JPS63278510A - Method for controlling agitation of flocculation basin - Google Patents
Method for controlling agitation of flocculation basinInfo
- Publication number
- JPS63278510A JPS63278510A JP11398987A JP11398987A JPS63278510A JP S63278510 A JPS63278510 A JP S63278510A JP 11398987 A JP11398987 A JP 11398987A JP 11398987 A JP11398987 A JP 11398987A JP S63278510 A JPS63278510 A JP S63278510A
- Authority
- JP
- Japan
- Prior art keywords
- flocculant
- suspension
- aggregates
- injection rate
- appropriate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013019 agitation Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000005189 flocculation Methods 0.000 title claims abstract description 19
- 230000016615 flocculation Effects 0.000 title claims abstract description 19
- 239000000725 suspension Substances 0.000 claims abstract description 144
- 238000002347 injection Methods 0.000 claims abstract description 123
- 239000007924 injection Substances 0.000 claims abstract description 123
- 230000003311 flocculating effect Effects 0.000 claims abstract description 10
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 140
- 238000003756 stirring Methods 0.000 claims description 134
- 230000002776 aggregation Effects 0.000 claims description 34
- 230000008859 change Effects 0.000 claims description 24
- 238000004220 aggregation Methods 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000005054 agglomeration Methods 0.000 claims description 15
- 238000004062 sedimentation Methods 0.000 claims description 15
- 239000006228 supernatant Substances 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 10
- 239000000701 coagulant Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims 1
- 230000000007 visual effect Effects 0.000 abstract description 7
- 238000001514 detection method Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 11
- 238000005259 measurement Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000005995 Aluminium silicate Substances 0.000 description 5
- 235000012211 aluminium silicate Nutrition 0.000 description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 244000144992 flock Species 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の目的
[産業上の利用分野]
本発明は、凝集体形成池の攪拌制御方法に関し、特に採
取した懸濁液に対し攪拌しつつ凝集剤を注入したときの
凝集剤の適正注入率を求め、この適正注入率に対応した
速度勾配および凝集体形成時間好ましくは適正速度勾配
および適正凝集体形成時間を求め、かつ混和池に対する
懸濁液の供給量と凝集体形成池の容積とを検知すること
により、混和池に対するmw剤の注入量を制御し、かつ
凝集体形成池における攪拌制御を実行してなる凝集体形
成池の攪拌制御方法に関するものである。Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] The present invention relates to a method for controlling agitation in a flocculate formation pond, and in particular, the present invention relates to a method for controlling agitation in a flocculation pond, and in particular, a method for injecting a flocculant into a collected suspension while stirring it. Determine the appropriate injection rate of the flocculant, preferably determine the appropriate velocity gradient and aggregate formation time corresponding to this appropriate injection rate, and calculate the amount of suspension supplied to the mixing pond. This invention relates to an agitation control method for an agglomerate formation pond, which comprises controlling the amount of mw agent injected into a mixing pond by detecting the volume of the agglomeration pond, and controlling agitation in the agglomeration formation pond. .
[従来の技術]
従来この種の凝集体形成池の攪拌制御方法としては、上
水、工業用水、下水、産業廃液などの懸濁液を適当量だ
けど一カに採取するごとに凝集剤をその注入率を変化さ
せて注入し攪拌静置したのち試験者の目視II察および
経験により凝集状態を検知して凝集剤の適正注入率を決
定し、この適正注入率に応じ混和池で急速攪拌中の懸濁
液に対して凝集剤を注入し1次いで凝集体形成池で実際
に緩速攪拌せしめたのちの凝集剤の注入された懸濁液を
採取して試験者の目視観察および経験により凝集体の形
成状態を判断し、その結果によって凝集体形成池におけ
る攪拌制御を調整するものが提案されていた。[Prior Art] Conventionally, as a stirring control method for this type of flocculation pond, a flocculant is added each time a suitable amount of a suspension of tap water, industrial water, sewage, industrial waste liquid, etc. is collected. After injecting at varying injection rates, stirring and standing still, the tester detects the flocculating state through visual observation and experience, determines the appropriate injection rate of the flocculant, and then rapidly stirs in the mixing basin according to this appropriate injection rate. A flocculant was injected into the suspension, and the flocculant was then stirred at a slow speed in a flocculate formation pond. It has been proposed to judge the state of aggregate formation and adjust the agitation control in the aggregate formation pond based on the result.
[解決すべき問題点]
しかしながら従来の凝集体形′成泡の攪拌制御方法では
、凝集剤の適正注入率あるいは凝集体形成池における攪
拌処理が試験者の目視観察および経験によって判断され
ていたので、試験者により判断結果が相違し凝集体形成
池における攪拌処理を十分に適正化できない欠点があり
、また凝集体形成池における凝集体の形成に30分以上
もの時間を要するので、凝集体の形成状態を判断するこ
とに多大の時間を要し懸濁液の変化に即応できない欠点
があり、併せて凝集体形成池における攪拌制御が高精度
て実行できず、特に凝集体形成池が複数の領域に分割さ
れている場合、一旦形成された凝集体を後続の領域にお
ける攪拌で破壊してしまう欠点もあった。[Problems to be Solved] However, in the conventional agitation control method for agglomerate formation and foam formation, the appropriate injection rate of the agglomerate or the agitation process in the agglomerate formation pond was determined by the tester's visual observation and experience. There is a drawback that the judgment results differ depending on the tester, and it is not possible to adequately optimize the stirring process in the aggregate formation pond.Also, since it takes more than 30 minutes to form aggregates in the aggregate formation pond, it is difficult to determine the state of the aggregate formation. It takes a lot of time to judge the suspension, and it is difficult to respond quickly to changes in the suspension.At the same time, stirring control in the aggregate formation pond cannot be executed with high precision, especially when the aggregate formation basin is spread over multiple areas. In the case of dividing, there is also a drawback that once formed aggregates are destroyed by stirring in subsequent regions.
そこで本発明は、これらの欠点を除去するために、発光
装置と受光装置との間の攪拌領域に対し採取した懸濁液
を収容した状態で急速攪拌しつつ凝集剤を注入したのち
、緩速攪拌中ならびに攪拌停止後の受光装置による受光
光量から凝集剤の注入された懸濁液の凝集状態な検知す
ることにより、凝集剤の適正注入率を決定し、そののち
適正注入率に対応する速度勾配および凝集体形成時間好
ましくは適正速度勾配および適正凝集体形成時間を求め
、これに応じて混和池に対し凝集剤を注入し、かつ凝集
体形成池の攪拌制御を行なってなる凝集体形成池の攪拌
制御方法を提供せんとするものである。In order to eliminate these drawbacks, the present invention aims to inject a flocculant into a stirring region between a light emitting device and a light receiving device while rapidly stirring the sampled suspension, and then slowly stirring the suspension. The appropriate injection rate of the flocculant is determined by detecting the flocculating state of the suspension in which the flocculant has been injected from the amount of light received by the light receiving device during stirring and after the stirring has stopped, and then the speed corresponding to the appropriate injection rate is determined. Gradient and Agglomerate Formation Time Preferably, an appropriate velocity gradient and an appropriate aggregate formation time are determined, and a flocculant is injected into the mixing basin accordingly, and the agitation of the aggregate formation basin is controlled. The present invention aims to provide a stirring control method.
(2)発明の構成
[問題点の解決手段]
本発明により提供される問題点の第1の解決手段は、
「混和池で急速攪拌しつつ懸濁液に対して凝集剤を注入
したのち、凝集体形成池で緩速攪拌することにより凝集
体を形成せしめてなる凝集体形成池の攪拌制御方法にお
いて。(2) Structure of the Invention [Means for Solving Problems] The first means for solving problems provided by the present invention is as follows: ``After injecting a flocculant into a suspension while rapidly stirring it in a mixing basin, In an agitation control method for an aggregate formation pond, which forms aggregates by slow stirring in the aggregate formation pond.
(a)前記混和池よりも1流で採取された懸濁液に対し
凝集剤を注入して
を攪拌槽内で攪拌する第1の工程
と、
(b)第1の工程よりも低下された攪拌速度において第
1の工程で凝集剤
の注入された懸濁液を攪拌する第
2の工程と。(a) a first step of injecting a flocculant into the suspension collected in the first flow from the mixing pond and stirring it in a stirring tank; a second step of stirring the suspension into which the flocculant was injected in the first step at a stirring speed;
(c)少なくとも第2の工程に際し、第1の工程で凝集
剤の注入された懸
濁液を介して発光装置より受光装
置に与えられた受光光量を測定す
る第3の工程と、
(d)第3の工程で測定された受光光量から第1の工程
で凝集剤の注入さ
れた懸濁液の凝集状態を検知する
第4の工程と、
(e)第4の工程で検知された凝集状態に応じて凝集剤
の適正注入率を決
定する第5の工程と、
(f)第5の工程で決定された適正注入率に対応して速
度勾配および第1
の工程で凝集剤の注入された懸濁
液の凝集体形成時間を求める第6
の工程と。(c) at least in the second step, a third step of measuring the amount of light received from the light emitting device to the light receiving device via the suspension into which the flocculant was injected in the first step; a fourth step of detecting the aggregation state of the suspension into which the flocculant was injected in the first step from the amount of light received measured in the third step; (e) the aggregation state detected in the fourth step; (f) determining the appropriate injection rate of the flocculant in accordance with the rate of injection of the flocculant in the first step; and a sixth step of determining the aggregate formation time of the suspension.
(g)前記混和池に対する懸濁液の供給量を検知する第
7の工程と。(g) a seventh step of detecting the amount of suspension supplied to the mixing pond;
(h)第6の工程で求められた速度勾配および凝集体形
成時間と第7の工
程で検知された懸濁液の供給量と
前記凝集体形成池の容積とを用い
て前記凝集体形成池における攪拌
を制御する第8の工程と、
(1)tjS7の工程で検知された懸濁液の供給量と第
5の工程で決定された
凝集剤の適正注入率とから凝集剤
の注入量を算出する第9の工程
と、
(j)第9の工程で算出された注入量に応じて前記混和
池に対し凝集剤を
注入する第10の工程と
を備えてなることを特徴とする凝集体形成池の攪拌制御
方法」
である。(h) Using the velocity gradient and aggregate formation time determined in the sixth step, the supply amount of the suspension detected in the seventh step, and the volume of the aggregate formation pond, (1) The injection amount of the flocculant is determined from the suspension supply amount detected in the tjS7 step and the appropriate injection rate of the flocculant determined in the fifth step. (j) a tenth step of injecting a flocculant into the mixing pond according to the injection amount calculated in the ninth step. ``Method for controlling agitation in a formation pond.''
また本発明により提供される問題点の他の解決手段は。Other solutions to the problems provided by the present invention are as follows.
「混和池で急速攪拌しつつ懸濁液に対して凝集剤を注入
したのち、凝集体形成池で緩速攪拌することにより凝集
体を形成せしめてなる凝集体形成池の攪拌制御方法にお
いて、
(a)前記混和池よりも上流で採取された懸濁液に対し
凝集剤を注入して
を攪拌槽内で攪拌する第1の工程
と。"In an agitation control method for an aggregate formation pond, in which a flocculant is injected into a suspension with rapid stirring in a mixing basin, and then aggregates are formed by slow stirring in an aggregate formation basin. a) A first step of injecting a flocculant into the suspension collected upstream of the mixing pond and stirring it in a stirring tank.
(b)第1の工程よりも低下された攪拌速度において第
1の工程で凝集剤
の注入された懸濁液を攪拌する第
2の工程と、
(c)少なくとも第2の工程に際し、第1の工程で凝集
剤の注入された懸
濁液を介して発光装置より受光装
置に与えられた受光光量を測定す
る第3の工程と、
(d)第3の工程で測定された受光光量から第1の工程
で凝集剤の注入さ
れた懸濁液の凝集状態を検知する
第4の工程と、
(e)第4の工程で検知された凝集状態に応じて凝集剤
の適正注入率を決
定する第5の工程と。(b) a second step of stirring the suspension into which the flocculant has been injected in the first step at a stirring speed lower than that of the first step; (d) measuring the amount of received light given to the light receiving device from the light emitting device via the suspension into which the flocculant has been injected; (e) determining the appropriate injection rate of the flocculant according to the flocculation state detected in the fourth step; The fifth step.
(「)第5の工程で決定された適正注入率に対応して速
度勾配を求める第
6の工程と。(“) a sixth step of determining a velocity gradient corresponding to the appropriate injection rate determined in the fifth step;
(g)第6の工程で求められた速度勾配のうちから、第
4の工程で検知さ
れた凝集状態を適正とする速度勾
配を適正速度勾配と決定する第7
の工程と、
(11)第7の工程で決定された適正速度勾配に対応し
て第1の工程で凝集
剤の注入された懸濁液の凝集体形
成時間を求め、適正凝集体形成時
間とする第8の工程と、
(1)前記混和池に対する懸濁液の供給量を検知する第
9の工程と、
U)第7の工程で決定された適正速度
勾配と第8の工程で求められた適
正凝集体形成時間と第9の工程で
検知された懸濁液の供給量と前記
凝集体形成池の容積とを用いて前
配架集体形成池における攪拌を制
御する第10の工程と。(g) a seventh step of determining, from among the velocity gradients determined in the sixth step, a velocity gradient that makes the agglomeration state detected in the fourth step appropriate as an appropriate velocity gradient; An eighth step in which the aggregate formation time of the suspension in which the flocculant was injected in the first step is determined in accordance with the appropriate velocity gradient determined in step 7, and the aggregate formation time is set as the appropriate aggregate formation time; 1) a ninth step of detecting the amount of suspension supplied to the mixing pond; and U) detecting the appropriate velocity gradient determined in the seventh step, the appropriate aggregate formation time determined in the eighth step, and a tenth step of controlling the agitation in the pre-arranged aggregate formation pond using the supply amount of the suspension detected in step 9 and the volume of the aggregate formation pond;
(k)第9の工程で検知された懸濁液の供給量と第5の
工程で決定された
凝集剤の適正注入率とから凝集剤
の注入量を算出する第11の工程
と。(k) an eleventh step of calculating the injection amount of the flocculant from the supply amount of the suspension detected in the ninth step and the appropriate injection rate of the flocculant determined in the fifth step;
(1)第11の工程で算出された注入量に応じて前記混
和池に対し凝集剤を
注入する第12の工程と
を備えてなることを特徴とする凝集体形成池の攪拌制御
方法」
である。(1) A twelfth step of injecting a flocculant into the mixing pond according to the injection amount calculated in the eleventh step. be.
