole patterns with a diameter of 12 μm arranged in an array are drawn so that the centers of the fine holes coincide with each other, the resist is exposed (27) with a UV exposure machine, and a developer (33 ) And developed. Prior to development, pre-development baking (65 ° C., 1 minute → 95 ° C., 2 minutes) was performed using a hot plate. Also, the exposure time and development time are adjusted so that the depth of the micropores is 10 μm, which is equal to the sum of the film thicknesses of the first-stage resist and the second-stage resist, and the ITO is exposed on the bottom surface of the microholes. I did it. After development, the substrate rinsed with IPA was used as the insulator-integrated lower electrode (36) with stepped micropores. The stepped microporous insulator-integrated lower electrode (36) thus produced was laminated together with the upper electrode (14) and the spacer (16) as shown in FIG. The surface of the silicon sheet, which is a spacer, was sticky, and the parts were brought into close contact with each other by pressure bonding, and the cell suspension containing the cells could be put into the cell fusion container without leakage. Here, since the area formed by hollowing out the spacer is 20 mm long × 20 mm wide, the number of micropores existing in this space is about 1 million. In addition, the power source for applying a voltage between the electrodes is a signal generator (NF circuit design block, WF1966) as an AC power source, and a cell fusion power source (Neppagene, LF101) as a pulse power source via a conductive wire (3). The AC power supply and the pulse power supply can be switched to the electrode by a changeover switch.

続いて、前記細胞融合装置に0.1mg/mLのウシ血清アルブミン(BSA)水溶液600μLをスペーサーの導入口より1mL容量のピペットを用いて注入し、直流パルス電源により、電極間に電圧900V、パルス幅30μsのパルス電圧を99回印加し、階段状微細孔付き絶縁体一体型下部電極の絶縁体の表面を親水化させた。ここで、親水化処理は疎水性である絶縁体表面をBSAにて修飾することにより親水性にし、細胞と絶縁膜との付着を防止する役割を担う。   Subsequently, 600 μL of 0.1 mg / mL bovine serum albumin (BSA) aqueous solution was injected into the cell fusion device from the introduction port of the spacer using a 1 mL pipette, and a voltage of 900 V between the electrodes was pulsed by a DC pulse power supply. A pulse voltage having a width of 30 μs was applied 99 times to hydrophilize the surface of the insulator of the stepped microporous insulator-integrated lower electrode. Here, the hydrophilization treatment plays a role of making the surface of the insulating insulator hydrophobic by making it hydrophilic with BSA and preventing adhesion between the cells and the insulating film.

上記、親水化処理を行った階段状微細孔付き絶縁体一体型下部電極で構成した細胞融合装置を用いて、後述する実験を行った。細胞は、マウス抗体産生細胞(φ5μm)とマウスミエローマ細胞(φ10μm)を用いた。両方の細胞各々をBSA(1mg/mL)含有の300mMの濃度のマンニトール水溶液に懸濁させ、マウス抗体産生細胞、マウスミエローマ細胞は1.7×10個/mLの密度になるように細胞懸濁液を調製した。ここで、BSAは電圧印加による細胞へのダメージを軽減する役割を担う。また、両細胞懸濁液には、細胞融合での細胞膜の再生を促進するために、0.1mM濃度の塩化カルシウム、0.1mM濃度の塩化マグネシウムを添加した。 The experiment described below was performed using the above-described cell fusion device composed of the insulator-integrated lower electrode with stepped micropores subjected to the hydrophilic treatment. As the cells, mouse antibody-producing cells (φ5 μm) and mouse myeloma cells (φ10 μm) were used. Both cells were suspended in 300 mM mannitol aqueous solution containing BSA (1 mg / mL), and mouse antibody-producing cells and mouse myeloma cells were suspended at a density of 1.7 × 10 6 cells / mL. A suspension was prepared. Here, BSA plays a role of reducing damage to cells due to voltage application. Both cell suspensions were added with 0.1 mM calcium chloride and 0.1 mM magnesium chloride to promote cell membrane regeneration during cell fusion.

上記マウス抗体産生細胞の細胞懸濁液600μL(マウス抗体産生細胞数:約100万個)をスペーサーの導入口より1mL容量のピペットを用いて注入し、交流電源により電圧10Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したところ、2〜3秒程度の極めて短い時間でアレイ状に形成した複数の微細孔の1つずつに1〜2個程度のマウス抗体産生細胞を固定することができ、複数の細胞をアレイ状に配置させることができた。このときの、1つの微細孔に1〜2個程度のマウス抗体産生細胞が入る確率は約90%であった。   600 μL of the cell suspension of mouse antibody-producing cells (number of mouse antibody-producing cells: about 1 million) was injected from the introduction port of the spacer using a 1 mL pipette, and a rectangular wave with a voltage of 10 Vpp and a frequency of 3 MHz from an AC power source. When an alternating voltage is applied between the electrodes, about 1 to 2 mouse antibody-producing cells can be fixed in each of a plurality of micropores formed in an array in an extremely short time of about 2 to 3 seconds. A plurality of cells could be arranged in an array. At this time, the probability that about 1 to 2 mouse antibody-producing cells enter one micropore was about 90%.