[作用]
本発明にかかる凝集体形成池の第1の攪拌制御方法は、
混和池で急速攪拌しつつ懸濁液に対して凝集剤を注入し
たのち、凝集体形成池で緩速攪拌することにより凝集体
を形成せしめてなる凝集体形成池の攪拌制御方法におい
て、採取された懸濁液に対して凝集剤を注入したのち攪
拌速度を低下せしめ、凝集剤の注入された懸濁液を介し
て発光装置より受光装置に対して与えられた受光光量を
測定し、その受光光量から前記懸濁液の凝集状態を検知
し、検知された凝集状態に応じて凝集剤の適正注入率を
決定し、決定された適正注入率に対応して速度勾配およ
び凝集体形成時間を求め、前記混和池に対する懸濁液の
供給量を検知し、前記凝集剤の適正注入率に応じて前記
混和池で懸濁液に対して凝集剤を注入し、前記速度勾配
および凝集体形成時間と前記懸濁液の供給量と前記凝集
体形成池の容積とに応じて前記凝集体形成池の攪拌制御
を実行する作用をなしており、試験者の目視tjR?v
ならびに経験を排除する作用をなし、また凝集体形成池
における攪拌処理の結果を実測することを回避しつつ凝
集体形成池の攪拌制御を短時間で適正化する作用をなす
。[Function] The first stirring control method for the aggregate formation pond according to the present invention is as follows:
In an agitation control method for an aggregate formation pond, in which a flocculant is injected into a suspension with rapid stirring in a mixing basin, and then aggregates are formed by slow stirring in an aggregate formation pond. After injecting a flocculant into the suspension, the stirring speed is reduced, and the amount of received light given from the light emitting device to the light receiving device is measured through the suspension into which the flocculant has been injected. Detecting the agglomeration state of the suspension from the amount of light, determining the appropriate injection rate of the flocculant according to the detected aggregation state, and determining the velocity gradient and aggregate formation time corresponding to the determined appropriate injection rate. , detecting the amount of suspension supplied to the mixing pond, injecting the flocculant into the suspension in the mixing basin according to the appropriate injection rate of the flocculant, and adjusting the velocity gradient and the aggregate formation time. It functions to execute stirring control of the aggregate formation pond according to the supply amount of the suspension and the volume of the aggregate formation pond, and the tester's visual observation tjR? v
In addition, it has the effect of eliminating experience, and also has the effect of optimizing the agitation control of the agglomerate formation pond in a short time while avoiding actually measuring the result of the agitation process in the aggregation formation pond.
また本発明にかかる凝集体形成池の第2の攪拌制御方法
は、混和池で急速攪拌しつつ懸濁液に対して凝集剤を注
入したのち、凝集体形成池で緩速攪拌することにより凝
集体を形成せしめてなる凝集体形成池の攪拌制御方法に
おいて、採取された懸濁液に対して凝集剤を注入したの
ち懸濁液の攪拌速度を低下せしめ、凝集剤の注入された
懸濁液を介して発光装置より受光装置に対して与えられ
た受光光量を測定し、その受光光量から前記懸濁液の凝
集状態を検知し、検知された凝集状態に応じて凝集剤の
適正注入率を決定し、決定された適正注入率に対応して
速度勾配を求め、その速度勾配のうち検知された凝集状
態を適正とする速度勾配を適正速度勾配と決定し、その
適正速度勾配に対応して凝集体形成時間を求め適正凝集
体形成時間とし、前記混和池に対する懸°濁液の供給量
を検知し、前記凝集剤の適正注入率に応じて前記混和池
で懸濁液に対して凝集剤を注入し、前記適正速度勾配お
よび適正凝集体形成時間と前記懸濁液の供給量と前記凝
集体形成池の容積とに応じて前記凝集体形成池の攪拌制
御を実行する作用をなしており、試験者の目視観察なら
びに経験を排除する作用と凝集体形成池における攪拌処
理の結果を実測することを回避しつつ凝集体形成池の攪
拌制御を短時間で適正化する作用とに加え、単に適正注
入率を検知するのみではなく適正速度勾配および適正凝
集体形成時間まで求めて凝集体形成池の攪拌制御に所要
の時間を短縮する作用をなす。In addition, the second agitation control method of the flocculate formation pond according to the present invention is that after injecting the flocculant into the suspension while stirring rapidly in the mixing basin, the flocculant is injected into the suspension and then slowly stirred in the flocculation basin. In a stirring control method for an aggregate formation pond formed by forming aggregates, a flocculant is injected into the collected suspension, and then the stirring speed of the suspension is reduced, and the suspension into which the flocculant has been injected is The amount of received light given from the light emitting device to the light receiving device via the light emitting device is measured, the agglomeration state of the suspension is detected from the amount of received light, and the appropriate injection rate of the flocculant is determined according to the detected aggregation state. Then, a velocity gradient is determined corresponding to the determined appropriate injection rate, and among the velocity gradients, a velocity gradient that makes the detected aggregation state appropriate is determined as an appropriate velocity gradient, and a velocity gradient corresponding to the appropriate velocity gradient is determined. The aggregate formation time is determined as the appropriate aggregate formation time, the amount of suspension supplied to the mixing pond is detected, and the flocculant is added to the suspension in the mixing basin according to the appropriate injection rate of the flocculant. is injected, and performs stirring control of the aggregate formation pond according to the appropriate velocity gradient, appropriate aggregate formation time, the supply amount of the suspension, and the volume of the aggregate formation pond. In addition to the effect of eliminating the visual observation and experience of the tester and the effect of optimizing the agitation control of the agglomerate formation pond in a short time while avoiding the actual measurement of the results of the agitation process in the agglomeration formation pond, It not only detects an appropriate injection rate but also determines an appropriate velocity gradient and an appropriate aggregate formation time, thereby shortening the time required for stirring control of an aggregate formation pond.
[実施例]
次に本発明について添付図面を参照しつつ具体的に説明
する。[Example] Next, the present invention will be specifically described with reference to the accompanying drawings.
第1図は、本発明にかかる凝集体形成池の攪拌制御方法
の一実施例によって凝集体形成池の攪拌制御が実行され
ている実際の懸濁液処理装置を示す断面図である。FIG. 1 is a sectional view showing an actual suspension processing apparatus in which agitation control of an agglomerate formation pond is executed by an embodiment of the agitation control method for an agglomerate formation pond according to the present invention.
第2図は、本発明にがかる一実施例を実行するために懸
濁液に対する凝集剤の適正注入率WAI”とそのときの
適正凝集体形成時間Tt”および適正速度勾配G♂とを
検知する第1図の検知装置の一例を具体的に示す断面図
°である。FIG. 2 shows the detection of the appropriate injection rate WAI of the flocculant into the suspension, the appropriate aggregate formation time Tt at that time, and the appropriate velocity gradient G♂ in order to carry out an embodiment of the present invention. 2 is a sectional view specifically showing an example of the detection device of FIG. 1. FIG.
第3図は、第2図に示した検知装置の動作を説明するた
めの動作説明図であって、受光光量Iの時間的変化を示
している。FIG. 3 is an explanatory diagram for explaining the operation of the detection device shown in FIG. 2, and shows temporal changes in the amount of received light I. FIG.
第4図は、第3図の動作説明図より求めた凝集体の径d
、数Nb9体積vj5よび有効密度ρと凝集剤の注入率
WAlとの間の関係を示すグラフ図である。Figure 4 shows the diameter d of the aggregate obtained from the operation diagram in Figure 3.
, a number Nb9 volume vj5 and an effective density ρ, and a graph showing the relationship between the flocculant injection rate WAl.
第5図は、第3図の動作説明図より求めた上澄水濁度τ
、凝集体の沈降速度Sおよび有効°密度ρと凝集剤の注
入率WAIとの間の関係を示すグラフ図である。Figure 5 shows the supernatant water turbidity τ obtained from the operation diagram in Figure 3.
, is a graph diagram showing the relationship between the sedimentation rate S and effective density ρ of the flocculant and the injection rate WAI of the flocculant.
第6図は、第2図の検知装置を4つ並置した検知装置を
示す断面図である。FIG. 6 is a sectional view showing a detection device in which four detection devices of FIG. 2 are arranged side by side.
まず第1図を参照しつつ、本発明にかかる凝集体形成池
の攪拌制御方法によって凝集体形成池の攪拌制御が実行
されている実際の懸濁液処理装置について説明する。First, with reference to FIG. 1, an actual suspension processing apparatus in which agitation control of an agglomerate formation pond is executed by the agitation control method for an agglomerate formation pond according to the present invention will be described.
102は着水井で、供給管104を介して適宜の懸濁液
供給源(図示せず)から懸濁液が供給されている。10
6は着水井102に対し供給管108を介して連通され
た懸濁液と凝集剤との混和池で、駆動手段たとえば電動
モータ109によって急速回転される攪拌羽根110が
配設されている。Reference numeral 102 denotes a landing well, into which a suspension is supplied via a supply pipe 104 from an appropriate suspension supply source (not shown). 10
Reference numeral 6 denotes a mixing pond for a suspension and a flocculant, which is communicated with the landing well 102 via a supply pipe 108, and is provided with a stirring blade 110 that is rapidly rotated by a driving means, such as an electric motor 109.
112は混和池106に対し供給管114を介して連通
された凝集体形成池で、所望の数の領域たとえば容積が
それぞれvA、〜、vcである3つの領域112A、〜
、112Cに区分されており、それぞれ攪拌4i111
3A、 〜、llICが配設サレテイル、Wl拌機11
コ^、〜、11:l(:は、それぞれ駆動手段たとえば
電動モータ115A、〜、115Gと、駆動手段たとえ
ば電動モータ115A、〜、115Gによって回転数n
^、〜encで緩速回転される攪拌羽根116^。Reference numeral 112 denotes an aggregate formation pond which is communicated with the mixing basin 106 via a supply pipe 114, and has a desired number of regions, for example, three regions 112A, 112A, 112A, 112A, 112A, 112B, 112A, 112B, 112A, 112B, 112A, 112A, 112B, 112B, 112A, 112A, 112B, 112A, 112A, 112B, 112A, 2B, 3B, 3A, 3B, 3A, 2B, 3A, 2B, 3A, 2B, 3A, 3B, 3A, 3B, 3A, 3B, and 32B.
, 112C, respectively stirring 4i111
3A, ~, ll IC installed saletail, Wl stirrer 11
ko^, ~, 11:l (: represents the rotational speed n by the driving means, for example, electric motors 115A, ~, 115G, and the driving means, such as electric motors 115A, ~, 115G, respectively.
^, stirring blade 116 ^ rotated slowly at ~enc.
〜、116Gを包有している。混和池106で凝集剤が
注入混和されかつ供給管114によって凝集体形成池1
12に供給された懸濁液は、まず凝集体形成池l12の
うちの最初の領域すなわち第1の領域112^において
攪拌機113^の攪拌羽根116Aにより回転数nAで
所定時間にわたつて緩速攪拌され、そののち第2の領域
112Bへ移行されて攪拌機113Bの攪拌羽根116
Bにより回転数naで所定時間にわたって緩速攪拌され
、更に第3の領域112Gへ移行されて攪拌機113G
の攪拌羽根116Gにより回転数ncで所定時間にわた
って緩速攪拌される。~, 116G. The flocculant is injected and mixed in the mixing pond 106 and sent to the flocculation pond 1 through the supply pipe 114.
The suspension supplied to 12 is first slowly stirred at the rotation speed nA for a predetermined period of time in the first region of the aggregate formation pond l12, that is, the first region 112^, by the stirring blade 116A of the stirrer 113^. After that, the stirring blade 116 of the stirrer 113B is transferred to the second region 112B.
It is slowly stirred by B at the rotation speed na for a predetermined period of time, and then transferred to the third region 112G and stirred by the stirrer 113G.
The mixture is slowly stirred by the stirring blade 116G at the rotation speed nc for a predetermined period of time.
118は凝集体形成池l12に連設された沈澱池で、凝
集体形成池112の最終の領域すなわち第3の領域11
2Cから供給された凝集体すなわちフロツりが十分に形
成された懸濁液を静tせしめ、その凝集体すなわちフロ
ックを沈澱せしめて除去している。120は供給管12
2を介して沈澱池118の放流口に連通された濾過池で
、沈澱池118で除去できなかった微小な凝集体すなわ
ちフロックを濾過により除去したのち処理水として処理
水管124を介し後続の適宜の設備へ送出している。118 is a sedimentation tank connected to the flocculation basin 112, which is the final area of the flocculation basin 112, that is, the third area 11.
The suspension supplied from 2C in which aggregates or flocs have been sufficiently formed is allowed to stand still, and the aggregates or flocs are precipitated and removed. 120 is the supply pipe 12
The filtration tank is connected to the outlet of the settling tank 118 through the filter 2, and after removing minute aggregates or flocs that could not be removed in the settling tank 118 by filtration, the treated water is passed through the treated water pipe 124 to the subsequent appropriate water source. It is sent to the equipment.
130は第2図あるいは第6図に具体的に示されており
、かつ懸濁液に対する凝集剤の適正注入率WAI”とそ
のときの適正凝集体形成時間Tt’sよび適正速度勾配
G、″とを検知するための検知装置で、供給管132お
よびポンプ134を介して着水井102に連通されてお
り、排水管133が混和池106などの適宜の箇所に開
放されている。130 is specifically shown in FIG. 2 or FIG. 6, and indicates the appropriate injection rate WAI of the flocculant into the suspension, the appropriate floccule formation time Tt's at that time, and the appropriate velocity gradient G,'' This is a detection device for detecting water, and is connected to the landing well 102 via a supply pipe 132 and a pump 134, and a drain pipe 133 is opened to an appropriate location such as the mixing pond 106.
136は供給管108に配置された流量計1]8と検知
装置130とにそれぞれ接続された演IQ装置で、検知
装置130で検知された懸濁液に対するm増剤の適正注
入率WAげとそのときの適正凝集体形成時間Tt”およ
び適正速度勾配GL”と流量計118によって検知され
た流N(すなわち混和池106への供給量)Qと予め計
測され手動操作などによって入力された凝集体形成池1
12の各領域112A。Reference numeral 136 designates an IQ device connected to the flow meter 1]8 disposed in the supply pipe 108 and the detection device 130, which determines the appropriate injection rate WA of the m-enricher to the suspension detected by the detection device 130. At that time, the appropriate aggregate formation time Tt", the appropriate velocity gradient GL", the flow N detected by the flow meter 118 (i.e., the amount of supply to the mixing basin 106) Q, and the aggregates measured in advance and input by manual operation etc. Formation pond 1
12 each area 112A.
〜、112Gの容積vA5〜.vcなどの所要の情報と
を受は取り、これらを用いて凝集体形成池112の各領
域112A、〜、112Gの攪拌機11コ^、〜、11
3cの回転数nA、〜、noを算出している。~, a volume of 112G vA5~. VC and other necessary information, and using this information, the agitators 11 in each region 112A, 112G, 112A, 112G of the aggregate formation pond 112 are adjusted.
3c's rotational speed nA, ~, no are calculated.
すなわち演算装置136は、検知装置130より与えら
れた適正凝集体形成時間T18および適正速度勾配Gt
′と凝集体形成池112の凝集体形成時間T1および速
度勾配G1との間の関係(ただしαは定数)
より、凝集体形成池112の各領域112A、〜、11
2Gにおける速度勾配G、(A)、〜、 G、(c)を
定数α8゜〜、α。を用いて
G、(A) = α^G1
G、(B) = α@G。That is, the calculation device 136 calculates the appropriate aggregate formation time T18 and the appropriate velocity gradient Gt given by the detection device 130.
' and the aggregate formation time T1 and velocity gradient G1 of the aggregate formation pond 112 (where α is a constant), each region 112A, ~, 11 of the aggregate formation pond 112
The velocity gradient G, (A), ~, G, (c) at 2G is a constant α8° ~, α. using G, (A) = α^G1 G, (B) = α@G.
G、(c) = αcG。G, (c) = αcG.
と定義することによって の如く算出している。ただし定数α1.〜.α。By defining It is calculated as follows. However, the constant α1. ~. α.
は、凝集体形成池112の各領域112A、〜、112
Gにおける攪拌強度を考慮して
α^ ≧ α論≧ αC
とされ、かつ
VAa−+V、a−+Vl!a、”
MvA+v、+vc
とされている、ここで、凝集体形成池112の各領域■
2^、〜、112Gが等容積すなわちV A−V mx
V aとされておれば、定数αA、〜、αCの間には
α^8+α−+αC2−3
という関係がある。are each region 112A, ~, 112 of the aggregate formation pond 112.
Considering the stirring intensity at G, α^ ≧ α theory ≧ αC, and VAa−+V, a−+Vl! a,” MvA+v, +vc, where each area of the aggregate formation pond 112 ■
2^, ~, 112G is equal volume, that is, V A-V mx
If V a is assumed, there is a relationship α^8+α-+αC2-3 between the constants αA, . . . , αC.
速度勾配G、(^)、〜、 G、(c)が、懸濁液の粘
性係数外および比重ηと抗力係数Cと撹拌l1113^
。The velocity gradient G, (^), ~, G, (c) is outside the viscosity coefficient of the suspension, the specific gravity η, the drag coefficient C, and the stirring l1113^
.
〜、113Cの撹拌羽ff1llli^、 〜、116
Cの面積a A e〜、acおよび周速ν、、〜、υ。~, 113C stirring blade ff1lli^, ~, 116
Area of C a A e~, ac and circumferential speed ν, ,~, υ.
と凝集体形成池11217)各領域112^、〜、11
2Gノ容Ja V s 、〜、V cとを用いて
と表現てきるので、この関係より
を算出できる。ここで攪拌羽根116^、〜、116G
の周速υ^、〜、υCが1回転数n^、〜、Haおよび
半径ra、〜、reを用いて
υ^瓢2π「^n^
υBw2π「^n^
υc=2πrA n^
と表現でき、ひいてはa A V A’e〜、ac v
cHコが
a^ v^3m8aAπ3 rA’nA’aa v、
3w8aIIπ” r♂n−ac uc”m8ac
π2 r c3 n c2と算出できるので。and aggregate formation pond 11217) each area 112^, ~, 11
Since it can be expressed using the 2G volume Ja V s , ~, V c , it is possible to calculate from this relationship. Here, stirring blade 116^, ~, 116G
The circumferential speed υ^, ~, υC can be expressed as υ^gon2π"^n^ υBw2π"^n^ υc=2πrA n^ using the number of rotations n^, ~, Ha and radius ra, ~, re. , and even a A V A'e~, ac v
cH koga a^ v^3m8aAπ3 rA'nA'aa v,
3w8aIIπ” r♂n-ac uc”m8ac
Since it can be calculated as π2 r c3 n c2.
と算出てき1回転数nA、〜、n6を と算出できる。したがって回転数n□〜n、は。Calculate the number of revolutions nA, ~, n6. It can be calculated as Therefore, the number of rotations n□~n is.
と算出できる。ただしT、、は、(VA +VB +v
C)/ Qである。これにより回転数nA、〜+nC
は、検知袋gl130によって検知された適正凝集体形
成時間T乞1および適正速度勾配Gt′と凝集体形成池
112の凝集体形成時間T、、(ひいては流量計138
によって検知された流量Q)とによって決定できる。It can be calculated as However, T, is (VA +VB +v
C)/Q. As a result, the rotation speed nA, ~+nC
are the appropriate aggregate formation time T and the appropriate velocity gradient Gt' detected by the detection bag GL130, and the aggregate formation time T in the aggregate formation pond 112, (and thus the flowmeter 138).
It can be determined by the flow rate Q) detected by Q).
140は演算袋fi136に接続された制御器で、演算
装置136によって出力された回転数n A +〜、n
cに応じて攪拌機113^、〜、113Gの駆動手段1
15^、〜、115Gの回転数を制御する。144は凝
集剤供給装置で、演算装置136において適正注入率W
AI”と流量Qとの積として算出された適正注入量R1
に応じ!!2集剤増剤給管146を介して混和池106
に供給し、懸濁液に対して注入している。140 is a controller connected to the calculation bag fi 136, which controls the rotational speed n A + ~, n outputted by the calculation device 136.
Driving means 1 of the stirrers 113^, ~, 113G according to c
Controls the rotation speed of 15^, ~, 115G. 144 is a flocculant supply device, and the calculation device 136 calculates the appropriate injection rate W.
Appropriate injection amount R1 calculated as the product of “AI” and flow rate Q
According to! ! Mixing pond 106 via 2 concentrate additive feed pipe 146
and inject it into a suspension.
しかしてポンプ+34および供給管132を介して着水
井102から@濁液を採取し1本発明にかかる検知袋2
1130において、後述にしたがい懸濁液に対する凝集
剤の適正注入率WA+”とそのときの適正凝集体形成時
間T−3よび適正速度勾配QL11とを検知あるいは算
出し、演算装置?113[iに対して送出している。Then, the @turbid liquid is collected from the landing well 102 via the pump +34 and the supply pipe 132.1 The detection bag according to the present invention2
At step 1130, the appropriate injection rate WA+'' of the flocculant into the suspension, the appropriate aggregate formation time T-3 and the appropriate velocity gradient QL11 at that time are detected or calculated as described later, and the arithmetic unit ?113[i and sending it out.
演算袋gl136では、検知装置130から凝集剤の適
正注入率WA+”が入力されるごとに、流量計138か
ら入力された流mQと乗算されて凝集剤の実際の適正注
入量R′″が算出されており、また検知装置1コ0から
適正凝集体形成時間Tt”および適正速度勾配G♂が入
力され、あるいは流量計138から!iQが入力される
ごとに、上述したところにより凝集体形成池112の各
領域112A、〜、112Gに配設された攪拌a113
^、〜、11:Icの回転数nA。In the calculation bag gl 136, each time the appropriate injection rate WA+'' of the flocculant is input from the detection device 130, it is multiplied by the flow mQ input from the flow meter 138 to calculate the actual appropriate injection amount R'' of the flocculant. In addition, each time the appropriate aggregate formation time Tt'' and appropriate velocity gradient G♂ are input from the detection device 1 0, or !iQ is input from the flowmeter 138, the aggregate formation pond is determined as described above. Stirring a113 arranged in each area 112A to 112G of 112
^, ~, 11: Ic rotation speed nA.
〜、n(が算出されている。~, n( have been calculated.
演算装置136で算出された凝集剤の適正注入量R8は
、凝集剤供給装置144に与えられ′〔いる。The appropriate injection amount R8 of the flocculant calculated by the arithmetic unit 136 is provided to the flocculant supply device 144.
凝集剤供給装gl144は、この適正注入量R1に応じ
て供給管146を介し凝集剤を混和池106に対して注
入する。The flocculant supply device GL144 injects the flocculant into the mixing pond 106 via the supply pipe 146 according to the appropriate injection amount R1.
演算袋gl136から算出された回転数n A 、〜。The rotation speed nA calculated from the calculation bag gl136, ~.
ncは、制御器140に与えられている。制御器140
は、回転数nA、〜oneに応じてそれぞれ凝集体形成
池112の攪拌機113A、〜、11:Icを駆動する
。nc is provided to the controller 140. Controller 140
drives the agitators 113A, 11:Ic of the aggregate formation pond 112, respectively, according to the rotational speed nA, 11:Ic.
上述した検知袋21130による検知動作を間歇的に反
復して凝集体形成池112の攪拌制御を修正することに
より、懸濁液処理装置における凝集体形成を適正効率で
実行でき、ひいては懸濁液の処理時間を短縮できる。By intermittently repeating the detection operation by the detection bag 21130 described above and correcting the agitation control of the aggregate formation pond 112, aggregate formation in the suspension processing device can be performed with appropriate efficiency, and the suspension can be further improved. Processing time can be shortened.
さらに第2図ないし第5図を参照しつつ、検知袋gl1
30の構成について、詳細に説明する。Furthermore, with reference to FIGS. 2 to 5, the detection bag gl1
The configuration of 30 will be explained in detail.
10は回分式の攪拌槽で、適宜の容量たとえばIllの
容量を有しており、凝集剤の注入された懸濁液(以下、
単に懸濁液と称することもある)11が収容されている
。12は攪拌槽10内に配設された攪拌羽根で、Wl拌
槽lOの下方に配置された駆動手段たとえば電動モータ
14の出力軸16の自由端部に適宜に装着されている。Reference numeral 10 denotes a batch-type stirring tank having an appropriate capacity, for example, Ill, in which a suspension containing a flocculant (hereinafter referred to as
11 (sometimes simply referred to as a suspension) is contained therein. Reference numeral 12 denotes a stirring blade disposed in the stirring tank 10, which is appropriately attached to the free end of the output shaft 16 of a drive means, for example, an electric motor 14, arranged below the Wl stirring tank IO.
I8はリード線19によって適宜の電源(図示せず)に
接続された発光装置で、攪拌槽lOの側面に配設されて
おり、蛍光ランプ、タングステンランプ、ハロゲンラン
プ、発光ダイオード、レーザ発光手段などの適宜の光源
によって発生された光を適宜の光学系たとえばスリット
を介して平行光線束として攪拌槽lO内の懸濁液11に
供給している。I8 is a light emitting device connected to a suitable power source (not shown) by a lead wire 19, and is disposed on the side of the stirring tank IO, and can be used for fluorescent lamps, tungsten lamps, halogen lamps, light emitting diodes, laser light emitting means, etc. The light generated by an appropriate light source is supplied to the suspension 11 in the stirring tank 10 as a parallel beam bundle through an appropriate optical system, for example, a slit.
20はフォトトランジスタ、フォトダイオード。20 is a phototransistor and a photodiode.
CdS、CCDなどの適宜の光電変換素子を受光手段と
して包有し°ている受光装置て、攪拌槽IOの側面に配
設されており、発光装!!t18により平行光線束とし
て供給された光を懸濁液11を介して受光している0発
光装置18によって与えられた光が。A light receiving device containing a suitable photoelectric conversion element such as CdS or CCD as a light receiving means is arranged on the side of the stirring tank IO, and is a light emitting device! ! The light provided by the light emitting device 18 which receives the light supplied as a parallel beam at t18 via the suspension 11.