続いて、交流電源により電圧10Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記マウスミエローマ細胞の細胞懸濁液600μL(マウスミエローマ細胞数:約100万個)をスペーサーの導入口より1mL容量のピペットを用いて注入したところ、微細孔に固定したマウス抗体産生細胞とマウスミエローマ細胞を微細孔において接触することができた。このときの、1つの微細孔に1つのマウスミエローマ細胞が入る確率は約70%であった。マウスミエローマ細胞を導入する際に、先に入れたマウス抗体産生細胞が微細孔から脱離する様子はほとんど観察されなかったことから、微細孔においてマウス抗体産生細胞とマウスミエローマ細胞が2細胞一対で接触している確立は、約63%(=90%×70%)であると推定される。   Subsequently, 600 μL of the mouse myeloma cell suspension (number of mouse myeloma cells: about 1 million cells) was introduced into the spacer inlet while a rectangular wave AC voltage having a voltage of 10 Vpp and a frequency of 3 MHz was applied between the electrodes by an AC power source. When a 1 mL pipette was used for injection, mouse antibody-producing cells fixed in the micropores and mouse myeloma cells could be contacted in the micropores. At this time, the probability of one mouse myeloma cell entering one micropore was about 70%. When the mouse myeloma cells were introduced, it was hardly observed that the mouse antibody-producing cells put in the micropores were detached from the micropores. Therefore, the mouse antibody-producing cells and the mouse myeloma cells were paired in pairs in the micropores. Estimated contact is estimated to be approximately 63% (= 90% × 70%).

次に、電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切り換えて、電極間に電圧80V、パルス幅30μsのパルス電圧を印加し細胞融合を行い、そのまま15分静置したあと細胞融合容器内の細胞懸濁液をHAT培地(H:ヒポキサンチン(hypoxanthine)、A:アミノプテリン(aminopterine)、T:チミジン(thymidine)を成分とする培地)に入れ、融合細胞の培養を行った。なお、HAT培地は、融合細胞のみを選択的に増殖させる培地である。細胞懸濁液を入れたHAT培地を5%COインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、約4900個の融合細胞を確認することができ、全マウス抗体産生細胞100万個に対して約49/10000の融合確率を得られた。これは、後述する比較例における融合確率約38/10000の約1.3倍の融合確率であり、マウス抗体産生細胞の粒径分布の影響を軽減した効率的な2細胞一対での融合を確認することができた。 Next, the power source is switched to a DC pulse power source (manufactured by Nepagene Co., Ltd., LF101), a cell fusion is performed by applying a pulse voltage of 80 V and a pulse width of 30 μs between the electrodes, and the cell fusion container is allowed to stand for 15 minutes. The cell suspension was placed in a HAT medium (H: hypoxanthine, A: medium containing aminopterine, T: thymidine), and the fused cells were cultured. The HAT medium is a medium for selectively growing only fused cells. HAT medium containing the cell suspension was placed in a 5% CO 2 incubator and cultured, and after 6 days, the number of fused cells was counted. As a result, about 4900 fused cells could be confirmed, and all mouse antibody-producing cells A fusion probability of about 49/10000 was obtained for 1 million pieces. This is a fusion probability that is about 1.3 times the fusion probability of about 38/10000 in the comparative example to be described later, confirming efficient fusion of two cell pairs with reduced influence of the particle size distribution of mouse antibody-producing cells. We were able to.

(比較例)
図19に比較例に用いた細胞融合装置の概念図を示す。なお、図19は本発明の細胞融合装置の各部品の構成を分かりやすくするために離した状態にて図示している。また、図20では本発明の細胞融合装置を本来の構成として各部品を組み上げた状態とした上で、BB’断面図として図示した。図において、細胞融合装置は大きく分けて、細胞融合容器(13)と電源(4)から構成される。細胞融合容器は、図19に示すように上部電極(14)と下部電極(15)の間に、スペーサー(16)を配置し、複数の微細孔をアレイ状に形成した絶縁体(8)をスペーサーと下部電極で挟んだ構造を有する。なお、比較例では実施例と同様に一般的なフォトリソグラフィーとエッチングにより、下部電極(15)と複数の微細孔をアレイ状に形成した絶縁体を一体形成した微細孔付き絶縁体一体型下部電極(28)を用いた。
(Comparative example)
FIG. 19 shows a conceptual diagram of the cell fusion device used in the comparative example. FIG. 19 shows the components of the cell fusion device of the present invention in a separated state for easy understanding. Further, in FIG. 20, the cell fusion device of the present invention is shown as a cross-sectional view taken along the line BB ′ after the components are assembled in an original configuration. In the figure, the cell fusion device is roughly divided into a cell fusion container (13) and a power source (4). As shown in FIG. 19, the cell fusion container includes an insulator (8) in which a spacer (16) is arranged between an upper electrode (14) and a lower electrode (15), and a plurality of micropores are formed in an array. It has a structure sandwiched between a spacer and a lower electrode. In the comparative example, the lower electrode (15) and the insulator-integrated lower electrode with a fine hole integrally formed with the insulator in which a plurality of fine holes are formed in an array shape by general photolithography and etching as in the embodiment. (28) was used.