懸濁液ll中の凝集体すなわちフロック17によって散
乱あるいは遮断されるので、受光装置20は、散乱光あ
るいは減衰された透過光を受光している。The light receiving device 20 receives scattered light or attenuated transmitted light because it is scattered or blocked by the aggregates or flocs 17 in the suspension 11.
受光装N20は、透過光を受光するために発光装置18
に対し対向せしめてもよく、また散乱光を受光するため
に発光装置18からの平行光線束に対し所定の角度をも
って配置せしめてもよい、加えて透過光および散乱光を
受光するために、2つの受光装置20を配置してもよい
、説明を簡潔とするために以下、受光装置20は、発光
装置18に対して対向されているものとする。また第2
図では、発光装2118j5よび受光装置20が一組だ
け配置されているが、これに限定されるものではなく、
発光装置18および受光装置20を複数組配置してもよ
い0発光装置i18および受光装M20は、特に同一水
平面上に配設されておれば、凝集体すなわちフロック1
7の沈降状態を高精度で検知するために好都合である。The light receiving device N20 includes a light emitting device 18 to receive transmitted light.
The light emitting device 18 may be placed at a predetermined angle with respect to the parallel beam from the light emitting device 18 in order to receive scattered light. In order to simplify the explanation, it is assumed below that the light receiving device 20 is opposed to the light emitting device 18. Also the second
In the figure, only one set of the light emitting device 2118j5 and the light receiving device 20 is arranged, but the invention is not limited to this.
A plurality of sets of the light emitting device 18 and the light receiving device 20 may be arranged.0 The light emitting device i18 and the light receiving device M20 may form an aggregate, that is, a flock 1, especially if they are arranged on the same horizontal plane.
This is convenient for detecting the sedimentation state of No. 7 with high accuracy.
22は受光装N20にリード線21を介して接続された
測定装置で、受光装置20の受光した光if(以下“受
光光量”という)■を測定する。加えて測定装!!12
2は、測定した受光光量■から凝集剤の注入前の受光光
量■I(τ)と攪拌羽根12による緩速攪拌に伴なって
平坦化したときの受光光量■の変動幅(すなわち所定値
!、および■□間の差分)ΔIおよび変動周期Fとを求
めて出力している。Reference numeral 22 denotes a measuring device connected to the light receiving device N20 via a lead wire 21, which measures the light if (hereinafter referred to as "received light amount") (2) received by the light receiving device 20. Plus measuring equipment! ! 12
2 is the range of variation (i.e., the predetermined value! , and ■□) ΔI and the fluctuation period F are determined and output.
24は一端部が開閉弁25を介して攪拌槽10に開口さ
れた供給管で、他端部が供給管132に連通されている
(第1図参照)、26は凝集剤供給源28に一端部が連
通された凝集剤供給管で、他端部が開閉弁27を介して
攪拌槽10に開口されている。30は排水管で、一端部
が撹拌槽lOの底部に開口され、かつ他端部が開閉弁コ
2を介して排水管133に連通されており、攪拌槽10
から検知済の懸濁液11を排除する(第1図参照)、3
4は暗箱で、少なくとも攪拌槽10.発光装置18およ
び受光装置20を収容しており、外光の影響を除去して
いる。24 is a supply pipe whose one end is opened to the stirring tank 10 via an on-off valve 25, and the other end is communicated with the supply pipe 132 (see Fig. 1); 26 is a supply pipe whose one end is connected to the flocculant supply source 28; This is a flocculant supply pipe with one end communicating with the other, and the other end opening into the stirring tank 10 via an on-off valve 27 . Reference numeral 30 denotes a drain pipe, one end of which is opened at the bottom of the stirring tank IO, and the other end communicated with the drain pipe 133 via the on-off valve 2.
Remove the detected suspension 11 from (see Figure 1), 3
4 is a dark box with at least a stirring tank 10. It houses a light emitting device 18 and a light receiving device 20, and eliminates the influence of external light.
36は駆動手段14と測定装置22と開閉弁25.27
とに接続された演算装置で、駆動手段14から攪拌羽根
12の周速υあるいは回転数nが与えられており、測定
装置22から受光光量Ii(τ)と受光光量■の変動幅
へIおよび変動周期Fとが与えられており、また開閉弁
25.27から懸濁液の供給量Mおよび凝集剤の供給量
Nが与えられている。演算装置36は、凝集体すなわち
フロック17の形成状態を判断するに有用なパラメータ
を算出している。36 is a drive means 14, a measuring device 22, and an on-off valve 25.27
The driving means 14 gives the circumferential speed υ or the rotational speed n of the stirring blade 12, and the measurement device 22 calculates the fluctuation range of the received light amount Ii (τ) and the received light amount ■. A fluctuation period F is given, and a supply amount M of the suspension liquid and a supply amount N of the flocculant are given from the on-off valves 25 and 27. The calculation device 36 calculates parameters useful for determining the state of formation of aggregates, that is, flocs 17.
すなわち演算装置36は、受光光量Iの変動幅Δ■(ボ
ルト)と定数αとを用いて凝集体すなわちフロック17
の径d(c謹)を
d=αΔI
と算出し、受光光量■の変動周期F(秒)と攪拌羽根1
2の周速υ(17秒)あるいは回転数n(1/秒)と定
数β、β°を用いて凝集体すなわちフロック17の数N
b(1/am3)をと算出し、凝集体すなわちフロック
17の径d(c謹)および数Nb(1/am3)と定a
(とを用いて凝集体すなわちフロック17の体iiV(
cm’)をV=@d’N1゜
と算出し、受光光量it(τ)(ボルト)より求めた懸
濁液の浮遊物の初期濃度W s * (■g/見)と供
給IkM、Nより求めた凝集剤の注入率WA皇(sg/
u)と凝集体すなわちフロック17の径d(c■)およ
び数Nb(1/c■3)と定数γと凝集剤に固有の係数
aとを用いて凝集体すなわちフロック17の有効密度ρ
(g/cm3)を
と算出しており、更に所望によっては、時間Tと定数δ
とを用いて凝集体すなわちフロック17の沈降速度S(
c■1分)を
と算出し、受光光ff1xr(τ)と定数入とを用いて
凝集体すなわちフロック17の沈降したのちの上澄水濁
度τ(度)を
τ=入xrCτ)
と算出している。ここで演算装置36の算出したパラメ
ータと凝集体すなわちフロック17の実際の凝集状態と
の関係は、径dあるいは数Nb、体tav。That is, the arithmetic unit 36 uses the fluctuation width Δ■ (volts) of the amount of received light I and the constant α to calculate the aggregate, that is, the floc 17.
The diameter d (c) is calculated as d=αΔI, and the fluctuation period F (seconds) of the received light amount
Using the circumferential speed υ (17 seconds) or rotational speed n (1/second) of 2 and constants β and β°, calculate the number N of aggregates, that is, flocs 17.
b (1/am3) is calculated, and the diameter d (c) and the number Nb (1/am3) of the aggregate, that is, the floc 17, are constant a.
(using
cm') is calculated as V=@d'N1°, and the initial concentration of suspended matter in the suspension W s * (■g/view) determined from the received light amount it (τ) (volts) and the supply IkM, N The flocculant injection rate determined from WA Emperor (sg/
u), the diameter d (c■) of the aggregates or flocs 17, the number Nb (1/c■3), the constant γ, and the coefficient a specific to the flocculant to calculate the effective density ρ of the aggregates or flocs 17.
(g/cm3), and if desired, time T and constant δ
The sedimentation velocity S(
Using the received light ff1xr(τ) and a constant input, calculate the supernatant water turbidity τ (degrees) after the aggregates, that is, floc 17, have settled as τ = input xrCτ). ing. Here, the relationship between the parameters calculated by the arithmetic unit 36 and the actual aggregation state of the aggregates, that is, the flocs 17, is the diameter d or the number Nb, and the body tav.
有効密度p、沈沈降速度S上上澄水濁度の順で緊密とな
っているので、凝集体すなわちフロック17の凝集状態
を精密に検知することが所望であれば後者のパラメータ
を利用すればよく、更にその凝集状態を一層精密に検知
することが所望であれば複数のパラメータを組合せて利
用すればよい、ちなみに演算装置コロは、利用しないパ
ラメータを算出しない構成としてもよい。Effective density p, sedimentation velocity S, supernatant water turbidity are closely related in this order, so if it is desired to accurately detect the flocculation state of flocs 17, it is sufficient to use the latter parameter. Furthermore, if it is desired to detect the agglomeration state more precisely, a combination of a plurality of parameters may be used.Incidentally, the arithmetic unit Colo may be configured not to calculate parameters that are not used.
コ8は演算装置36に接続された他の演算装置で。8 is another arithmetic device connected to the arithmetic device 36.
演算装置36によって算出された凝集体すなわちフロッ
ク17の径d、数Nk、体8&v、有効密度ρ。The diameter d, the number Nk, the body 8&v, and the effective density ρ of the aggregate or floc 17 calculated by the calculation device 36.
沈降速度Sおよび凝集体すなわちフロック17の沈降し
たのちの上澄水濁度τのうちの少なくとも1つをそのと
きの凝集剤の注入率WAIに対して順次記憶しておき、
このときの懸濁液に対する凝集剤の注入率の適正値(す
なわち適正注入率)WAt”を算出している。すなわち
演算装置コ8は、開閉弁25.27から与えられた懸濁
液の供給量Mおよび凝集剤の供給量Nによって算出され
た凝集剤の注入率WAI(演算装置コロから与えられる
)の変化に対し、凝集体すなわちフロック17の径d9
体積Vあるいは有効密度ρの変化が急峻となり始め、更
にはその数Nk、沈降速度Sもしくは上澄水濁度τの変
化が緩慢となり始めるときに対応して、凝集剤の注入*
WAIを適正注入率WAげと決定し、これを演算装置1
36に対し出力している(第1図参照)。At least one of the sedimentation speed S and the supernatant water turbidity τ after the flocs 17 have settled is stored in sequence for the flocculant injection rate WAI at that time,
At this time, the appropriate value of the injection rate of the flocculant to the suspension (that is, the appropriate injection rate) WAt is calculated.In other words, the calculation unit 8 calculates the injection rate of the flocculant to the suspension. The diameter d9 of the flocculent, that is, the floc 17, changes with respect to the change in the flocculant injection rate WAI (given from the calculation device Colo) calculated by the amount M and the flocculant supply amount N.
Coagulant is injected* in response to when the volume V or effective density ρ begins to change sharply, and the number Nk, sedimentation rate S, or supernatant water turbidity τ starts to change slowly.
The WAI is determined to be the appropriate injection rate WA, and this is determined by the calculation device 1.
36 (see Figure 1).
更に演算装置38は、適正注入率WAげに対応する数N
bを適正数N−としたのち、適正数N−に対応する攪拌
羽根12の周速υおよび回転数nをそれぞれ適正周速υ
1j5よび適正回転数n′″として上述より
と算出し、後続の適正凝集体形成時間TL”の検知に際
して駆動手段14に与え緩速攪拌中の攪拌羽根12を適
正周速υ8ひいては適正回転数n1で緩速回転せしめる
。Furthermore, the arithmetic unit 38 calculates a number N corresponding to the appropriate injection rate WA
After setting b to the appropriate number N-, the circumferential speed υ and rotation speed n of the stirring blade 12 corresponding to the appropriate number N- are respectively the appropriate circumferential speed υ.
1j5 and the appropriate rotational speed n''', and when detecting the subsequent appropriate aggregate formation time TL'', it is applied to the driving means 14 to drive the stirring blade 12 during slow stirring to the appropriate circumferential speed υ8 and, as a result, the appropriate rotational speed n1. Rotate slowly with .
加えて演算装置38は、攪拌槽10の容積(ここではM
+N)と懸濁液の粘性係数路および比重ηと抗力係数C
と攪拌羽根12の面gaおよび適正周速11とを用いて
、適正速度勾配G、1をと算出し、これを演算装置13
6に対し出力している(第1図参照)。In addition, the calculation device 38 calculates the volume of the stirring tank 10 (here, M
+N), the viscosity coefficient of the suspension, the specific gravity η, and the drag coefficient C
Using the surface ga of the stirring blade 12 and the appropriate circumferential speed 11, the appropriate speed gradient G,1 is calculated, and this is calculated by the calculation device 13.
6 (see Figure 1).
39は開閉弁25および演算装M38と開閉弁27との
間に配置された制御装置で、開閉弁25の開閉時間ひい
ては懸濁液の供給量Mと演算装置38から与えられた適
正注入率wA、”との積M W A I ”と凝集剤の
供給量Nが一致するように開閉弁27を開放する時間な
W節している。Reference numeral 39 denotes a control device disposed between the on-off valve 25 and the arithmetic unit M38 and the on-off valve 27, which controls the opening/closing time of the on-off valve 25, the suspension supply amount M, and the appropriate injection rate wA given by the arithmetic unit 38. , ``W'' is the time to open the on-off valve 27 so that the product M W A I '' and the supply amount N of the flocculant match.