上部電極と下部電極は、縦70mm×横40mm×厚さ1mmのパイレックス(登録商標)基板に、ITOを成膜(膜厚150nm)したものを用いた。スペーサーは、縦40mm×横40mm×厚さ1.5mmのシリコンシートの中央を縦20mm×横20mmにくりぬいた形状にして用いた。また、図7に示すように、細胞が含有した細胞懸濁液を導入、排出するための導入口(19)と排出口(20)を設けた。ここで、複数の微細孔を有する絶縁体(8)は、図5に示すフォトリソグラフィーとエッチングによる方法により下部電極に一体形成することで以下のように作製した。   The upper electrode and the lower electrode were formed by depositing ITO (film thickness 150 nm) on a Pyrex (registered trademark) substrate 70 mm long × 40 mm wide × 1 mm thick. The spacer was used by hollowing out the center of a silicon sheet having a length of 40 mm, a width of 40 mm, and a thickness of 1.5 mm into a length of 20 mm and a width of 20 mm. Moreover, as shown in FIG. 7, the introduction port (19) and the discharge port (20) for introducing and discharging the cell suspension containing the cells were provided. Here, the insulator (8) having a plurality of fine holes was fabricated as follows by being integrally formed on the lower electrode by a photolithography and etching method shown in FIG.

まずはじめに、ITO(23)を成膜したパイレックス(登録商標)ガラス(24)のITO成膜面にレジスト(25)を4μmの膜厚になるようスピンコーターを用いて塗布し、1分自然乾燥後、ホットプレートを用いてプリベーク(65℃、1分 → 95℃、3分)を行った。レジストにはエポキシ系のネガタイプレジストであるSU−8(化薬マイクロケム製)を用いた。次に、縦30mm×横30mmのエリアに、微細孔と微細孔の縦と横の間隔が30μmで、縦1000個×横1000個のアレイ状に並べた直径φ8.5μmの微細孔パターンを描いた露光用フォトマスク(26)を用いて、UV露光機にてレジストを露光(27)し、現像液(33)で現像した。露光時間と現像時間は、微細孔の深さがレジストの膜厚と等しい4μmになるように調整し、微細孔の底面にITOが露出するようにした。現像後、イソプロピルアルコール(IPA)にてリンスし、ホットプレートを用いてハードベーク(155℃、30分)を行い、レジストを固め微細孔付き絶縁体一体型下部電極(28)作製した。このようにして作製した微細孔付き絶縁体一体型下部電極(28)を、上部電極(14)、スペーサー(16)とともに図20のように積層し圧着した。図20は、図19に示した細胞融合容器のBB’断面図である。スペーサーであるシリコンシートの表面は粘着性があり、圧着することで各部品は密着し、細胞を含有した細胞懸濁液を漏れなく細胞融合容器の中に入れることができた。ここで、スペーサーをくりぬいた面積が縦20mm×横20mmであることから、この空間に存在する微細孔の数は約40万個である。また、電極間に電圧を印加する電源は、交流電源として信号発生器(エヌエフ回路設計ブロック製、WF1966)、直流パルス電源として細胞融合用電源(ネッパジーン製、LF101)を導電線(3)を介して接続し、交流電源と直流パルス電源は切換スイッチにより電極への接続を切り換えられるようにした。   First, a resist (25) was applied to the ITO film-forming surface of Pyrex (registered trademark) glass (24) on which ITO (23) was formed using a spin coater so as to have a film thickness of 4 μm. Then, pre-baking (65 degreeC, 1 minute-> 95 degreeC, 3 minutes) was performed using the hotplate. The resist used was SU-8 (manufactured by Kayaku Microchem), which is an epoxy negative resist. Next, a microhole pattern having a diameter of 8.5 μm is arranged in an area of 30 mm in length and 30 mm in width and arranged in an array of 1000 in length and 1000 in width with an interval between the holes of 30 μm. The resist was exposed (27) with a UV exposure machine using the exposure photomask (26), and developed with a developer (33). The exposure time and development time were adjusted so that the depth of the micropores was 4 μm, which was equal to the resist film thickness, so that the ITO was exposed on the bottom surface of the micropores. After development, the substrate was rinsed with isopropyl alcohol (IPA) and hard-baked (155 ° C., 30 minutes) using a hot plate to harden the resist and produce an insulator-integrated lower electrode (28) with fine holes. The thus-produced insulator-integrated lower electrode (28) with fine holes was laminated and pressure-bonded together with the upper electrode (14) and the spacer (16) as shown in FIG. 20 is a BB ′ cross-sectional view of the cell fusion container shown in FIG. The surface of the silicon sheet, which is a spacer, was sticky, and the parts were brought into close contact with each other by pressure bonding, and the cell suspension containing the cells could be put into the cell fusion container without leakage. Here, since the area where the spacer is hollowed is 20 mm long × 20 mm wide, the number of micropores existing in this space is about 400,000. The power source for applying a voltage between the electrodes is a signal generator (NF circuit design block, WF1966) as an AC power source, and a cell fusion power source (Neppagene, LF101) as a DC pulse power source via a conductive wire (3). The AC power supply and DC pulse power supply can be switched to the electrode by a changeover switch.

続いて、前記細胞融合装置に0.1mg/mLのウシ血清アルブミン(BSA)水溶液600μLをスペーサーの導入口より1mL容量のピペットを用いて注入し、直流パルス電源により、電極間に電圧900V、パルス幅30μsのパルス電圧を99回印加し、微細孔付き絶縁体一体型下部電極の絶縁体の表面を親水化させた。ここで、親水化処理は疎水性である絶縁体表面をBSAにて修飾することにより親水性にし、細胞と絶縁膜との付着を防止する役割を担う。   Subsequently, 600 μL of 0.1 mg / mL bovine serum albumin (BSA) aqueous solution was injected into the cell fusion device from the introduction port of the spacer using a 1 mL pipette, and a voltage of 900 V between the electrodes was pulsed by a DC pulse power supply. A pulse voltage having a width of 30 μs was applied 99 times to hydrophilize the surface of the insulator of the microporous integrated insulator lower electrode. Here, the hydrophilization treatment plays a role of making the surface of the insulating insulator hydrophobic by making it hydrophilic with BSA and preventing adhesion between the cells and the insulating film.

上記、親水化処理を行った微細孔付き絶縁体一体型下部電極で構成した細胞融合装置を用いて、後述する実験を行った。細胞は、マウス抗体産生細胞(φ5μm)とマウスミエローマ細胞(φ10μm)を用いた。両方の細胞を300mMの濃度のマンニトール水溶液に懸濁させ、0.7×10個/mLの密度になるように細胞懸濁液を調整した。両細胞懸濁液には、細胞融合での細胞膜の再生を促進するために、0.1mMの塩化カルシウム、0.1mMの塩化マグネシウムを添加した。 An experiment described later was performed using the above-described cell fusion device constituted by the insulator-integrated lower electrode with micropores subjected to the hydrophilic treatment. As the cells, mouse antibody-producing cells (φ5 μm) and mouse myeloma cells (φ10 μm) were used. Both cells were suspended in an aqueous mannitol solution having a concentration of 300 mM, and the cell suspension was adjusted to a density of 0.7 × 10 6 cells / mL. To both cell suspensions, 0.1 mM calcium chloride and 0.1 mM magnesium chloride were added in order to promote cell membrane regeneration by cell fusion.

まずはじめに、上記マウス抗体産生細胞の細胞懸濁液600μL(マウス抗体産生細胞数:約40万個)をスペーサーの導入口より1mL容量のピペットを用いて注入し、交流電源により電圧10Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したところ、2〜3秒程度の極めて短い時間でアレイ状に形成した複数の微細孔に1つずつ、1つのマウス抗体産生細胞を固定することができ、複数の細胞をアレイ状に配置させることができた。このときの、1つの微細孔に1つのマウス抗体産生細胞が入る確率は約85%であった。   First, 600 μL of the mouse antibody-producing cell suspension (number of mouse antibody-producing cells: about 400,000) was injected from the introduction port of the spacer using a 1 mL pipette, and the voltage was 10 Vpp and the frequency was 3 MHz from an AC power source. When applying the rectangular wave AC voltage between the electrodes, one mouse antibody-producing cell can be fixed one by one in a plurality of micropores formed in an array in an extremely short time of about 2 to 3 seconds, Multiple cells could be arranged in an array. At this time, the probability that one mouse antibody-producing cell enters one micropore was about 85%.

続いて、交流電源により電圧10Vpp、周波数3MHzの矩形波交流電圧を電極間に印加したまま、上記マウスミエローマ細胞の細胞懸濁液600μL(マウスミエローマ細胞数:約40万個)をスペーサーの導入口より1mL容量のピペットを用いて注入したところ、2〜3秒程度の極めて短い時間でアレイ状に形成した複数の微細孔に1つずつ、1つのマウスミエローマ細胞を固定することができ、複数の細胞をアレイ状に配置させることができた。このときの、1つの微細孔に1つのマウスミエローマ細胞が入る確率は約70%であった。マウスミエローマ細胞を導入する際に、先に入れたマウス抗体産生細胞が微細孔から脱離する様子はほとんど観察されなかったことから、微細孔においてマウス抗体産生細胞とマウスミエローマ細胞が2細胞一対で接触している確立は、約60%(=85%×70%)であると推定される。   Subsequently, 600 μL of the cell suspension of mouse myeloma cells (number of mouse myeloma cells: about 400,000 cells) was applied to the spacer inlet while a rectangular wave AC voltage having a voltage of 10 Vpp and a frequency of 3 MHz was applied between the electrodes by an AC power source. When injected with a 1 mL pipette, one mouse myeloma cell can be fixed one by one in a plurality of micropores formed in an array in an extremely short time of about 2 to 3 seconds. Cells could be arranged in an array. At this time, the probability of one mouse myeloma cell entering one micropore was about 70%. When the mouse myeloma cells were introduced, it was hardly observed that the mouse antibody-producing cells put in the micropores were detached from the micropores. Therefore, the mouse antibody-producing cells and the mouse myeloma cells were paired in pairs in the micropores. Estimated contact is estimated to be about 60% (= 85% × 70%).