40は測定装置22に接続された他の測定装置で。40 is another measuring device connected to the measuring device 22;
演算装2t38から与えられた適正注入率WAI”に応
じて攪拌槽10内の懸濁液に対し凝集剤を注入した状態
で、駆動手段14により攪拌羽根12を適正周速υ1ひ
いては適正回転数n″て緩速攪拌するよう駆動しながら
攪拌羽根12の緩速攪拌の開始時刻t3から測定装aZ
Zによって測定された受光光量Iが平坦化する時刻t4
までの時間すなわち凝集体形成時間Ttを求め、適正榮
集体形成時間TL″として演算装置!36に対し出力し
ている(第1図参照)。While the flocculant is injected into the suspension in the stirring tank 10 according to the appropriate injection rate WAI given from the computing device 2t38, the driving means 14 moves the stirring blade 12 at an appropriate circumferential speed υ1 and hence at an appropriate rotational speed n. While driving the stirring blade 12 to perform slow stirring, the measuring device aZ
Time t4 when the amount of received light I measured by Z becomes flat
The time required for the formation of aggregates, that is, the aggregate formation time Tt, is determined and outputted to the arithmetic unit !36 as the appropriate aggregate formation time TL'' (see FIG. 1).
加えて第2図ないし第5図を参照しつつ、検知装置13
0の作用について、詳細に説明する。In addition, with reference to FIGS. 2 to 5, the detection device 13
The effect of 0 will be explained in detail.
開閉弁32を開放し排水管30を介して攪拌槽lO内の
残留する懸濁液11を排除したのち、開閉弁32を閉鎖
する。After the on-off valve 32 is opened and the remaining suspension 11 in the stirring tank IO is removed via the drain pipe 30, the on-off valve 32 is closed.
開閉弁25を所定時間だけ開放し、供給管24を介して
懸濁液の供給源(図示せず)から、所定MM(たとえば
l交)の懸濁液を採取して攪拌槽lO内に供給する。The on-off valve 25 is opened for a predetermined period of time, and a predetermined MM (for example, 1×) of suspension is collected from a suspension supply source (not shown) via the supply pipe 24 and supplied into the stirring tank IO. do.
攪拌槽10内への懸濁液の供給が完了すると1時刻t、
において駆動手段たとえば電動モータ14により攪拌羽
根12が急速回転すなわち高速度で回転され始める。When the supply of the suspension into the stirring tank 10 is completed, 1 time t,
At this point, the stirring blade 12 begins to rotate rapidly, that is, at a high speed, by the driving means, for example, the electric motor 14.
そののち時刻t2において開閉弁27を所定時間だけ開
放することにより、所定量Nの凝集剤が。Thereafter, at time t2, the on-off valve 27 is opened for a predetermined period of time, so that a predetermined amount N of flocculant is released.
凝集剤供給源28から′a集調剤供給管26介して攪拌
槽lOに対し注入される。凝集剤としては、ポリアルミ
ニウムクロライドなどの既知の凝集剤を所望に応じて使
用すればよい。The coagulant is injected from the flocculant supply source 28 into the stirring tank IO via the aggregation agent supply pipe 26. As the flocculant, known flocculants such as polyaluminum chloride may be used as desired.
攪拌羽根12の急速回転の開始に先立って1発光装置1
8.受光装置20および測定波W122が始動されてお
り、攪拌槽10内の懸濁液を介して透過光の受光光量■
を測定し、演算装置36に与えている。1 light emitting device 1 prior to the start of rapid rotation of the stirring blade 12
8. The light receiving device 20 and the measurement wave W122 have been started, and the amount of received light transmitted through the suspension in the stirring tank 10 is
is measured and provided to the arithmetic unit 36.
時刻t2すなわち凝集剤が供給される時刻までの受光光
量■は、懸濁液に含有されている浮遊物の初期濃度W0
に対応して一定値■バτ)となっている0時刻t2にお
いて凝集剤が所定量Nだけ注入されると、懸濁液ll内
で凝集体すなわちフロック17が徐々に形成され、かつ
懸濁液11が攪拌槽lO内で急速に攪拌移動されている
ので、受光装!120の受光光量■が緩慢に増大する。The amount of light received until time t2, that is, the time when the flocculant is supplied, is the initial concentration W0 of suspended matter contained in the suspension.
When a predetermined amount N of flocculant is injected at time t2, which is a constant value τ) corresponding to Since the liquid 11 is being rapidly stirred and moved in the stirring tank lO, the light receiving device! The amount of received light (2) of 120 increases slowly.
時刻t、において、攪拌羽根12が緩速回転すなわち低
速度で回転され始めると、更に懸濁液11内で凝集体す
なわちフロック17が形成されてその径dが漸次増大し
、かつ懸濁液11が攪拌槽lO内で緩速に攪拌移動され
ているので、受光装置20の受光光量■が小刻みに増減
しながら全体として増大する。At time t, when the stirring blade 12 starts to be rotated at a slow speed, that is, at a low speed, aggregates or flocs 17 are further formed in the suspension 11, and the diameter d of the flocs 17 gradually increases, and the suspension 11 is slowly stirred and moved in the stirring tank IO, so the amount of light received by the light receiving device 20 increases and decreases little by little, but increases as a whole.
時刻t4に達すると、懸濁液ll内で凝集体すなわちフ
ロック17が十分に凝集されその径dが変化しなくなり
、かつ懸濁液11が攪拌槽1G内で緩速に攪拌移動され
ているので、受光装置20の受光光量■が平坦化し凝集
体すなわちフロック17の通過に伴なって所定値■、お
よび11間で周期的に変動するようになる。When time t4 is reached, the flocs 17 are sufficiently agglomerated in the suspension 11 and the diameter d does not change, and the suspension 11 is being stirred and moved slowly in the stirring tank 1G. , the amount of light received by the light receiving device 20 becomes flat, and as the aggregates, ie, the flocs 17, pass, it begins to periodically fluctuate between a predetermined value (■) and 11.
更に時刻1.において、攪拌羽根12の回転を停止して
攪拌を停止せしめると、懸濁液ll内で形成された凝集
体すなわちフロック17が沈降を開始するので、受光装
@20の受光光量Iが小刻みに増減しつつ、時刻t、に
おいてほぼ一定の値■「(τ)に達する0時刻t6以降
では、懸濁液11中の凝集体すなわちフロック17がも
はや沈降しないので、受光光量■は一定の値Ir(τ)
を維持する。Furthermore, time 1. When the rotation of the stirring blade 12 is stopped to stop stirring, the flocs 17 formed in the suspension ll start to settle, so the amount of light I received by the light receiving device @20 increases and decreases little by little. However, at time t, the amount of received light ■ reaches a constant value Ir( τ)
maintain.
たとえばIllの真水にカオリン25鵬gを添加したカ
オリン懸濁液を用い、かつポリアルミニウムクロライド
を15mg/iの注入率となるように注入した場合の受
光装置20による受光光量■を測定装置22で測定した
ところ、第3図のとおりであった。For example, when using a kaolin suspension prepared by adding 25 g of kaolin to fresh water of Ill, and injecting polyaluminum chloride at an injection rate of 15 mg/i, the measuring device 22 measures the amount of light received by the light receiving device 20. The measurements were as shown in Figure 3.
そののち演算装置コロが、上述したところによって凝集
体すなわちフロック17の径d、数Nb1体@Vおよび
有効密度ρを算出し、更に所望によりその沈降速度Sお
よび上澄水濁度τを併せて算出する。演算装置コロの算
出したこれらのパラメータにより、上述したごとく、凝
集体すなわちフロック17の形成状態を検知できる。Thereafter, the calculation device Coro calculates the diameter d, the number Nb1 bodies @V, and the effective density ρ of the flocs 17 as described above, and further calculates the sedimentation velocity S and supernatant water turbidity τ if desired. do. As described above, the state of formation of the aggregates, that is, the flocs 17, can be detected using these parameters calculated by the arithmetic unit Colo.
演算装置コ8は、演算装置36によって算出された凝集
体すなわちフロック17の径d、数Nb2体積V、有効
密度ρ、沈降速度Sあるいは上澄水濁度τのうちの少な
くとも1つを所望に応じ凝集剤の注入率WAIに対して
記憶し、凝集体すなわちフロック17の径61体avあ
るいは有効密度ρの変化が急峻となり始めるとき、ある
いはその数Nb、沈降速度Sもしくは上澄水濁度τの変
化が緩慢となり始めるときの凝集剤の注入率WAIを適
正注入率WAI”と決定し、演算装置136に対して出
力する(第1図参照)。The calculation device 8 calculates at least one of the diameter d, the number Nb2 volume V, the effective density ρ, the sedimentation rate S, or the supernatant water turbidity τ of the flocs 17 calculated by the calculation device 36 as desired. It is memorized with respect to the flocculant injection rate WAI, and when the change in the diameter av or effective density ρ of the flocs 17 starts to become steep, or when the number Nb, the sedimentation rate S or the supernatant water turbidity τ changes. The injection rate WAI of the flocculant at which the rate starts to become slow is determined as the appropriate injection rate WAI, and is output to the arithmetic unit 136 (see FIG. 1).
この根拠を更に具体的に説明する。すなわちたとえばt
!Lの真木に25諺gのカオリンを添加したカオリン懸
濁液を使用して、上述の測定ならびに演算を反復するご
とに、凝集体すなわちフロック17の径d、数Nb、体
@1vおよび有効密度ρを算出し、凝集剤の注入率WA
Iに対してプロットしたところ、第4図が得られた。The basis for this will be explained in more detail. For example, t
! Each time the above measurements and calculations are repeated using a kaolin suspension prepared by adding 25 g of kaolin to L. Calculate ρ and determine the flocculant injection rate WA
When plotted against I, Figure 4 was obtained.
同様に、前記カオリン懸濁液を使用して、上述の測定な
らびに演算を反復するごとに凝集体すなわちフロック1
7の有効密度ρおよび沈降速度Sと上澄水濁度τとを算
出し、凝集剤の注入率WAIに対してプロットしたとこ
ろ、第5図が得られた。Similarly, using the kaolin suspension, each time the above-mentioned measurements and calculations are repeated, 1 aggregate or floc
When the effective density ρ, sedimentation rate S, and supernatant water turbidity τ of No. 7 were calculated and plotted against the flocculant injection rate WAI, FIG. 5 was obtained.
第4図および第5図から明らかなように、凝集剤の注入
率WAIの変化に伴なって、凝集体すなわちフロック1
7の径d、数Nb9体植v、有効密度ρおよび沈降速度
Sと上澄水濁度τとが変化している。詳述すれば凝集剤
の注入率WAIが所定値WAI” (ここでは301
g/交)以上になると、凝集体すなわちフロック17の
数N、があまり変化しないが、その径dおよび体積Vが
比較的に大きくなって有効密度ρが低下しており、不安
定な凝集体すなわちフロック17が形成されているもの
と判断できる。また凝集剤の注入率WA1がその所定値
WA、’1以上になると、凝集体すなわちフロック17
の沈降速度Sあるいは凝集体すなわちフロック17の沈
降後のL澄水濁度τがあまり変化しない、ひいては凝集
剤の注入率WA1がその所定値WAI”以上となっても
、凝集剤の注入量が増大するに比し凝集体すなわちフロ
ック17の凝集沈澱量を増加できないものと判断でき、
好ましくない。As is clear from FIGS. 4 and 5, as the flocculant injection rate WAI changes, the flocs 1
The diameter d of 7, the number of Nb9 bodies v, the effective density ρ, the sedimentation rate S, and the supernatant water turbidity τ are changed. To be more specific, the flocculant injection rate WAI is set to a predetermined value WAI'' (here, 301
g/cross), the number N of aggregates, that is, flocs 17, does not change much, but the diameter d and volume V become relatively large, the effective density ρ decreases, and the aggregate becomes unstable. In other words, it can be determined that flocks 17 are formed. Further, when the injection rate WA1 of the flocculant exceeds the predetermined value WA,'1, the flocculent, that is, the floc 17
Even if the settling velocity S or the L clear water turbidity τ after settling of the flocs 17 does not change much, and even if the flocculant injection rate WA1 exceeds the predetermined value WAI'', the flocculant injection amount increases. It can be determined that the amount of flocculation, that is, floc 17, cannot be increased compared to the above.
Undesirable.
これに対し凝集剤の注入率WAIがその所定値WAI”
よりも大幅に小さくなると、凝集体すなわちフロック1
7の数Nkが極端に大きくなり、その径dおよび体積V
も極端に小さくなって有効密度ρが増大しており、比較
的に安定な凝集体すなわちフロック17が形成されてい
るものと判断できる。しかしながらこのときは、凝集体
すなわちフロック17の沈降速度Sが小さく、凝集体す
なわちフロック17の沈降後の上澄水濁度τが大きい、
ひいては凝集剤の注入率WAIがその所定値WA−より
も大幅に小さくなると、凝集剤の注入量を削減すること
はできても凝集体すなわちフロック17を効率良く沈澱
除去てきないものと判断でき、好ましくない。On the other hand, the flocculant injection rate WAI is the predetermined value WAI''
, the aggregate or floc 1
The number Nk of 7 becomes extremely large, and its diameter d and volume V
The effective density ρ has also become extremely small, and it can be concluded that relatively stable aggregates, that is, flocs 17 have been formed. However, at this time, the settling velocity S of the flocs 17 is small, and the supernatant water turbidity τ after the flocs 17 has settled is large.
Furthermore, if the flocculant injection rate WAI becomes significantly smaller than the predetermined value WA-, it can be determined that the flocculant, that is, the flocs 17, cannot be efficiently precipitated and removed even if the flocculant injection amount can be reduced. Undesirable.
したがってこのときの所定値WA+”を凝集剤の注入率
とすれば、凝集剤の注入量を削減しかつ懸濁液中の浮遊
物の凝集沈澱量を比較的に大きな値に維持できるので、
懸濁液中の浮遊物を効率良く凝集沈澱せしめ除去できる
。Therefore, if the predetermined value WA+'' at this time is used as the flocculant injection rate, the amount of flocculant injection can be reduced and the amount of flocculation and sedimentation of suspended matter in the suspension can be maintained at a relatively large value.