次に、電源を直流パルス電源(ネッパジーン株式会社製、LF101)に切り換えて、電極間に電圧100V、パルス幅30μsの直流パルス電圧を印加し細胞融合を行い、そのまま10分静置したあと細胞融合容器内の細胞懸濁液をHAT培地(H:ヒポキサンチン(hypoxanthine)、A:アミノプテリン(aminopterine)、T:チミジン(thymidine)を成分とする培地)に入れ、融合細胞の培養を行った。なお、HAT培地は、融合細胞のみを選択的に増殖させる培地である。細胞懸濁液を入れたHAT培地をCOインキュベータに入れて細胞培養を行い6日後に融合細胞をカウントした結果、約1520個の融合細胞を確認することができ、全マウス抗体産生細胞40万個に対して約38/10000の融合確率であった。 Next, the power supply is switched to a DC pulse power supply (LF101, manufactured by Nepagene Corporation), a cell fusion is performed by applying a DC pulse voltage with a voltage of 100 V and a pulse width of 30 μs between the electrodes, and the cells are allowed to stand for 10 minutes, and then the cells are fused. The cell suspension in the container was placed in a HAT medium (H: hypoxanthine, A: medium containing aminopterine, T: thymidine), and the fused cells were cultured. The HAT medium is a medium for selectively growing only fused cells. The HAT medium containing the cell suspension was placed in a CO 2 incubator and cultured, and after 6 days, the number of fused cells was counted. As a result, about 1520 fused cells could be confirmed. The fusion probability was about 38/10000 per piece.

特許文献1記載の細胞融合容器の断面図を示した概念図である。It is the conceptual diagram which showed sectional drawing of the cell fusion container of patent document 1. マウス脾臓細胞とマウスミエローマ細胞の直径分布の例を示した図である。It is the figure which showed the example of the diameter distribution of a mouse | mouth spleen cell and a mouse | mouth myeloma cell. 特許文献1記載の細胞融合容器において、微細孔の直径が2つの細胞よりの直径よりも大きい場合の例を示す概念図である。In the cell fusion container of patent document 1, it is a conceptual diagram which shows the example in case the diameter of a micropore is larger than the diameter from two cells. 特許文献1記載の細胞融合容器において、微細孔の直径が2つの細胞よりの直径よりも小さい場合の例を示す概念図である。In the cell fusion container of patent document 1, it is a conceptual diagram which shows the example in case the diameter of a micropore is smaller than the diameter from two cells. 微細孔付き絶縁体一体型下部電極を作製するときの、一般的なフォトリソグラフィーとエッチング方法の概略図である。It is the schematic of general photolithography and an etching method when producing the insulator integrated lower electrode with a fine hole. 本発明の細胞融合装置の一例及び、実施例に用いた細胞融合装置を示す概念図である。It is a conceptual diagram which shows an example of the cell fusion apparatus of this invention, and the cell fusion apparatus used for the Example. 図6に示した細胞融合容器のAA’断面図である。FIG. 7 is an AA ′ sectional view of the cell fusion container shown in FIG. 6. 特許文献4において、第1の細胞のうち直径の比較的小さい細胞が微細孔の中に入った場合の一例を示す図である。In patent document 4, it is a figure which shows an example when the cell with a comparatively small diameter enters into a micropore among the 1st cells. 特許文献4において、第1の細胞のうち直径の比較的大きい細胞が微細孔の中に入らなかった場合の一例を示す図である。In patent document 4, it is a figure which shows an example when the cell with comparatively large diameter among 1st cells does not enter in a micropore. 本発明において、第1の細胞のうち直径の比較的小さい細胞が1段目の微細孔の中に入った場合の一例を示す図である。In this invention, it is a figure which shows an example at the time of a cell with comparatively small diameter entering into the 1st step | paragraph micropore among the 1st cells. 本発明において、第1の細胞のうち直径の比較的大きい細胞が1段目の微細孔の中に入らず、2段目の微細孔の中に入った場合の一例を示す図である。In this invention, it is a figure which shows an example at the time of a cell with comparatively large diameter among 1st cells not entering into the 1st step | paragraph micropore, but entering into the 2nd step | paragraph micropore. 微細孔付近の電界強度の分布を示した図である。It is the figure which showed distribution of the electric field strength of a micropore vicinity. 階段状微細孔付近の電界強度の分布を示した図である。It is the figure which showed distribution of the electric field strength of the stair-like fine hole vicinity. 本発明に用いる交流電圧の波形の一例として、正弦波を示した図である。It is the figure which showed the sine wave as an example of the waveform of the alternating voltage used for this invention. 本発明に用いる交流電圧の波形の一例として、三角波を示した図である。It is the figure which showed the triangular wave as an example of the waveform of the alternating voltage used for this invention. 本発明に用いる交流電圧の波形の一例として、台形波を示した図である。It is the figure which showed the trapezoid wave as an example of the waveform of the alternating voltage used for this invention. 本発明に用いる交流電圧の波形の一例として、矩形波を示した図である。It is the figure which showed the rectangular wave as an example of the waveform of the alternating voltage used for this invention. 階段状微細孔付き絶縁体一体型下部電極を作製するときの、一般的なフォトリソグラフィーとエッチング方法の概略図である。It is the schematic of the general photolithography and the etching method when producing the insulator integrated lower electrode with a step-like fine hole. 比較例に用いた細胞融合装置を示す概念図である。It is a conceptual diagram which shows the cell fusion apparatus used for the comparative example. 図19に示した細胞融合容器のBB’断面図である。FIG. 20 is a BB ′ sectional view of the cell fusion container shown in FIG. 19. 特許文献1記載の細胞融合容器の動作を説明する第1の図である。FIG. 10 is a first diagram illustrating the operation of the cell fusion container described in Patent Document 1. 特許文献1記載の細胞融合容器の動作を説明する第2の図である。It is the 2nd figure explaining operation of a cell fusion container given in patent documents 1. 特許文献1記載の細胞融合容器の動作を説明する第3の図である。FIG. 10 is a third diagram illustrating the operation of the cell fusion container described in Patent Document 1.

符号の説明Explanation of symbols

1:細胞融合領域
2:電極
3:導電線
4:電源
5:交流電源
6:直流パルス電源
7:切替スイッチ
8:絶縁体
9:微細孔
10:細胞A
11:細胞B
12:電気力線
13:細胞融合容器
14:上部電極
15:下部電極
16:スペーサー
17:1段目の微細孔
18:第1の細胞
19:導入口
20:排出口
21:2段目の微細孔
22:第2の細胞
23:ITO
24:パイレックス(登録商標)ガラス
25:レジスト
26:露光用フォトマスク
27:露光
28:微細孔付き絶縁体一体型下部電極
29:導入流路
30:排出流路
31:微細孔表面
32:融合細胞
33:現像液
34:ピーク電圧Vp
35:隔壁
36:階段状微細孔付き絶縁体一体型下部電極
1: Cell fusion region 2: Electrode 3: Conductive wire 4: Power supply 5: AC power supply 6: DC pulse power supply 7: Changeover switch 8: Insulator 9: Micropore 10: Cell A
11: Cell B
12: Electric field line 13: Cell fusion container 14: Upper electrode 15: Lower electrode 16: Spacer 17: First stage micropore 18: First cell 19: Inlet 20: Outlet 21: Second stage micro Hole 22: Second cell 23: ITO
24: Pyrex (registered trademark) glass 25: Resist 26: Photomask for exposure 27: Exposure 28: Insulator-integrated lower electrode with micropores 29: Introduction channel 30: Discharge channel 31: Surface of micropores 32: Fusion cell 33: Developer 34: Peak voltage Vp
35: Partition 36: Insulator-integrated lower electrode with stepped micropores

Claims (10)