Floating substances in a suspension can be efficiently coagulated and precipitated and removed.
そのために演算装置138では、上述のようにW□1を
凝集剤の適正注入率と決定している。For this purpose, the arithmetic unit 138 determines W□1 as the appropriate injection rate of the flocculant, as described above.
演算装置38は、適正注入率wA、”を決定すると、こ
れに対応して攪拌羽根12の適正周速υ1ひいては適正
回転数n”を求め、駆動手段!4に向けて送出し、次い
で適正速度勾配G♂を算出し適正注入率WAI”ととも
に演算装置136に向けて送出する(第1図参照)。When the arithmetic unit 38 determines the appropriate injection rate wA,'', the arithmetic unit 38 determines the appropriate circumferential speed υ1 of the stirring blade 12 and the appropriate rotational speed n'' correspondingly, and determines the appropriate rotational speed n'' of the stirring blade 12. 4, and then calculates an appropriate velocity gradient G♂ and sends it to the arithmetic unit 136 together with the appropriate injection rate WAI'' (see FIG. 1).
@算装置コ8から適正注入率WAI”が出力されると、
開閉弁コ2を介して攪拌槽IO内の検知法の懸濁液11
が排除されたのち、開閉弁25を開放して攪拌槽10内
に供給されかつ攪拌羽根12によって急速攪拌中の懸濁
液に対し適正注入率WAI”となるよう開閉弁27を介
して凝集剤が注入される。@When the calculation device Ko8 outputs “appropriate injection rate WAI”,
Suspension 11 of the detection method in the stirring tank IO via the on-off valve 2
is removed, the on-off valve 25 is opened and the flocculant is supplied into the stirring tank 10 and the flocculant is supplied through the on-off valve 27 to the suspension being rapidly stirred by the stirring blades 12 at an appropriate injection rate WAI. is injected.
そののち駆動手段14が、適正注入率WA♂に対応して
演算装W138で算出された適正周速υ1あるいは適正
回転数n8で緩速攪拌するよう、攪拌羽根12を制御す
る。Thereafter, the driving means 14 controls the stirring blade 12 to perform slow stirring at the appropriate circumferential speed υ1 or the appropriate rotational speed n8 calculated by the calculation unit W138 in accordance with the appropriate injection rate WA♂.
この状態で測定装M22によって受光光量Iを測定し1
次いで測定装置140においてその緩速攪拌の開始時刻
上〇から測定装fi22で測定された受光光量Iが平坦
化する時刻t4までの時間すなわち凝集体形成時間Tt
を検知し、適正凝集体形成時間TL”として演算装置1
36に対し出力する(第1図参照)。In this state, the amount of received light I is measured using the measuring device M22.
Next, in the measurement device 140, the time from the start time 〇 of the slow stirring to the time t4 at which the received light amount I measured by the measurement device fi22 becomes flat, that is, the aggregate formation time Tt.
is detected, and the arithmetic unit 1 determines the appropriate aggregate formation time TL.
36 (see Figure 1).
上述では攪拌槽IOが1つだけ包有された検知装置11
3Gについて説明したが、これでは凝集状態の検知に多
大の時間を必要とし、ひいては適正注入率wA、” 、
適正凝集体形成時間T♂および適正速度勾配Gt”の検
知に手間取るので、第6図に示すように複数(ここでは
4つ)の攪拌槽を並こしてもよい。In the above description, the detection device 11 includes only one stirring tank IO.
3G was explained, but with this, it takes a lot of time to detect the agglomeration state, and as a result, the appropriate injection rate wA.
Since it takes time to detect the appropriate aggregate formation time T♂ and the appropriate velocity gradient Gt'', a plurality of stirring tanks (four in this case) may be arranged side by side as shown in FIG.
第6図の検知装21130は、懸濁液の供給源(図示せ
ず)、凝集剤供給源28および演算型2!38ない□
し測定装置i!140が共通化されていることを除き
、構成および作用は、第2図の検知装置と実質的に同一
であるので、共通化された部材に関する以下の説明を除
き、各部材に対し第2図の検知装置において付した参照
番号と同一の参照番号を付し、その詳細な説明を省略す
る。参照番号には、並置された攪拌槽を区別するために
A、’B、C,Dの符号が加え・られている、開閉弁2
7A、〜、27Dは、互いに異なる時間だけ開放されて
おり、攪拌槽10A。The detection device 21130 in FIG.
Measuring device i! Except for the fact that 140 is made common, the configuration and operation are substantially the same as the detection device shown in FIG. The same reference numerals as those given in the detection device will be given, and detailed explanation thereof will be omitted. The on-off valve 2 has the symbols A, 'B, C, and D added to the reference number to distinguish between the stirring tanks arranged side by side.
7A to 27D are open for different times, and are stirring tanks 10A.
〜、100中の懸濁液11^、〜、110に対する凝集
剤の注入率を調節している。The injection rate of the flocculant to the suspension 11^ in ~, 100, ~, 110 is adjusted.
演算装置13gによって適正注入率W11が決定される
と、制御装!139によって撹拌槽10Aで急速攪拌中
の懸濁液に対しこの適正注入率WAI”となるよう凝集
剤が注入され、演算装置!38から出力された適正周速
υ1ひいては適正回転数n1で攪拌羽根12Aを緩速攪
拌しつつ測定装置a22Aによって受光光量!が測定さ
れ、更に測定装置40によってこのときの受光光量Iか
ら適正凝集体形成時間T♂が測定される。When the appropriate injection rate W11 is determined by the calculation device 13g, the control device! 139, the flocculant is injected into the suspension being rapidly stirred in the stirring tank 10A to achieve this appropriate injection rate WAI'', and the agitating blade is injected at the appropriate circumferential speed υ1 outputted from the calculation device !38 and the appropriate rotational speed n1. 12A is slowly stirred, the amount of received light! is measured by the measuring device a22A, and further, the proper aggregate formation time T♂ is measured by the measuring device 40 from the amount of received light I at this time.
また演算装置38は、適正注入率WAl″に対応して算
出した適正周速υ1ひいては適正回転数n1を用いて適
正速度勾配G♂を算出している。Further, the calculation device 38 calculates the appropriate speed gradient G♂ using the appropriate circumferential speed υ1 calculated corresponding to the appropriate injection rate WAl'' and the appropriate rotational speed n1.
第6図の検知装置130にあっては、第5番目の攪拌槽
を追加配置して、適正凝集体形成時間T♂を測定するた
めだけに使用してもよく、これによれば−屑処理時間を
短縮できる。In the detection device 130 of FIG. 6, a fifth stirring tank may be additionally arranged and used only for measuring the appropriate aggregate formation time T♂, according to which - waste treatment It can save time.
なお上述においては、演算装置コ8において適正注入率
WAI”および適正周速υ8 (ひいては適正回転数n
8)を求めかつ適正速度勾配GL”を算出したのち、再
び攪拌槽lOあるいは10^に対して懸濁液を供給し改
めて適正凝集体形成時間T♂を検知するための試験を実
行しているが、これを、演算装置38あるいは他の演算
型N(図示せず)において、適正注入率WAI”および
適正速度勾配G♂の過去のデータから適正凝集体形成時
間TCを求めて演算型22136に向は送出するように
変形しても、同様の作用ないし効果を達成できる。In the above description, the calculation device ko8 calculates the appropriate injection rate WAI'' and the appropriate circumferential speed υ8 (and therefore the appropriate rotational speed n
After determining 8) and calculating the appropriate velocity gradient GL, the suspension is supplied to the stirring tank IO or 10^ again, and a test is performed to detect the appropriate aggregate formation time T♂. However, in the calculation device 38 or another calculation type N (not shown), the appropriate aggregate formation time TC is determined from past data of the appropriate injection rate WAI'' and the appropriate velocity gradient G♂, and the calculation type 22136 is calculated. The same action or effect can be achieved even if the direction is modified to send out.
また上述においては、凝集剤の適正注入率WAl″に対
応して適正速度勾配GL″および適正凝集体形成時間T
♂を求めて凝集体形成池112の攪拌制御を実行してい
るが1本発明は、これに限定されるものではなく、所望
によっては演算操作その他を軽減するために適正速度勾
配Gt”および適正凝集体形成時間T♂の代わりに、未
だ懸濁液の凝集状態を十分には適正化し得ない速度勾配
GtおよびlJ集体形成時間T、を使用してもよい、す
なわち第2図あるいは第6図において凝集剤の適正注入
率WA−を決定したのち、この適正注入率WAI”て凝
集剤の注入された懸濁液を攪拌槽で単に緩速攪拌して凝
集体を形成せしめることにより受光光量を測定し、この
緩速攪拌に対応して速一度勾配GLを求め、かつ受光光
量から凝集体形成時間TLを求めてもよい。In addition, in the above description, the appropriate velocity gradient GL'' and the appropriate aggregate formation time T correspond to the appropriate injection rate WAl'' of the flocculant.
Although the agitation control of the aggregate formation pond 112 is carried out in order to obtain the Instead of the aggregate formation time T♂, the velocity gradient Gt and lJ aggregate formation time T, which do not yet fully optimize the aggregation state of the suspension, may be used, that is, as shown in FIG. 2 or 6. After determining the appropriate injection rate WA- of the flocculant, the amount of received light is reduced by simply stirring the flocculant-injected suspension at this appropriate injection rate WAI at a slow speed in a stirring tank to form aggregates. The gradient GL may be determined at a speed corresponding to this slow stirring, and the aggregate formation time TL may be determined from the amount of light received.
加えて上述においては、攪拌機113A、〜、11:I
Cの回転数n A +〜、neを制御することによって
凝集体形成池112の攪拌制御を実行しているが、本発
明は、これに限定されるものではなく、攪拌機113A
、〜、113Gの回転速度あるいは凝集体形成池112
Cの容積などを制御することによって凝集体形成池11
2の攪拌制御を達成してもよい。In addition, in the above description, the stirrers 113A, -, 11:I
Although the agitation control of the aggregate formation pond 112 is executed by controlling the rotation speed n A + ~, ne of the agitator 113A, the present invention is not limited to this.
, ~, 113G rotation speed or aggregate formation pond 112
Aggregate formation pond 11 by controlling the volume of C.
A stirring control of 2 may be achieved.
(3)発明の効果
上述より明らかなように本発明にかかる凝集体形成池の
第1の攪拌制御方法は、混和池で急速攪拌しつつ懸濁液
に対して凝集剤を注入したのち。(3) Effects of the Invention As is clear from the above, the first stirring control method of the flocculation pond according to the present invention involves injecting the flocculant into the suspension while rapidly stirring the mixture in the mixing basin.
凝集体形成池で緩速攪拌することにより凝集体を形成せ
しめてなる凝集体形成池の攪拌制御方法てあって、特に
。In particular, there is a method for controlling agitation in an aggregate formation pond in which aggregates are formed by slow stirring in the aggregate formation pond.
(a)前記混和池よりも上流で採取された懸濁液に対し
凝集剤を注入して攪拌槽内で攪拌する第1の工程と。(a) A first step of injecting a flocculant into the suspension collected upstream of the mixing pond and stirring it in a stirring tank.
(b)第1の工程よりも低下された攪拌速度において第
1の工程て凝集剤の注入された懸濁液を攪拌する第2の
工程と、
(c)少なくとも第2の工程に際し、第1の工程で凝集
剤の注入された懸濁液を介して発光装置より受光装置に
与えられた受光光量を測定する第3の工程と。(b) a second step of stirring the flocculant-injected suspension in the first step at a stirring speed lower than that of the first step; and a third step of measuring the amount of light received by the light emitting device through the suspension into which the flocculant was injected in the step.
(d)第3の工程で・測定された受光光量から第1の工
程で凝集剤の注入された懸濁液の凝集状態を検知する第
4の工程と。(d) A fourth step of detecting the agglomeration state of the suspension into which the flocculant was injected in the first step from the amount of received light measured in the third step.
(e)第4の工程で検知された凝集状態に応じて凝集剤
の適正注入率を決定する第5の工程と、
(f)第5の工程で決定された適正注入率に対応して速
度勾配および第1の工程で凝集剤の注入された懸濁液の
凝集体形成時間を求める第6の工程と。(e) a fifth step of determining an appropriate injection rate of the flocculant in accordance with the agglomeration state detected in the fourth step; and (f) a speed corresponding to the appropriate injection rate determined in the fifth step. a sixth step of determining the agglomerate formation time of the gradient and the suspension injected with the flocculant in the first step;
(g)前記混和池に対する懸濁液の供給量を検知する第
7の工程と、
(1)第6の工程で求められた速度勾配および凝集体形
成時間と第7の工程で検知された懸濁液の供給量と前記
凝集体形成池の8請とを用いて前記凝集体形成池におけ
る攪拌を制御する第8の工程と、
(1)第7の工程で検知された懸濁液の供給量と第5の
工程で決定された凝集剤の適正注入率とから凝集剤の注
入量を算出する第9の工程と、
(j)第9の工程で算出された注入量に応じて前記混和
池に対し凝集剤を注入する第10の工程と
を備えてなるので。(g) a seventh step of detecting the amount of suspension supplied to the mixing basin; (1) the velocity gradient and aggregate formation time determined in the sixth step and the relationship detected in the seventh step; an eighth step of controlling the agitation in the aggregate formation pond using the supply amount of the suspension liquid and the eight pumps of the aggregate formation pond; (1) supply of the suspension detected in the seventh step; a ninth step of calculating the injection amount of the flocculant from the amount and the appropriate injection rate of the flocculant determined in the fifth step; (j) the mixing according to the injection amount calculated in the ninth step; and a tenth step of injecting a flocculant into the pond.
(+)試験者の目視観察ならびに経験
を排除できる効果
を有し、ひいては
(u)!II集体形成池における攪拌処理の結果を実測
することを回避し
つつ凝集体形成池の攪拌制御を
短時間で適正化できる効果
を有する。(+) It has the effect of eliminating the tester's visual observation and experience, and in turn (u)! This has the effect of optimizing the stirring control of the aggregate formation pond in a short time while avoiding actually measuring the result of the stirring process in the II aggregate formation pond.
また本発明にかかる他の凝集体形成池の第2の攪拌制御
方法は、混和池で急速攪拌しつつ懸濁液に対して凝集剤
を注入したのち、凝集体形成池で緩速攪拌することによ
り凝集体を形成せしめてなる凝集体形成池の攪拌制御方
法であって、特に、(a)前記混和池よりも上流で採取
された懸濁液に対し凝集剤を注入して攪拌槽内で攪拌す
る第1の工程と、
(b)第1の工程よりも低下された攪拌速度において第
1の工程で凝集剤の注入された懸濁液を攪拌する第2の
工程と、
(c)少なくとも第2の工程に際し、第1の工程で作成
された混合液を介して発光装置より受光装置に与えられ
た受光光量を測定する第3の工程と。Another method of controlling agitation in the flocculation pond according to the present invention is to inject the flocculant into the suspension while rapidly stirring it in the mixing basin, and then slowly stirring it in the flocculation basin. A method for controlling agitation of an agglomerate formation pond in which agglomerates are formed by: (a) injecting a flocculant into a suspension collected upstream of the mixing pond and injecting the flocculant into the agitation tank; (b) a second step of stirring the flocculant-injected suspension in the first step at a lower stirring speed than in the first step; and (c) at least and a third step of measuring the amount of light received by the light receiving device from the light emitting device via the liquid mixture created in the first step in the second step.
(d)第3の工程で測定された受光光量から第1の工程
で凝集剤の注入された懸濁液の凝集状態を検知する第4
の工程と。(d) A fourth step for detecting the aggregation state of the suspension into which the flocculant was injected in the first step from the amount of received light measured in the third step.
With the process.
(e) t54の工程で検知された凝集状態に応じて凝
集剤の適正注入率を決定する第5の工程と、
(f)第5の工程で決定された適正注入率に対応して速
度勾配を求める第6の工程と、(g)第6の工程で求め
られた速度勾配のうちから、第4の工程で検知された凝
集状態を適正とする速度勾配を適正速度勾配と決定する
第7の工程と。(e) a fifth step of determining an appropriate injection rate of the flocculant according to the agglomeration state detected in the step t54; and (f) a velocity gradient corresponding to the appropriate injection rate determined in the fifth step. and (g) a seventh step of determining, from among the velocity gradients determined in the sixth step, a velocity gradient that makes the agglomeration state detected in the fourth step appropriate as the appropriate velocity gradient. With the process.
(h)第7の工程で決定された適正速度勾配に対応して
第1の工程で凝集剤の注入された懸濁液の凝集体形成時
間を求め、適正凝集体形成時間とする第8の工程と、
(+)前記混和池に対する懸濁液の供給量を検知する第
9の工程と、
(j)第7の工程で決定された適正速度勾配と第8の工
程で求められた適正凝集体形成時間と第9の工程で検知
された懸濁液の供給量と前記凝集体形成池の容積とを用
いて前記凝集体形成池における攪拌を制御する第10の
工程と、
(k)第9の工程で検知された懸濁液の供給量と第5の
工程で決定された凝集剤の適正注入率とから凝集剤の注
入量を算出する第11の工程と、
(1)第Uの工程で算出された注入量に応じて前記混和
池に対し凝集剤を注入する第12の工程と
を備えてなるので、上記(+)(i1)の効果に加え(
ii1)単に適正注入率を検知するのみではなく適正速
度勾配および適
正凝集体形成時間まで求めて、
凝集体形成池の攪拌制御に所要
の時間を短縮できる効果
を有する。(h) In accordance with the appropriate velocity gradient determined in the seventh step, the aggregate formation time of the suspension into which the flocculant was injected in the first step is determined, and the eighth step is determined as the appropriate aggregate formation time. (+) a ninth step of detecting the amount of suspension supplied to the mixing pond; and (j) determining the appropriate velocity gradient determined in the seventh step and the appropriate coagulation determined in the eighth step. (k) a tenth step of controlling the agitation in the aggregate formation pond using the aggregate formation time, the supply amount of the suspension detected in the ninth step, and the volume of the aggregate formation pond; an 11th step of calculating the injection amount of the flocculant from the supply amount of the suspension detected in the step 9 and the appropriate injection rate of the flocculant determined in the fifth step; and a twelfth step of injecting a flocculant into the mixing basin according to the amount of injection calculated in the step, so in addition to the effects of (+) (i1) above, (
ii1) It not only detects the appropriate injection rate but also determines the appropriate velocity gradient and appropriate aggregate formation time, which has the effect of shortening the time required for stirring control of the aggregate formation pond.
第1図は本発明にかかる凝集体形成池の攪拌制御方法の
一実施例によって凝集体形成池の攪拌制御が実行されて
いる実際の懸濁液処理装置を示す断面図、第2図は本発
明にがかる一実施例を実行するために懸濁液に対する凝
集剤の適正注入率WAI”とそのときの適正凝集体形成
時間T♂および適正速度勾配GL”とを検知する第1図
の検知装置の一例を具体的に示す断面図、第3図は第2
図に示した検知装置の動作を説明するための動作説明図
、第4図は第3図の動作説明図より求めた凝集体の径d
、数Nb、体積Vおよび有効密度ρと凝集剤の注入率W
^1との間の関係を示すグラフ図、第5図は第3図の動
作説明図より求めた上澄水濁度τ、凝集体の沈降速度S
および有効密度ρと凝集剤の注入率WAIとの間の関係
を示すグラフ図、第6図は第2図の検知装置を4つ並置
した検知装置を示す断面図である。FIG. 1 is a sectional view showing an actual suspension processing apparatus in which agitation control of an agglomerate formation pond is executed according to an embodiment of the agitation control method for an agglomerate formation pond according to the present invention, and FIG. In order to carry out an embodiment of the invention, the detection device shown in FIG. 1 detects the appropriate injection rate WAI of the flocculant into the suspension, the appropriate aggregate formation time T♂ and the appropriate velocity gradient GL at that time. A cross-sectional view specifically showing an example of the
An operation explanatory diagram for explaining the operation of the detection device shown in Fig. 4. Diameter d of the aggregate obtained from the operation explanatory diagram in Figure 3.
, number Nb, volume V, effective density ρ, and flocculant injection rate W
Figure 5 is a graph showing the relationship between
FIG. 6 is a sectional view showing a detection device in which four of the detection devices of FIG. 2 are arranged side by side.
Claims (12)
注入したのち、凝集体形成池で緩速攪拌することにより
凝集体を形成せしめてなる凝集体形成池の攪拌制御方法
において、 (a)前記混和池よりも上流で採取された懸濁液に対し
凝集剤を注入してを攪拌槽内で攪拌する第1の工程と、 (b)第1の工程よりも低下された攪拌速度において第
1の工程で凝集剤の注入された懸濁液を攪拌する第2の
工程と、 (c)少なくとも第2の工程に際し、第1の工程で凝集
剤の注入された懸濁液を介して発光装置より受光装置に
与えられた受光光量を測定する第3の工程と、 (d)第3の工程で測定された受光光量から第1の工程
で凝集剤の注入された懸濁液の凝集状態を検知する第4
の工程と、 (e)第4の工程で検知された凝集状態に応じて凝集剤
の適正注入率を決定する第5の工程と、 (f)第5の工程で決定された適正注入率に対応して速
度勾配および第1の工程で凝集剤の注入された懸濁液の
凝集体形成時間を求める第6の工程と、 (g)前記混和池に対する懸濁液の供給量を検知する第
7の工程と、 (h)第6の工程で求められた速度勾配および凝集体形
成時間と第7の工程で検知された懸濁液の供給量と前記
凝集体形成池の容積とを用いて前記凝集体形成池におけ
る攪拌を制御する第8の工程と、 (i)第7の工程で検知された懸濁液の供給量と第5の
工程で決定された凝集剤の適正注入率とから凝集剤の注
入量を算出する第9の工程と、 (j)第9の工程で算出された注入量に応じて前記混和
池に対し凝集剤を注入する第10の工程と を備えてなることを特徴とする凝集体形成池の攪拌制御
方法。(1) In an agitation control method for an aggregate formation pond, in which a flocculant is injected into a suspension while being rapidly stirred in a mixing basin, and then aggregates are formed by slow stirring in an aggregate formation basin. , (a) a first step of injecting a flocculant into the suspension collected upstream of the mixing pond and stirring it in a stirring tank, and (b) a lower concentration than the first step. a second step of stirring the suspension into which the flocculant was injected in the first step at an agitation speed; (c) at least during the second step, the suspension into which the flocculant was injected in the first step; (d) measuring the amount of light received from the light emitting device to the light receiving device via the light emitting device; The fourth part detects the state of liquid aggregation.
(e) a fifth step of determining an appropriate injection rate of the flocculant according to the agglomeration state detected in the fourth step; a sixth step of correspondingly determining the velocity gradient and the agglomerate formation time of the suspension into which the flocculant was injected in the first step; (g) a step of detecting the amount of suspension supplied to the mixing pond; (h) Using the velocity gradient and aggregate formation time determined in the sixth step, the supply amount of the suspension detected in the seventh step, and the volume of the aggregate formation pond. an eighth step of controlling agitation in the flocculation pond; and (i) based on the supply amount of the suspension detected in the seventh step and the appropriate injection rate of the flocculant determined in the fifth step. and (j) a tenth step of injecting the coagulant into the mixing pond according to the injection amount calculated in the ninth step. A stirring control method for an aggregate formation pond, characterized by:
たときの変動周期および第2の工程における攪拌速度か
ら凝集体の数を算出することにより、懸濁液の凝集状態
を検知し、かつ (ii)第5の工程において、前記凝集体の数の変化が
緩慢となり始めるときに対応した凝集剤の注入率を適正
注入率と決定してなることを特徴とする特許請求の範囲
第(1)項記載の凝集体形成池の攪拌制御方法。(2) (i) In the fourth step, the aggregation state of the suspension is detected by calculating the number of aggregates from the fluctuation period when the amount of received light becomes flat and the stirring speed in the second step. and (ii) in the fifth step, the injection rate of the flocculant corresponding to when the change in the number of aggregates starts to slow down is determined as the appropriate injection rate. A method for controlling agitation in an aggregate formation pond according to item (1).
たときの変動幅から凝集体の径を算出することにより、
懸濁液の凝集状態を検知し、かつ (ii)第5の工程において、前記凝集体の径の変化が
急峻となり始めるときに対応した凝集剤の注入率を適正
注入率と決定してなることを特徴とする特許請求の範囲
第(1)項記載の凝集体形成池の攪拌制御方法。(3) (i) In the fourth step, by calculating the diameter of the aggregate from the fluctuation range when the amount of received light is flattened,
Detecting the flocculating state of the suspension, and (ii) determining, in the fifth step, the injection rate of the flocculant corresponding to when the change in the diameter of the aggregate starts to become steep as the appropriate injection rate. A stirring control method for an aggregate formation pond according to claim (1), characterized in that:
たときの変動周期および第2の工程における攪拌速度か
ら凝集体の数を算出し、かつ 受光光量が平坦化したときの変動幅から凝集体の径を算
出し、かつ 前記凝集体の数および径から凝集体の体積を算出するこ
とにより、懸濁液の凝集状態を検知し、かつ (ii)第5の工程において、前記凝集体の数の変化が
緩慢となり始め、かつ 前記凝集体の径の変化が急峻となり始め、かつ 前記凝集体の体積の変化が急峻となり始めるときに対応
した凝集剤の注入率を適正注入率と決定してなることを
特徴とする特許請求の範囲第(1)項記載の凝集体形成
池の攪拌制御方法。(4) (i) In the fourth step, calculate the number of aggregates from the fluctuation period when the amount of received light is flattened and the stirring speed in the second step, and the width of fluctuation when the amount of received light is flattened. (ii) detecting the aggregation state of the suspension by calculating the diameter of the aggregates from the aggregates and calculating the volume of the aggregates from the number and diameter of the aggregates; The injection rate of the flocculant that corresponds to when the change in the number of aggregates begins to slow down, the diameter of the aggregates begins to change sharply, and the volume of the aggregates starts to change sharply is determined as the appropriate injection rate. A stirring control method for an aggregate formation pond according to claim (1), characterized in that:
たときの変動周期および第2の工程における攪拌速度か
ら凝集体の数を算出し、かつ 受光光量が平坦化したときの変動幅から凝集体の径を算
出し、かつ 前記凝集体の数および径と懸濁液の浮遊物濃度と凝集剤
の注入率とから凝集体の有効密度を算出することにより
、懸濁液の凝集状態を検知し、かつ (ii)第5の工程において、前記凝集体の数の変化が
緩慢となり始めかつ径および有効密度の変化が急峻とな
り始めるときに対応した凝集剤の注入率を適正注入率と
決定してなることを特徴とする特許請求の範囲第(1)
項記載の凝集体形成池の攪拌制御方法。(5) (1) In the fourth step, calculate the number of aggregates from the fluctuation period when the amount of received light is flattened and the stirring speed in the second step, and the width of fluctuation when the amount of received light is flattened. The aggregation state of the suspension can be determined by calculating the diameter of the aggregates from the above, and calculating the effective density of the aggregates from the number and diameter of the aggregates, the suspended solids concentration of the suspension, and the injection rate of the flocculant. and (ii) in the fifth step, the injection rate of the flocculant corresponding to when the change in the number of aggregates starts to slow down and the change in diameter and effective density starts to become steep is determined as the appropriate injection rate. Claim No. (1) characterized in that:
A stirring control method for an aggregate formation pond as described in .