細胞融合領域内に対向して配置される導電部材からなる一対の電極と、前記一対の電極間に平板状のスペーサーを介して配置され、かつ前記対向して配置された電極の方向に貫通した複数の微細孔を有した平板状の絶縁体を備えた細胞融合容器であって、前記絶縁体が前記電極のいずれか一方の細胞融合領域側の電極面上に配置されており、前記微細孔の各々の断面が開口上部より前記電極と接する開口底部に向かって開口面の面積が小さくなる形状である、細胞融合容器。 A pair of electrodes made of conductive members arranged opposite to each other in the cell fusion region, and a flat spacer disposed between the pair of electrodes and penetrating in the direction of the oppositely arranged electrodes A cell fusion container comprising a flat insulator having a plurality of micropores, wherein the insulator is disposed on the electrode surface on the cell fusion region side of the electrode, and the micropores A cell fusion container in which each of the cross-sections has a shape in which the area of the opening surface decreases from the top of the opening toward the bottom of the opening contacting the electrode. 前記微細孔の各々の断面が、開口上部より前記電極と接する開口底部に向かって2段階以上の直径と深さとなる形状である、請求項1記載の細胞融合容器。 The cell fusion container according to claim 1, wherein the cross section of each of the micropores has a shape having a diameter and a depth of two or more steps from the top of the opening toward the bottom of the opening in contact with the electrode. 前記微細孔の各々の断面が開口上部側と開口底部側とで2段階の直径と深さとなる形状を有しており、異なる平均直径の2種の細胞を細胞融合する細胞融合容器であって、開口底部側の微細孔の直径が細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以上かつ平均直径の大きい細胞の平均直径以下、当該微細孔の深さが細胞融合する2細胞のうち平均直径の小さい細胞の平均直径以下であり、開口上部側の微細孔の直径が細胞融合する2細胞のうち平均直径の大きい細胞の平均直径より大きい、請求項1又は請求項2に記載の細胞融合容器。 A cross-section of each of the micropores has a shape with a two-stage diameter and depth on the upper side of the opening and the bottom side of the opening, and is a cell fusion container for fusing two types of cells having different average diameters. The diameter of the micropores on the bottom side of the opening is greater than the average diameter of the cells having the smaller average diameter and less than the average diameter of the cells having the larger average diameter, and the depth of the micropores The average diameter of the cells having a small average diameter is not more than the average diameter of the cells, and the diameter of the micropore on the upper side of the opening is larger than the average diameter of the cells having the large average diameter among the two cells to be fused. Cell fusion container. 前記絶縁体に形成される複数の微細孔が、絶縁体の面において、いずれの微細孔からも隣合う微細孔の位置が同じ位置に形成されている、請求項1〜3のいずれかに記載の細胞融合容器。 The plurality of micropores formed in the insulator are formed in the same position on the surface of the insulator, in which the positions of the micropores adjacent to each other are the same. Cell fusion container. 前記絶縁体に形成される複数の微細孔が、絶縁体の面において、アレイ状に形成されている、請求項4に記載の細胞融合容器。 The cell fusion container according to claim 4, wherein the plurality of micropores formed in the insulator are formed in an array on the surface of the insulator. 前記微細孔の隣合う間隔が、微細孔に入れる直径の小さい細胞の平均直径の0.5倍以上6倍以下である、請求項4または請求項5に記載の細胞融合容器。 The cell fusion container according to claim 4 or 5, wherein an interval between adjacent micropores is 0.5 to 6 times the average diameter of cells having a small diameter to be inserted into the micropores. 前記スペーサーが、前記細胞融合領域を形成する貫通孔を有する、請求項1〜6のいずれかに記載の細胞融合容器。 The cell fusion container according to any one of claims 1 to 6, wherein the spacer has a through-hole forming the cell fusion region. 前記スペーサーが、細胞を導入する導入流路および細胞を排出する排出流路を有する、請求項1〜7のいずれかに記載の細胞融合容器。 The cell fusion container according to any one of claims 1 to 7, wherein the spacer has an introduction channel for introducing cells and a discharge channel for discharging cells. 請求項1〜8のいずれかに記載の細胞融合容器と、前記細胞融合容器の前記一対の電極に電圧を印加する電源と、を備えた細胞融合装置であって、前記電源が、前記細胞融合容器の前記一対の電極に交流電圧を印加するための交流電源及び直流パルス電圧を印加するための直流パルス電源からなり、前記交流電源と前記直流パルス電源とを切替える切替機構を有する、細胞融合装置。 A cell fusion device comprising: the cell fusion container according to any one of claims 1 to 8; and a power source for applying a voltage to the pair of electrodes of the cell fusion container, wherein the power source is the cell fusion. A cell fusion device comprising an AC power source for applying an AC voltage to the pair of electrodes of the container and a DC pulse power source for applying a DC pulse voltage, and having a switching mechanism for switching between the AC power source and the DC pulse power source . 請求項9に記載の細胞融合装置を用いて第1の細胞と当該第1の細胞の平均直径よりも大きい平均直径を有する第2の細胞とを細胞融合する方法であって、前記細胞融合領域内に前記第1の細胞を導入し、交流電圧を印加することで前記微細孔内に前記第1の細胞を固定した後、前記細胞融合領域内に前記第2の細胞を導入して、交流電圧を印加することで前記第1の細胞に前記第2の細胞を微細孔の位置において接触させ、直流パルス電圧を印加する、細胞融合方法。 A method for cell fusion of a first cell and a second cell having an average diameter larger than the average diameter of the first cell using the cell fusion device according to claim 9, wherein the cell fusion region The first cells are introduced into the cells, and the first cells are fixed in the micropores by applying an alternating voltage, and then the second cells are introduced into the cell fusion region. A cell fusion method, wherein a voltage is applied to bring the second cell into contact with the first cell at the position of the micropore and a DC pulse voltage is applied.
JP2008176764A 2008-07-07 2008-07-07 Cell fusion vessel, cell fusion apparatus, and method for cell fusion using the same Pending JP2010011824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176764A JP2010011824A (en) 2008-07-07 2008-07-07 Cell fusion vessel, cell fusion apparatus, and method for cell fusion using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176764A JP2010011824A (en) 2008-07-07 2008-07-07 Cell fusion vessel, cell fusion apparatus, and method for cell fusion using the same

Publications (1)

Publication Number Publication Date
JP2010011824A true JP2010011824A (en) 2010-01-21

Family

ID=41698609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176764A Pending JP2010011824A (en) 2008-07-07 2008-07-07 Cell fusion vessel, cell fusion apparatus, and method for cell fusion using the same

Country Status (1)

Country Link
JP (1) JP2010011824A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174391A (en) * 2011-03-10 2011-09-07 北京航空航天大学 Cell electrofusion chip
WO2011149032A1 (en) * 2010-05-26 2011-12-01 東ソー株式会社 Biological-sample affixing device
JP2012013549A (en) * 2010-06-30 2012-01-19 Tosoh Corp Particle fixing structure, particle analyzing device, and analyzing method
JP2012013550A (en) * 2010-06-30 2012-01-19 Tosoh Corp Particle fixing structure, particle analyzing device, and analyzing method
JP2012013551A (en) * 2010-06-30 2012-01-19 Tosoh Corp Particle fixing structure, particle analyzing device, and analyzing method
JP2013255475A (en) * 2012-06-14 2013-12-26 Pearl Kogyo Co Ltd Method for transferring selected molecule into target cell and selected molecule transfer device used for the same
US9249385B1 (en) 2014-12-18 2016-02-02 City University Of Hong Kong System and method for fusing cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195768A (en) * 1987-10-07 1989-04-13 Hitachi Ltd Cell fusion unit
JPH01191676A (en) * 1988-01-25 1989-08-01 Hitachi Ltd Chamber for cell fusion
JP2007274987A (en) * 2006-04-07 2007-10-25 Osaka Univ Chip for cell fusion
JP2007295912A (en) * 2005-06-13 2007-11-15 Tosoh Corp Cell fusion chamber, cell fusion device, and method for cell fusion using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195768A (en) * 1987-10-07 1989-04-13 Hitachi Ltd Cell fusion unit
JPH01191676A (en) * 1988-01-25 1989-08-01 Hitachi Ltd Chamber for cell fusion
JP2007295912A (en) * 2005-06-13 2007-11-15 Tosoh Corp Cell fusion chamber, cell fusion device, and method for cell fusion using the same
JP2007274987A (en) * 2006-04-07 2007-10-25 Osaka Univ Chip for cell fusion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149032A1 (en) * 2010-05-26 2011-12-01 東ソー株式会社 Biological-sample affixing device
JPWO2011149032A1 (en) * 2010-05-26 2013-07-25 東ソー株式会社 Biological sample fixing device
JP2012013549A (en) * 2010-06-30 2012-01-19 Tosoh Corp Particle fixing structure, particle analyzing device, and analyzing method
JP2012013550A (en) * 2010-06-30 2012-01-19 Tosoh Corp Particle fixing structure, particle analyzing device, and analyzing method
JP2012013551A (en) * 2010-06-30 2012-01-19 Tosoh Corp Particle fixing structure, particle analyzing device, and analyzing method
CN102174391A (en) * 2011-03-10 2011-09-07 北京航空航天大学 Cell electrofusion chip
CN102174391B (en) * 2011-03-10 2014-05-07 北京航空航天大学 Cell electrofusion chip
JP2013255475A (en) * 2012-06-14 2013-12-26 Pearl Kogyo Co Ltd Method for transferring selected molecule into target cell and selected molecule transfer device used for the same
US9249385B1 (en) 2014-12-18 2016-02-02 City University Of Hong Kong System and method for fusing cells

Similar Documents

Publication Publication Date Title
US8697446B2 (en) Cell fusion chamber, cell fusion device, and method for cell fusion using the same
JP2010011824A (en) Cell fusion vessel, cell fusion apparatus, and method for cell fusion using the same
Masuda et al. Novel method of cell fusion in field constriction area in fluid integration circuit
CN110382160B (en) Method for opening at least one recess into a material by means of electromagnetic radiation and a subsequent etching process
Gel et al. Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array
JP4677832B2 (en) Microfluidic substrate for cell fusion, microfluidic structure for cell fusion using the same, and cell fusion method
Hu et al. Cell electrofusion in microfluidic devices: A review
US4231660A (en) Microscope slide with electrode arrangement for cell study, and method for its construction
CN108728328A (en) The micro-current controlled cell for integrating unicellular capture sorts chip
KR20190065480A (en) Method for introducing at least one cutout or aperture into a sheetlike workpiece
JP2007296510A (en) Fine particle operation apparatus and fine particle operation method
JP4910716B2 (en) Cell fusion device and cell fusion method using the same
WO2018168212A1 (en) Method for electrochemically producing hydrogel, method for producing hydrogel having pattern formed of cells, hydrogel production device, and transducer
JP2008054630A (en) Cell fusion device and cell fusion method using the same
CN110270386A (en) Micro-fluidic chip and its driving method
Wang et al. A microengineered cell fusion approach with combined optical tweezers and microwell array technologies
JP4918811B2 (en) Cell fusion chamber, cell fusion device, and cell fusion method using them
JP5750661B2 (en) 3D dielectrophoresis device
Lee et al. Rapid fabrication of nanoparticles array on polycarbonate membrane based on positive dielectrophoresis
US20130089931A1 (en) Microdevice for fusing cells
JP2013126381A (en) Cell fusion method
JP2008194029A (en) Cell fusion apparatus and cell fusion method using the same
CN211216724U (en) Micro-fluidic chip containing deformable liquid metal electrode
JP2008259493A (en) Cell fusion apparatus and cell fusion method using the same
US20130089929A1 (en) Microdevice for fusing cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016