注入したのち、凝集体形成池で緩速攪拌することにより
凝集体を形成せしめてなる凝集体形成池の攪拌制御方法
において、 (a)前記混和池よりも上流で採取された懸濁液に対し
凝集剤を注入してを攪拌槽内で攪拌する第1の工程と、 (b)第1の工程よりも低下された攪拌速度において第
1の工程で凝集剤の注入された懸濁液を攪拌する第2の
工程と、 (c)少なくとも第2の工程に際し、第1の工程で凝集
剤の注入された懸濁液を介して発光装置より受光装置に
与えられた受光光量を測定する第3の工程と、 (d)第3の工程で測定された受光光量から第1の工程
で凝集剤の注入された懸濁液の凝集状態を検知する第4
の工程と、 (e)第4の工程で検知された凝集状態に応じて凝集剤
の適正注入率を決定する第5の工程と、 (f)第5の工程で決定された適正注入率に対応して速
度勾配を求める第6の工程と、 (g)第6の工程で求められた速度勾配のうちから、第
4の工程で検知された凝集状態を適正とする速度勾配を
適正速度勾配と決定する第7の工程と、 (h)第7の工程で決定された適正速度勾配に対応して
第1の工程で凝集剤の注入された懸濁液の凝集体形成時
間を求め、適正凝集体形成時間とする第8の工程と、 (i)前記混和池に対する懸濁液の供給量を検知する第
9の工程と、 (j)第7の工程で決定された適正速度勾配と第8の工
程で求められた適正凝集体形成時間と第9の工程で検知
された懸濁液の供給量と前記凝集体形成池の容積とを用
いて前記凝集体形成池における攪拌を制御する第10の
工程と、 (k)第9の工程で検知された懸濁液の供給量と第5の
工程で決定された凝集剤の適正注入率とから凝集剤の注
入量を算出する第11の工程と、 (l)第11の工程で算出された注入量に応じて前記混
和池に対し凝集剤を注入する第12の工程と を備えてなることを特徴とする凝集体形成池の攪拌制御
方法。(6) In an agitation control method for an agglomerate formation pond, in which a flocculant is injected into a suspension while being rapidly agitated in a mixing pond, and then agglomerates are formed by slow stirring in an agglomerate formation pond. , (a) a first step of injecting a flocculant into the suspension collected upstream of the mixing pond and stirring it in a stirring tank, and (b) a lower concentration than the first step. a second step of stirring the suspension into which the flocculant was injected in the first step at an agitation speed; (c) at least during the second step, the suspension into which the flocculant was injected in the first step; (d) measuring the amount of light received from the light emitting device to the light receiving device via the light emitting device; The fourth part detects the state of liquid aggregation.
(e) a fifth step of determining an appropriate injection rate of the flocculant according to the agglomeration state detected in the fourth step; (g) Among the velocity gradients determined in the sixth step, a velocity gradient that makes the agglomeration state detected in the fourth step appropriate is determined as an appropriate velocity gradient. (h) Corresponding to the appropriate velocity gradient determined in the seventh step, calculate the aggregate formation time of the suspension in which the flocculant was injected in the first step, and determine the appropriate velocity gradient. (i) a ninth step of detecting the amount of suspension supplied to the mixing pond; (j) determining the appropriate velocity gradient determined in the seventh step; A step of controlling the agitation in the aggregate formation pond using the appropriate aggregate formation time determined in step 8, the supply amount of the suspension detected in the ninth step, and the volume of the aggregate formation pond. (k) an eleventh step of calculating the injection amount of the flocculant from the suspension supply amount detected in the ninth step and the appropriate injection rate of the flocculant determined in the fifth step; and (l) a twelfth step of injecting a flocculant into the mixing pond according to the injection amount calculated in the eleventh step. Method.
攪拌が停止されたのちに受光光量が平坦化したときの受
光光量から凝集体が沈澱されたのちの上澄水濁度を算出
することにより、懸濁液の凝集状態を検知し、 かつ (ii)第5の工程において、上澄水濁度の変化が緩慢
となり始めるときに対応した凝集剤の注入率を適正注入
率と決定してなることを特徴とする特許請求の範囲第(
6)項記載の凝集体形成池の攪拌制御方法。(7) (i) In the fourth step, calculate the supernatant water turbidity after the aggregates have been precipitated from the amount of light received when the amount of light received becomes flat after the stirring in the second step is stopped. (ii) In the fifth step, the injection rate of the flocculant corresponding to when the change in supernatant water turbidity starts to become slow is determined as the appropriate injection rate. Claim No. 1 characterized in that (
6) Agitation control method for an aggregate formation pond as described in section 6).
攪拌が停止されたのち受光光量が平坦化するまでの時間
から凝集体の沈降速度を算出することにより、懸濁液の
凝集状態を検知し、かつ (ii)第5の工程において、凝集体の沈降速度の変化
が緩慢となり始めるときに対応した凝集剤の注入率を適
正注入率と決定してなることを特徴とする特許請求の範
囲第(6)項記載の凝集体形成池の攪拌制御方法。(8) (i) In the fourth step, the aggregation state of the suspension is determined by calculating the sedimentation rate of the aggregate from the time until the amount of received light becomes flat after the stirring in the second step is stopped. and (ii) in the fifth step, the injection rate of the flocculant corresponding to when the change in the sedimentation rate of the aggregates starts to become slow is determined as the appropriate injection rate. A method for controlling agitation in an aggregate formation pond according to item (6).
れた受光光量が平坦化したときの変動周期および第2の
工程における攪拌速度から凝集体の数を算出することに
より、 懸濁液の凝集状態を検知し、かつ (ii)第5の工程において、凝集体の数の変化が緩慢
となり始めるときに対応した凝集剤の注入率を適正注入
率と決定してなることを特徴とする特許請求の範囲第(
6)項記載の凝集体形成池の攪拌制御方法。(9) (i) In the fourth step, the number of aggregates is calculated from the fluctuation period when the amount of received light measured in the third step becomes flat and the stirring speed in the second step. It is characterized by detecting the flocculating state of the turbid liquid, and (ii) determining the injection rate of the flocculant corresponding to when the change in the number of aggregates starts to slow down in the fifth step as the appropriate injection rate. The scope of claim No. (
6) Agitation control method for an aggregate formation pond as described in section 6).
された受光光量が平坦化したときの変動幅から凝集体の
径を算出することにより、懸濁液の凝集状態を検知し、
かつ (ii)第5の工程において、凝集体の径の変化が急峻
となり始めるときに対応した凝集剤の注入率を適正注入
率と決定してなることを特徴とする特許請求の範囲第(
6)項記載の凝集体形成池の攪拌制御方法。(10) (i) In the fourth step, the aggregation state of the suspension is detected by calculating the diameter of the aggregate from the range of fluctuation when the amount of received light measured in the third step becomes flat. ,
and (ii) in the fifth step, the injection rate of the flocculant corresponding to when the change in diameter of the aggregate starts to become steep is determined as the appropriate injection rate.
6) Agitation control method for an aggregate formation pond as described in section 6).
る攪拌が停止されたのちに受光光量が平坦化したときの
変動周期および第2の工程における攪拌速度から凝集体
の数を算出し、かつ第3の工程で測定された受光光量が
平坦化したときの変動幅から凝集体の径を算出し、かつ
前記凝集体の数および径から凝集体の体積を算出するこ
とにより、懸濁液の凝集状態を検知し、かつ (ii)第5の工程において、前記凝集体の数の変化が
緩慢となり始め、かつ前記凝集体の径の変化が急峻とな
り始め、かつ前記凝集体の体積の変化が急峻となり始め
るときに対応した凝集剤の注入率を適正注入率と決定し
てなることを特徴とする特許請求の範囲第(6)項記載
の凝集体形成部の攪拌制御方法。(11) (i) In the fourth step, calculate the number of aggregates from the fluctuation period when the amount of received light becomes flat after the stirring in the second step is stopped and the stirring speed in the second step. , and by calculating the diameter of the aggregates from the variation range when the amount of received light measured in the third step is flattened, and by calculating the volume of the aggregates from the number and diameter of the aggregates, the suspension is detecting the aggregation state of the liquid, and (ii) in the fifth step, the change in the number of the aggregates starts to slow down, the diameter of the aggregates starts to change steeply, and the volume of the aggregates starts to change slowly; The agitation control method for an aggregate forming section according to claim 6, characterized in that the injection rate of the flocculant corresponding to when the change starts to become steep is determined as the appropriate injection rate.
された受光光量が平坦化したときの変動周期および第2
の工程における攪拌速度から凝集体の数を算出し、かつ 第3の工程で測定された受光光量が平坦化したときの変
動幅から凝集体の径を算出し、かつ 前記凝集体の数および径と懸濁液の浮遊物濃度と凝集剤
の注入率とから凝集体の有効密度を算出することにより
、懸濁液の凝集状態を検知し、かつ (ii)第5の工程において、凝集体の数の変化が緩慢
となり始めかつ径および有効密度の変化が急峻となり始
めるときに対応した凝集剤の注入率を適正注入率と決定
してなることを特徴とする特許請求の範囲第(6)項記
載の凝集体形成池の攪拌制御方法。(12) (i) In the fourth step, the fluctuation period and the second
Calculate the number of aggregates from the stirring speed in the third step, calculate the diameter of the aggregates from the fluctuation width when the amount of received light measured in the third step becomes flat, and calculate the number and diameter of the aggregates. (ii) in the fifth step, the aggregation state of the suspension is detected by calculating the effective density of the aggregates from the suspended matter concentration of the suspension and the injection rate of the flocculant; Claim (6) characterized in that the injection rate of the flocculant corresponding to when the change in the number starts to slow down and the change in diameter and effective density start to become steep is determined as the appropriate injection rate. The agitation control method for the aggregate formation pond described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11398987A JPS63278510A (en) | 1987-05-11 | 1987-05-11 | Method for controlling agitation of flocculation basin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11398987A JPS63278510A (en) | 1987-05-11 | 1987-05-11 | Method for controlling agitation of flocculation basin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63278510A true JPS63278510A (en) | 1988-11-16 |
JPH0358761B2 JPH0358761B2 (en) | 1991-09-06 |
Family
ID=14626271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11398987A Granted JPS63278510A (en) | 1987-05-11 | 1987-05-11 | Method for controlling agitation of flocculation basin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63278510A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018004506A (en) * | 2016-07-05 | 2018-01-11 | オルガノ株式会社 | Device and method for observing particles |
CN115140918A (en) * | 2022-08-30 | 2022-10-04 | 聊城集众环保科技有限公司 | Efficient control method for sewage treatment |
-
1987
- 1987-05-11 JP JP11398987A patent/JPS63278510A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018004506A (en) * | 2016-07-05 | 2018-01-11 | オルガノ株式会社 | Device and method for observing particles |
CN115140918A (en) * | 2022-08-30 | 2022-10-04 | 聊城集众环保科技有限公司 | Efficient control method for sewage treatment |
Also Published As
Publication number | Publication date |
---|---|
JPH0358761B2 (en) | 1991-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3205450B2 (en) | Automatic injection rate determination device and automatic determination method | |
JP4950908B2 (en) | Method and apparatus for determining coagulant injection rate in water treatment method for coagulation sedimentation treatment | |
US20180037471A1 (en) | Wastewater treatment system | |
KR101645540B1 (en) | Method for feeding coagulant for water-purification and apparatus for water-purification using the same | |
WO2016157646A1 (en) | Method for controlling rapid stirrer, and rapid stirrer | |
JPH07112103A (en) | Controller for flocculation process of water purification plant | |
JP2008055299A (en) | Flocculating sedimentation treating equipment | |
JP2002159805A (en) | Flocculant injection control method of water purification plant | |
JP6139349B2 (en) | Water treatment system | |
JPS63278510A (en) | Method for controlling agitation of flocculation basin | |
JP4785454B2 (en) | Method and apparatus for adjusting sludge solids supply in sludge dewatering machine | |
JP2003200175A (en) | Flocculant injection control method and flocculant injection control system | |
JPH0351443B2 (en) | ||
JPWO2016006419A1 (en) | Aggregation method and apparatus | |
JPS63256108A (en) | Method for controlling injection of flocculant | |
JPH0238243B2 (en) | ||
JP4485392B2 (en) | Method and apparatus for adjusting sludge solids supply in sludge dewatering machine | |
JP5579404B2 (en) | Apparatus and method for controlling flocculant injection rate | |
JP5711692B2 (en) | Water treatment method by stirring control | |
JP5571424B2 (en) | Method and apparatus for controlling the injection rate of flocculant in real time | |
JP2960309B2 (en) | Sludge treatment equipment | |
JPS63253236A (en) | Method for detecting flocculation condition of suspension | |
JP2023142675A (en) | Optical measurement device, flocculation device, flocculation state monitoring device, and optical measurement method | |
JP6385860B2 (en) | Aggregation state determination method and aggregation state determination device | |
JPH07171307A (en) | Flocculation test of suspension and determination of injection amount of flocculant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |