JPS63256108A - Method for controlling injection of flocculant - Google Patents

Method for controlling injection of flocculant

Info

Publication number
JPS63256108A
JPS63256108A JP8922687A JP8922687A JPS63256108A JP S63256108 A JPS63256108 A JP S63256108A JP 8922687 A JP8922687 A JP 8922687A JP 8922687 A JP8922687 A JP 8922687A JP S63256108 A JPS63256108 A JP S63256108A
Authority
JP
Japan
Prior art keywords
flocculant
partial step
injection
injection rate
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8922687A
Other languages
Japanese (ja)
Other versions
JPH0418883B2 (en
Inventor
Shinji Yamamoto
信二 山本
Kiyoshi Suzuki
潔 鈴木
Mitsuru Imai
満 今井
Mutsuo Nakajima
睦雄 中島
Chiaki Igarashi
千秋 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP8922687A priority Critical patent/JPS63256108A/en
Publication of JPS63256108A publication Critical patent/JPS63256108A/en
Publication of JPH0418883B2 publication Critical patent/JPH0418883B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE:To exclude the visual observation and experience of a tester and to optimize the injection rate of a flocculant by preparing an injection control formula while renewing the optimum injection rate of the flocculant in accordance with a certain turbidity range of a suspension, and controlling the injection of the flocculant in conformity with the formula. CONSTITUTION:A suspension is sampled, the turbidity and its corresponding injection rate of the flocculant are detected, the optimum injection rate detected in accordance with the turbidity range to which the turbidity belongs is stored in place of the oldest stored value, an injection control formula is prepared by using the stored optimum injection rate and stored in place of the former injection control formula, the injection rate of the flocculant is calculated by the new control formula in accordance with thee detected turbidity, and the flocculant is injected in accordance with the result. By this method the visual observation and experience of a tester can be excluded, the injection control formula can be renewed in accordance with a certain turbidity range, and the injection rate of the flocculant can be optimized based on the latest detected result.

Description

【発明の詳細な説明】 (1)発明の目的 [産業上の利用分野] 本発明は、凝集剤の注入管理方法に関し、特に懸濁液の
ある濁度範囲に応じて凝集剤の適正注入率を更新しつつ
それぞれ注入管理式を作成し、その注入管理式によって
凝集剤の注入管理を実行することにより、凝集剤の注入
率ないし注入量を適正化する凝集剤の注入管理方法に関
するものである。
Detailed Description of the Invention (1) Purpose of the Invention [Industrial Field of Application] The present invention relates to a method for controlling the injection of a flocculant, and in particular to a method for controlling the injection of a flocculant depending on a certain turbidity range of a suspension. This invention relates to a flocculant injection management method that optimizes the flocculant injection rate or injection amount by creating an injection management formula while updating each, and executing flocculant injection management using the injection management formula. .

[従来の技術] 従来この種の凝集剤の注入管理方法としては、上水、工
業用水、下水、産業廃液などの懸濁液を適当量たけ採取
し、複数のと一カに等量ずつ分配し、凝集剤をその注入
率を変化させてそれぞれ柱入して攪拌静置し、そののち
試験者の目視観察および経験によって凝集状態を検知す
ることにより、凝集剤の注入率を適正化するよう管理す
るものが提案されていた。
[Prior art] Conventionally, the injection control method for this type of flocculant involves collecting an appropriate amount of a suspension of tap water, industrial water, sewage, industrial waste, etc., and distributing the same amount to multiple units. Then, the injection rate of the flocculant can be optimized by adding flocculant into the column at different injection rates, stirring and leaving it to stand, and then detecting the flocculation state through visual observation and experience of the tester. Management was proposed.

[解決すべき問題点] しかしながら従来の凝集剤の注入管理方法では、試験者
の目視観察および経験によって凝集状態を検知していた
ので、試験者によって凝集状態の検知結果か相違し凝集
剤の注入率を必ずしも適正化できない欠点があり、また
凝集状態の検知ひいては凝集剤の注入率を決定すること
に多大の時間を要する欠点があった。
[Problems to be solved] However, in the conventional flocculant injection control method, the flocculant state was detected by visual observation and experience of the tester, so the detection result of the flocculant state may differ depending on the tester, and the flocculant injection may be different depending on the tester. There is a drawback that the rate cannot always be optimized, and it takes a lot of time to detect the state of agglomeration and ultimately determine the injection rate of the flocculant.

そこで本発明は、これらの欠点を除去するために、懸濁
液のある濁度範囲に応じて凝集剤の適正注入率を更新し
つつそれぞれ注入管理式を作成し、その注入管理式によ
って凝集剤の注入管理を実行することにより、凝集剤の
注入率ないし注入量を適正化する凝集剤の注入管理方法
を提供せんとするものである。
Therefore, in order to eliminate these drawbacks, the present invention creates an injection management formula while updating the appropriate injection rate of the flocculant according to a certain turbidity range of the suspension, and uses the injection management formula to adjust the flocculant injection rate. It is an object of the present invention to provide a flocculant injection management method that optimizes the flocculant injection rate or injection amount by executing the injection management.

(2)発明の構成 c問題点の解決手段] 本発明により提供される問題点の解決手段は、「(a)
懸濁液を採取する第1の工程と、(b)懸濁液の濁度を
検知する第2の工程と、 (c)採取した懸濁液に対する凝集剤の適正注入率を、
第2の工程で濁度が検知さ れるときに応じかつ第2の工程で濁度 が検知される頻度以下の頻度でlIl歇的に検知する第
3の工程と、 (d)第2の工程で検知した濁度の属する濁度範囲に応
じて前記濁度範囲中の最古 の記憶値に代え第3の工程で検知した 適正注入率を記憶する第4の工程と、 (e)第4の工程で記憶された適正注入率を用いて注入
管理式を作成し従前の注入 管理式に代えて記憶する第5の工程 と、 (f)第2の工程で検知した濁度に応じて前記注入管理
式により凝集剤の注入率を 算出する第6の工程と、 (g)第6の工程で算出された注入率に応じて凝集剤を
処理すべき懸濁液に対して 注入する第7の工程と を備えてなることを特徴とする凝集剤の注入管理方法」 である。
(2) Structure of the Invention (c) Means for Solving Problems] Means for solving problems provided by the present invention are as follows: (a)
(b) a second step of detecting the turbidity of the suspension; (c) determining the appropriate injection rate of the flocculant for the collected suspension;
a third step of intermittently detecting turbidity in accordance with when turbidity is detected in the second step and at a frequency less than or equal to the frequency at which turbidity is detected in the second step; (d) a second step; (e) storing the appropriate injection rate detected in the third step in place of the oldest stored value in the turbidity range according to the turbidity range to which the detected turbidity belongs; (f) a fifth step of creating an injection management formula using the appropriate injection rate memorized in the step and storing it in place of the previous injection management formula; (g) a seventh step of injecting the flocculant into the suspension to be treated according to the injection rate calculated in the sixth step; A method for controlling injection of a flocculant, characterized by comprising the steps of:

[作用] 本発明にかかる凝集剤の注入管理方法は、懸濁液の濁度
およびそれに対する凝集剤の適正注入率を検知し、その
濁度の属する濁度範囲に応じて検知された適正注入率を
最古の記憶値に代えて記憶し、記憶された適正注入率を
用いて注入管理式を作成して従前の注入管理式に代えて
記憶し、懸濁液の濁度に応じて注入管理式により凝集剤
の注入率を算出し、算出された注入率に応じて凝集剤を
処理すべき懸濁液に対して注入する作用をなしており、
試験者の目視観察ならびに経験を排除する作用をなし、
また注入管理式をある濁度範囲に応じて準備する作用を
なし、ひいては最新の検知結果に応じて凝集剤の注入率
ないし注入量を適正化する作用をなす。
[Function] The flocculant injection management method according to the present invention detects the turbidity of the suspension and the appropriate injection rate of the flocculant relative to the turbidity, and performs the detected appropriate injection according to the turbidity range to which the turbidity belongs. The rate is replaced with the oldest memorized value and stored, an injection control formula is created using the memorized appropriate injection rate, and the formula is memorized instead of the previous injection control formula, and the injection is performed according to the turbidity of the suspension. The injection rate of the flocculant is calculated using a control formula, and the flocculant is injected into the suspension to be treated according to the calculated injection rate.
It acts to eliminate the tester's visual observation and experience,
It also functions to prepare an injection control formula according to a certain turbidity range, and further functions to optimize the injection rate or amount of flocculant according to the latest detection results.

[実施例] 次に本発明について添付図面を参照しつつ具体的に説明
する。
[Example] Next, the present invention will be specifically described with reference to the accompanying drawings.

第1図は、本発明の凝集剤の注入管理方法の一実施例に
よって凝集剤の注入が管理されている実際の懸濁液処理
装置な示す断面図である。
FIG. 1 is a sectional view showing an actual suspension processing apparatus in which injection of a flocculant is controlled by an embodiment of the flocculant injection management method of the present invention.

第2図は、第1図の懸濁液処理装置に含まれており本発
明の一実施例を実行するために凝集剤の適正注入率を検
知する適正注入率検知装置を示す断面図である。
FIG. 2 is a cross-sectional view showing an appropriate injection rate detection device that is included in the suspension processing apparatus of FIG. .

第3図は、第2図の適正注入率検知装置の動作を説明す
るための動作説明図であって、受光光量Iの時間的変化
を示している。
FIG. 3 is an operational explanatory diagram for explaining the operation of the appropriate injection rate detection device of FIG. 2, and shows temporal changes in the amount of received light I.

第4図は、第3図の動作説明図より求めた凝集体の径d
、数n2体積Vおよび有効密度ρと凝集剤の注入率WA
lとの間の関係を示すグラフ図である。
Figure 4 shows the diameter d of the aggregate obtained from the operation diagram in Figure 3.
, number n2 volume V and effective density ρ and flocculant injection rate WA
1 is a graph diagram showing the relationship between

第5図は、第3図の動作説明図より求めた上澄水濁度τ
、凝集体の沈降速度Sおよび有効密度ρと凝集剤の注入
率WA1との間の関係を示すグラフ図である。
Figure 5 shows the supernatant water turbidity τ obtained from the operation diagram in Figure 3.
, is a graph diagram showing the relationship between the settling velocity S and effective density ρ of the aggregate and the injection rate WA1 of the flocculant.

第6図は、第2図の適正注入率検知装置を4つ並こした
適正注入率検知装置を示す断面図である。
FIG. 6 is a sectional view showing an appropriate injection rate detection device in which four appropriate injection rate detection devices shown in FIG. 2 are arranged side by side.

第7図(a)〜(c)は、第1図の懸濁液処理装置にお
いて本発明の一実施例により凝集剤の注入管理を実行し
た結果を示すグラフ図である。
FIGS. 7(a) to 7(c) are graphs showing the results of flocculant injection management performed in the suspension processing apparatus of FIG. 1 according to an embodiment of the present invention.

まず第1図を参照しつつ1本発明の凝集剤の注入管理方
法によって凝集剤の注入が管理されている実際の懸濁液
処理装置について説明する。
First, with reference to FIG. 1, an actual suspension processing apparatus in which injection of a flocculant is controlled by the flocculant injection management method of the present invention will be described.

102は着水井で、供給管104を介して適宜の懸濁液
供給源(図示せず)から懸濁液が供給されている。1.
06は着水井102に対し供給管108を介して連通さ
れた凝集剤の混和池で、駆動手段たとえば電動モータ1
09によって急速回転される攪拌羽根110か配設され
ている。112は混和池106に対し供給管114を介
して連通された凝集体形成池で、3つの領域112A、
〜、112Gに区分されており、それぞれ駆動手段たと
えば電動モータ115A。
Reference numeral 102 denotes a landing well, into which a suspension is supplied via a supply pipe 104 from an appropriate suspension supply source (not shown). 1.
06 is a coagulant mixing pond connected to the landing well 102 via a supply pipe 108, and is driven by a driving means such as an electric motor 1.
A stirring blade 110 that is rapidly rotated by a stirring blade 09 is also provided. Reference numeral 112 denotes an aggregate formation pond that is connected to the mixing pond 106 via a supply pipe 114, and has three areas 112A,
112G, each having a driving means such as an electric motor 115A.

〜、115Gによって緩速回転される攪拌羽根116A
~, stirring blade 116A rotated slowly by 115G
.

〜116Cが配設されている。混和池106て形成され
かつ供給管114によって凝集体形成池112に供給さ
れた凝集剤と懸濁液との混合液は、まず凝集体形成池1
12のうちの第1の領域112^において攪拌羽根11
6Aにより所定時間にわたって緩速攪拌され、そののち
第2の領域112Bへ移行されて攪拌羽根116Bによ
り所定時間にわたって緩速攪拌され。
~116C are arranged. The mixed liquid of the flocculant and suspension formed in the mixing pond 106 and supplied to the flocculation basin 112 through the supply pipe 114 is first fed to the flocculant formation basin 1.
The stirring blade 11 in the first region 112^ of the 12
6A for a predetermined period of time, and then transferred to the second region 112B where it is slowly stirred for a predetermined period of time by stirring blades 116B.

更に第3の領域112Cへ移行されて攪拌羽根116G
により所定時間にわたって緩速攪拌される。118は凝
集体形成池112に連設された沈澱池で、!凝集体形成
池112の第3の領域112Cから供給された凝集体す
なわちフロックが十分に形成された懸濁液と凝集剤との
混合液を静こせしめ、その凝集体すなわちフロックを沈
澱せしめて除去している。120は供給管122を介し
て沈澱池118の放流口に連通された濾過池で、沈澱池
118で除去できなかった微小な凝集体すなわちフロッ
クを濾過により除去したのち処理水として処理水管12
4を介し後続の適宜の設備へ送出しいる。
Furthermore, the stirring blade 116G is transferred to the third region 112C.
The mixture is slowly stirred for a predetermined period of time. 118 is a sedimentation tank connected to the aggregate formation tank 112,! The mixed solution of the flocculant and the suspension in which the flocs are sufficiently formed, supplied from the third region 112C of the flocculation pond 112, is allowed to settle, and the flocs, or flocs, are settled and removed. are doing. A filtration tank 120 is connected to the outlet of the sedimentation tank 118 via a supply pipe 122, and after removing minute aggregates, that is, flocs that could not be removed by the sedimentation tank 118, the treated water is passed through the treated water pipe 12 as treated water.
4 to subsequent appropriate equipment.

130は第2図もしくは第6図に示す凝集剤の適正注入
率検知装置で、供給管132およびポンプ134を介し
て着水井102に連通されており、排水y、+:+:+
か混和池106などに開放されている。136は適正注
入率検知装置130に接続された演算装置て、供給管1
32に付設された濁度計138あるいは供給管108に
付設された他の濁度計139によって測定された懸濁液
の濁度τ。の大きさに応じ。
Reference numeral 130 denotes a device for detecting the appropriate injection rate of the flocculant shown in FIG. 2 or FIG.
It is open to the mixing pond 106 and the like. 136 is a calculation device connected to the appropriate injection rate detection device 130;
32 or another turbidity meter 139 attached to the supply pipe 108. Depending on the size of.

適正注入率検知装置130て検知された適正注入率WA
、”の記憶箇所を選択している。すなわち演算装置13
6は、濁度τ。が所定値τ。lよりも小さい範囲(すな
わち渇水期あるいは冬期に相当する低濁度範囲)にある
ときと、濁度τ。か所定値τ。82(〉τo11)より
も大きい範囲(すなわち台風期に相当する高濁度範囲)
にあるときと、濁度τ。が所定値τ。■およびτ。lの
間にある範囲(すなわち平常期に相出する中濁度範囲)
にあるときとにそれぞれ応じて、適正注入率WA!”を
異なる記憶箇所にその最古のデータに代えて記憶し、最
新のデータとする。演算装置136は、低濁度範囲、中
濁度範囲および高濁度範囲に応じて、それぞれ適正注入
率WA、*に関し適当数(たとえば5つ)のデータを保
持している。演算装置1:16は、適正注入率wA、”
のデータが更新されるごとに、各濁度範囲において記憶
しているデータを用い、凝集剤の注入率WA+を算出す
るための注入管理式 %式% を作成する(A、Bは定数)。したかって演算装置13
6は、適正注入率WA、”のデータか更新されたのち次
の更新まての期間にわたり、濁度計138あるいは13
9より与えられた濁度τに応じ上式によって凝集剤の注
入率WAlを決定している。
Appropriate injection rate WA detected by the appropriate injection rate detection device 130
,” is selected. In other words, the arithmetic unit 13
6 is turbidity τ. is the predetermined value τ. When the turbidity is in a range smaller than l (i.e., a low turbidity range corresponding to the dry season or winter season), the turbidity τ. Fixed value τ. 82 (>τo11) (i.e., high turbidity range corresponding to the typhoon period)
and the turbidity τ. is the predetermined value τ. ■ and τ. (i.e., the intermediate turbidity range that occurs during normal periods)
The appropriate injection rate WA! ” in place of the oldest data in a different memory location, and set it as the latest data.The computing device 136 determines the appropriate injection rate for each of the low turbidity range, medium turbidity range, and high turbidity range. It holds an appropriate number (for example, 5) of data regarding WA, *.Arithmetic unit 1:16 holds an appropriate injection rate wA,
Each time the data is updated, an injection management formula % is created for calculating the flocculant injection rate WA+ using the data stored in each turbidity range (A and B are constants). The calculation device 13
6 indicates that the turbidity meter 138 or 13
The injection rate WAl of the flocculant is determined by the above formula according to the turbidity τ given by 9.

140は演算装置136および流量計142に接続され
た乗算器て、演算装と136によって出力された注入率
WAlと流量計142によって検出された流量すなわち
混和池106への供給ff1Qとを互いに乗算すること
により、凝集剤の注入量を算出する。
140 is a multiplier connected to the arithmetic unit 136 and the flow meter 142, and multiplies the injection rate WAl outputted by the arithmetic unit 136 and the flow rate detected by the flow meter 142, that is, the supply ff1Q to the mixing basin 106. By this, the injection amount of flocculant is calculated.

144は乗算器140に接続された凝集剤供給装辺で、
乗算器140で算出された注入量に応じた量の凝集剤を
供給’l?146を介して混和池106に供給し、懸濁
液に対して注入している。
144 is a flocculant supply device connected to the multiplier 140;
Supply an amount of flocculant according to the injection amount calculated by the multiplier 140? 146 to the mixing basin 106 and injected into the suspension.

しかしてポンプ134および供給管132を介して着水
井102から懸濁液を採取し、本発明にかかる適正注入
率検知装と130において、後述にしたがい凝集剤の適
正注入率wA、”を算出する。
Then, the suspension is collected from the landing well 102 via the pump 134 and the supply pipe 132, and the appropriate injection rate detection device 130 according to the present invention calculates the appropriate injection rate wA,'' of the flocculant, as described below. .

供給管132に付設された濁度計138あるいは供給管
108に付設された他の濁度計139では、懸濁液の濁
度τ。が比較的に頻繁と測定されている。
The turbidity meter 138 attached to the supply pipe 132 or another turbidity meter 139 attached to the supply pipe 108 measures the turbidity τ of the suspension. has been measured to be relatively frequent.

ここで所望によっては、濁度計138,139の一方を
除去してもよい。
Here, if desired, one of the turbidimeters 138 and 139 may be removed.

適正注入率wA、”および濁度τ。は、ともに演算装置
136に供えられている。演算装置136では、濁度τ
。が所定値τ。11.τ。2と比較され、その濁度τ。
The appropriate injection rate wA,'' and the turbidity τ are both provided to the calculation device 136.The calculation device 136 calculates the turbidity τ.
. is the predetermined value τ. 11. τ. 2 and its turbidity τ.

が低濁度範囲、中濁度範囲および高濁度範囲のうちのい
ずれに属するかが判断される。この判断の結果により、
濁度τ。が屈する低濁度範囲、中濁度範囲あるいは高濁
度範囲内において、演算装置135は、適正注入率WA
、”をその最古のデータに代えて記憶し、最新のデータ
に更新する。更に演算装置136は、データの更新され
た濁度範囲(たとえば中濁度範囲)て、最新のデータを
含む記憶データを用いて注入管理式%式% を作成し、従前の注入管理式に代えて記憶する。
It is determined which of the low turbidity range, medium turbidity range, and high turbidity range the turbidity belongs to. As a result of this judgment,
Turbidity τ. Within the low turbidity range, medium turbidity range, or high turbidity range where the
, "instead of the oldest data and updated to the latest data.Furthermore, the arithmetic unit 136 stores the updated turbidity range (for example, medium turbidity range) of the data in the memory containing the latest data. An injection management formula % formula % is created using the data and stored in place of the previous injection management formula.

演算装gl136は、濁度計138あるいは139から
濁度τ。が入力されるごとに、注入管理式に基づき注入
率WA+を算出して出力する。
The computing device gl 136 obtains the turbidity τ from the turbidity meter 138 or 139. Each time is input, the injection rate WA+ is calculated and output based on the injection management formula.

演算装置136から出力された注入率WAIは1乗算器
140において、流量計142によって検知され 。
The injection rate WAI output from the arithmetic unit 136 is detected by a flow meter 142 in a 1 multiplier 140 .

たf&量Qと乗算され、凝集剤の注入量R8とされる。It is multiplied by f& amount Q to obtain the injection amount R8 of the flocculant.

注入量R′″に応じ凝集剤供給装m144から凝集剤が
混和池106に供給され、懸濁液に対し注入される。
A flocculant is supplied from the flocculant supply device m144 to the mixing basin 106 according to the injection amount R'', and is injected into the suspension.

」二連の動作を間歇的に反復することにより、懸濁液処
理装置における凝集剤の注入率を実質的に適正注入率w
A、”に維持てき、ひいては懸濁液の処理時間を短縮で
き、併せて凝集剤の無用の注入を回避できる。
By intermittently repeating the two series of operations, the flocculant injection rate in the suspension processing device can be substantially adjusted to the appropriate injection rate.
A.'', which can shorten the processing time of the suspension and avoid unnecessary injection of flocculant.

更に具体的な数値を挙げて説明すると、懸濁液の濁度τ
か第7図(a)の如く変化したとき、末完ITの注入管
理方法によれば凝集剤の注入率WAIを第7図(b)の
如く懸濁液の濁度τの変化に応じて比較例よりも適切に
管理てき、これによって沈澱池118から放泣される処
理水の濁度τを第7図(c)の如く比較例に比し改善で
きる。
To explain with more specific numerical values, the turbidity τ of the suspension
According to the advanced IT injection control method, the flocculant injection rate WAI is changed as shown in Figure 7(b) according to the change in the turbidity τ of the suspension. It has been managed more appropriately than the comparative example, and as a result, the turbidity τ of the treated water discharged from the sedimentation tank 118 can be improved compared to the comparative example as shown in FIG. 7(c).

さらに第2図ないし第6図を参照しつつ、適正注入率検
知装置130の構成について、詳細に説明する。
Further, the configuration of the appropriate injection rate detection device 130 will be explained in detail with reference to FIGS. 2 to 6.

IOは回分式の攪拌槽て、適宜の容量たとえばl交の容
量を有しており、懸濁液と凝集剤との混合液11か収容
されている。12は攪拌槽IO内に配設された攪拌羽根
て、攪拌槽10の下方に配こされた駆動手段たとえば電
動モータ14の出力軸16の自由端部に適宜に装着され
ている。
The IO is a batch-type stirring tank having an appropriate capacity, for example, a capacity of 1/2, and contains a mixed liquid 11 of a suspension and a flocculant. A stirring blade 12 is disposed in the stirring tank IO, and is appropriately attached to the free end of an output shaft 16 of a driving means, for example, an electric motor 14, arranged below the stirring tank 10.

18はリート線19によって適宜の電源(IJ示せず)
に接続された受光装δて、攪拌槽1oの側面に配設され
ており、蛍光ランプ、タングステンランプ、ハロゲンラ
ンプ、発光ダイオード、レーザ発光手段などの適宜の光
源によって発生された光を適宜の光学系たとえばスリッ
トを介して平行光線束として攪拌槽10内の混合液11
に供給している。
18 is connected to an appropriate power source by the lead wire 19 (IJ not shown)
A light receiving device δ connected to the stirring tank 1o is arranged on the side surface of the stirring tank 1o, and receives light generated by an appropriate light source such as a fluorescent lamp, a tungsten lamp, a halogen lamp, a light emitting diode, or a laser emitting means. For example, the mixed liquid 11 in the stirring tank 10 is transmitted as a parallel beam of light through a slit.
is supplied to.

20はフォトトランジスタ、フォトダイオード。20 is a phototransistor and a photodiode.

CdS、CODなどの適宜の光電変換素子を受光手段と
して包有している受光装置で、攪拌槽1oの側面に配設
されており、発光装置18により平行光線束として供給
された光を混合液11を介して受光している0発光装置
18によって与えられた光が、混合液II中の凝集体す
なわちフロック17によって散乱あるいは遮断されるの
で、受光装置2oは、散乱光あるいは減衰された透過光
を受光している。
This is a light receiving device that includes an appropriate photoelectric conversion element such as CdS or COD as a light receiving means, and is disposed on the side of the stirring tank 1o. Since the light given by the light emitting device 18 receiving the light through the light receiving device 11 is scattered or blocked by the aggregates, that is, the flocs 17 in the mixed liquid II, the light receiving device 2o receives the scattered light or the attenuated transmitted light. is receiving light.

受光装置20は、透過光を受光するために受光装置18
に対し対向せしめてもよく、また散乱光を受光するため
に発光装置18からの平行光線束に対し所定の角度をも
って配置せしめてもよい、加えて透過光および散乱光を
受光するために、2つの受光装g!izoを配置しても
よい。説明を簡潔とするために以下、受光装置20は、
受光装置18に対して対向されているものとする。また
第2図では、受光装置18および受光装置20か一組だ
け配置されているか、これに限定されるものではなく、
発光装置18および受光装fi20を複数組配置しても
よい0発光装置18および受光装置20は、特に同一水
平面上に配設されておれば、凝集体すなわちフロック1
7の沈降状態を測定するために好都合である。
The light receiving device 20 is connected to the light receiving device 18 in order to receive the transmitted light.
The light emitting device 18 may be placed at a predetermined angle with respect to the parallel beam from the light emitting device 18 in order to receive scattered light. Two light receiving devices g! izo may be placed. In order to simplify the explanation, the light receiving device 20 will be described below as follows.
It is assumed that the light receiving device 18 is opposed to the light receiving device 18. In addition, in FIG. 2, only one set of the light receiving device 18 and the light receiving device 20 are arranged, but the present invention is not limited to this.
A plurality of sets of the light-emitting device 18 and the light-receiving device fi20 may be arranged.The light-emitting device 18 and the light-receiving device 20 may form an aggregate, that is, a flock 1, especially if they are arranged on the same horizontal plane.
It is convenient for measuring the sedimentation state of 7.

22は受光装置20にリード線21を介して接続された
測定装置て、受光装2120の受光した光量(以下“受
光光量”という)■を測定する。加えて測定装置22は
、測定した受光光量Iから凝集剤の注入前の受光光量I
、(τ)と攪拌羽根12による緩速攪拌に伴なって平坦
化したときの受光光量Iの変動幅(すなわち所定値IL
および!、間の差分)△Iおよび変動周期Fとを求めて
出力しており、所望によっては更に攪拌羽根12による
緩速攪拌の停止後にシ坦化したときの受光光量Ir(τ
)と攪拌羽根12による緩速攪拌の停止時から受光光量
Iか平坦化するまでの時間Tとを求めて出力してもよい
A measurement device 22 is connected to the light receiving device 20 via a lead wire 21, and measures the amount of light received by the light receiving device 2120 (hereinafter referred to as "received light amount"). In addition, the measuring device 22 determines the amount of received light I before the injection of the flocculant from the measured amount of received light I.
, (τ) and the fluctuation range of the received light amount I when flattened due to slow stirring by the stirring blade 12 (i.e., the predetermined value IL
and! , (difference between ,
) and the time T from when the slow stirring by the stirring blade 12 stops until the received light amount I becomes flat may be determined and output.

24は一端部が開閉弁25を介して攪拌槽1oに開口さ
れた供給管で、他端部か供給管132に連通されている
(第1図参照)、26は凝集剤供給源28に一端部が連
通された凝集剤供給管で、他端部か開閉弁27を介して
攪拌槽lOに開口されている。30は排水管で、一端部
が攪拌槽IOの底部に開口され、かつ他端部が開閉弁3
2を介して排水管133に連通されており、攪拌槽IO
から検知済の混合液11を排除する(第1図参照)、3
4は暗箱で、少なくとも攪拌槽10.発光装置18およ
び受光装2i20を収容しており、外光の影響を除去し
ている。
24 is a supply pipe whose one end is opened to the stirring tank 1o via an on-off valve 25, and the other end is connected to the supply pipe 132 (see Fig. 1), and 26 is a supply pipe whose one end is connected to the flocculant supply source 28. This is a flocculant supply pipe with one end communicating with the other, and the other end opening into the stirring tank IO via an on-off valve 27. 30 is a drain pipe, one end of which is opened at the bottom of the stirring tank IO, and the other end of which is connected to the on-off valve 3.
2 to the drainage pipe 133, and the stirring tank IO
Remove the detected mixed liquid 11 from (see Figure 1), 3
4 is a dark box with at least a stirring tank 10. It houses the light emitting device 18 and the light receiving device 2i20, and eliminates the influence of external light.

36は駆動手段14と測定波Hzzと開閉弁25.27
とに接続された演算装置で、駆動手段14から攪拌羽根
12の周速νがゲえられており、測定波2222から受
光光量Ii(τ)と受光光量■の変動幅△Iおよび変動
周期Fとが与えられ所望によって受光光量Etcで)と
時間Tと併せてか与えられており、開閉弁25.27か
ら懸濁液の供給量Mおよび凝集剤の供給量Nか与えられ
ている。演算装置36は、凝集体すなわちフロック17
の凝集状態を判断するためのパラメータを算出している
。すなわち演算装置36は、受光光量Iの変動幅△I(
ボルト)と定数αとを用いて凝集体すなわちフロック1
7の径d(c■)を d=α△I と算出し、受光光量Iの変動周期F(秒)と攪拌羽根1
2の周速ν(17秒)と定数βを用いて凝集体すなわち
フロック17の数n(1/c■ff)をと算出し、凝集
体すなわちフロック17の径d(cm)および数n(1
/c■3)と定数εとを用いて凝集体すなわちフロ・ン
ク17の体gI V (c閣コ)を■=εd′3n と算出し、受光光NkI、(τ)(ボルト)より求めた
懸濁液の浮遊物の初期濃度W〜(■g/又)と供給量M
、Nより求めた凝集剤の注入率WA+(mg/交)と凝
集体すなわちフロック17の数n (1/cm’)と径
dと定数γと凝集剤に固有の係数aとを用いて凝集体す
なわちフロック17の有効密度ρ(g/c菖コ)をと算
出しており、更に所望によっては、時間Tと定数δとを
用いて凝集体すなわちフロック17の沈降速度S(c■
/分)を と算出し、受光光量xr(τ)と定数λとを用いて凝集
体すなわちフロック17の沈降したのちの上澄水濁度τ
(度)を τ;λIf(τ) と算出している。ここで演算装置36の算出したパラメ
ータと凝集体すなわちフロック17の実際の凝集状態と
の関係は、径dあるいはan2体請V。
36 is the drive means 14, the measurement wave Hz, and the on-off valve 25.27
The peripheral speed ν of the stirring blade 12 is obtained from the driving means 14 by a calculation device connected to the driving means 14, and the fluctuation width ΔI and fluctuation period F of the received light amount Ii (τ) and the received light amount ■ are obtained from the measurement wave 2222. If desired, the amount of received light (Etc) and the time T are also given, and the supply amount M of the suspension liquid and the supply amount N of the flocculant from the on-off valves 25 and 27 are also given. The arithmetic unit 36 operates on aggregates or flocs 17.
The parameters for determining the agglomeration state of That is, the arithmetic unit 36 calculates the fluctuation range ΔI(
volt) and the constant α to calculate the aggregate or floc 1
Calculate the diameter d (c■) of 7 as d=α△I, and calculate the fluctuation period F (seconds) of the received light amount I and the stirring blade 1.
Using the circumferential speed ν (17 seconds) of 2 and the constant β, calculate the number n (1/c ff) of the aggregates or flocs 17, and then calculate the diameter d (cm) and the number n ( 1
/c■3) and the constant ε, calculate the aggregate, i.e., the body gI V (ckakuko) of the flonc 17, as ■=εd'3n, and find it from the received light NkI, (τ) (volts). Initial concentration W ~ (g/m) of suspended solids in the suspension and supply amount M
, the flocculant injection rate WA+ (mg/cross) obtained from N, the number n (1/cm') of flocs 17, the diameter d, the constant γ, and the coefficient a specific to the flocculant. The effective density ρ (g/c) of the flocs 17 is calculated, and if desired, the settling velocity S (c
/min), and using the amount of received light xr(τ) and constant λ, the supernatant water turbidity τ after the aggregates, that is, flocs 17, have settled.
(degrees) is calculated as τ;λIf(τ). Here, the relationship between the parameters calculated by the arithmetic unit 36 and the actual aggregation state of the aggregates, that is, the flocs 17, is the diameter d or an2 body diameter V.

有効密度ρ、沈沈降速度S上上澄水濁度の順で緊密とな
っているので、凝集体すなわちフロック17の凝集状態
を精密に検知することが所望であれば後者のパラメータ
を利用すればよく、更にその凝集状態を一層精密に検知
することが所望であれば複数のパラメータを組合せて利
用すればよい。
Effective density ρ, sedimentation velocity S, supernatant water turbidity are closely related in this order, so if it is desired to accurately detect the flocculation state of flocs 17, the latter parameter may be used. Furthermore, if it is desired to detect the aggregation state more precisely, a combination of a plurality of parameters may be used.

38は演算装置36に接続された他の演算装置で、演算
装置36によって算出された凝集体すなわちフロック1
7の径d、数n9体gv、有効密度ρ、沈降速度Sおよ
び凝集体すなわちフロック17の沈降したのちの上澄水
濁度τのうちの少なくとも1つをそのときの凝集剤の注
入率WAIに対して順次記憶しておき、このときの懸濁
液に対する凝集剤の注入率の適正値WA、”を算出して
いる。すなわち演算装置38は、開閉弁25.27から
与えられた懸濁液の供給量Mおよび凝集剤の供給量Nに
よって算出された凝集剤の注入率WAI(演算装置36
から与えられる)の変化に対し、凝集体すなわちフロッ
ク17の径d9体積Vあるいは有効密度ρの変化が急峻
となり始め、更にはその数n、沈降速度Sもしくは上澄
水濁度τの変化か緩慢となり始めるときに対応じて、凝
集剤の注入率WAIを適正注入率WAl′″と決定する
38 is another arithmetic device connected to the arithmetic device 36, which calculates the aggregate, that is, the floc 1 calculated by the arithmetic device 36.
At least one of the diameter d of 7, the number n9 bodies gv, the effective density ρ, the settling speed S, and the supernatant water turbidity τ after the flocs 17 have settled, to the flocculant injection rate WAI at that time. The calculation unit 38 calculates the appropriate value WA," of the injection rate of the flocculant to the suspension at this time. In other words, the calculation device 38 calculates the appropriate value WA," The flocculant injection rate WAI (computing unit 36
(given by Corresponding to the beginning, the flocculant injection rate WAI is determined as the appropriate injection rate WAl'''.

加えて第2図ないし第5図を参照しつつ、適正注入率検
知装置1コ0の作用について、詳細に説明する。
In addition, with reference to FIGS. 2 to 5, the operation of the appropriate injection rate detection device 1 will be explained in detail.

開閉弁32を開放し排水管30を介して攪拌槽10内の
残留する混合液11を排除したのち、開閉弁32を閉鎖
する。
After opening the on-off valve 32 and removing the mixed liquid 11 remaining in the stirring tank 10 through the drain pipe 30, the on-off valve 32 is closed.

開閉弁25を所定時間だけ開放し、供給管24を介して
懸濁液の供給源(図示せず)から、所定量M(たとえば
1立)の懸濁液を攪拌槽10内に供給する。
The on-off valve 25 is opened for a predetermined time, and a predetermined amount M (for example, 1 liter) of the suspension is supplied into the stirring tank 10 from a suspension supply source (not shown) via the supply pipe 24.

攪拌槽10内への懸濁液の供給か完了すると、時刻t、
において駆動手段たとえば電動モータ14により攪拌羽
根12が急速回転すなわち高速度で回転され始める。
When the supply of the suspension into the stirring tank 10 is completed, time t,
At this point, the stirring blade 12 begins to rotate rapidly, that is, at a high speed, by the driving means, for example, the electric motor 14.

そののち時刻t2において開閉弁27を所定時間だけ開
放することにより、所定量の凝集剤が、凝集剤供給源2
8から凝集剤供給管26を介して攪拌槽10に対し注入
される。IJ集剤としては、ポリアルミニウムクロライ
ドなどの既知の凝集剤を所望に応じて使用すればよい。
Thereafter, by opening the on-off valve 27 for a predetermined time at time t2, a predetermined amount of flocculant is supplied to the flocculant supply source 2.
8 into the stirring tank 10 via the flocculant supply pipe 26. As the IJ collector, known flocculants such as polyaluminum chloride may be used as desired.

攪拌羽根12の急速回転の開始に先立って、発光装置1
8.受光装置20j5よび測定装置22か始動されてお
り、攪拌槽lo内の懸濁液を介して透過光の受光光量I
、(τ)が測定され、演算装置36にケえられている。
Prior to the start of rapid rotation of the stirring blade 12, the light emitting device 1
8. The light receiving device 20j5 and the measuring device 22 have been started, and the received light amount I of the transmitted light is measured through the suspension in the stirring tank lo.
, (τ) are measured and stored in the arithmetic unit 36.

時刻t2すなわち凝集剤が供給される時刻までの受光光
量Iは、懸濁液に含有されている浮遊物の初期濃度Wい
に対応じて一定値1.(τ)となっている0時刻t2に
おいて凝集剤が所定量Nたけ注入されると、混合液ll
内で凝集体すなわちフロック17が徐々に形成され、か
つ混合液11か攪拌槽10内で急速に攪拌移動されてい
るので、受光装置20の受光光量Iか緩慢に増大する。
The amount of received light I until time t2, that is, the time when the flocculant is supplied, is a constant value 1. (τ) When a predetermined amount N of flocculant is injected at time t2, the mixed liquid ll
Since aggregates, that is, flocs 17 are gradually formed within the stirring tank 10, and the mixed liquid 11 is rapidly stirred and moved within the stirring tank 10, the amount of light received by the light receiving device 20 increases slowly.

時刻t3において、攪拌羽根12が緩速回転すなわち低
速度で回転され始めると、更に混合液ll内て凝集体す
なわちフロック17が形成されてその径dか増大し、か
つ混合液ll′b<攪拌槽lO内で緩速に攪拌移動され
ているのて、受光装置20の受光光量■か小刻みに増減
しなから全体として増大する。
At time t3, when the stirring blade 12 starts to rotate at a slow speed, that is, at a low speed, aggregates or flocs 17 are further formed in the mixed liquid ll, and the diameter d thereof increases, and the mixed liquid ll'b<agitation. As the light is slowly stirred and moved in the tank 1O, the amount of light received by the light receiving device 20 does not increase or decrease little by little, but increases as a whole.

時刻t4に達すると、混合液11内で凝集体すなわちフ
ロック17が十分に凝集されそのBaが変化しなくなり
、かつ混合液11か攪拌槽lo内で緩速に攪拌移動され
ているので、受光装2120の受光光量■が平坦化し凝
集体すなわちフロック17の通過に伴なって所定値IL
およびI□間て周期的に変動するようになる。
When time t4 is reached, the flocs 17 are sufficiently agglomerated in the mixed liquid 11 and their Ba does not change, and the mixed liquid 11 is being stirred and moved slowly in the stirring tank lo, so the light receiving device The amount of light received at 2120 becomes flat and reaches the predetermined value IL as the aggregates, that is, the flocs 17 pass through.
and I□.

更に時刻1Sにおいて、攪拌羽根12の回転を停止して
攪拌を停止せしめると、混合液11内で形成された凝集
体すなわちフロック17が沈降を開始するので、受光装
2120の受光光量Iが小刻みに増減しつつ、時刻t6
においてほぼ一定の値ir(τ)に達する0時刻t6以
降では、混合液11中の凝集体すなわちフロック17か
もはや沈降しないので、受光光量Iは一定の値xrCで
)を維持する。
Further, at time 1S, when the rotation of the stirring blade 12 is stopped to stop the stirring, the aggregates, that is, the flocs 17 formed in the mixed liquid 11 start to settle, so that the amount of light received by the light receiving device 2120 gradually decreases. While increasing and decreasing, time t6
After 0 time t6 when ir(τ) reaches a substantially constant value, the aggregates, that is, flocs 17 in the liquid mixture 11 no longer settle, so the amount of received light I maintains a constant value xrC).

たとえば12の真木に力装ゾン25置gを添加したカオ
リン懸濁液を用い、かつポリアルミニウムクロライドを
IS瞳g/lの注入率となるように注入した場合の受光
装置20による受光光量Iを測定装こ22で測定したと
ころ、第2図のとおりであった。
For example, the amount of light received by the light receiving device 20 I when using a kaolin suspension containing 25 g of Risozon added to No. 12 Maki and injecting polyaluminum chloride at an injection rate of IS pupil g/l. When measured using the measuring device 22, the results were as shown in FIG.

そののち演算装置36が、上述したところによって凝集
体すなわちフロック17の径d、数n2体積Vおよび有
効密度ρを算出し、更に所望によりその沈降速度Sおよ
び上澄水濁度τを併せて算出する。演算装置36の算出
したこれらのパラメータにより、上述したごとく凝集体
すなわちフロック17の凝集状態を検知できる。
Thereafter, the calculation device 36 calculates the diameter d, number n2 volume V, and effective density ρ of the flocs 17 as described above, and further calculates the settling velocity S and supernatant water turbidity τ if desired. . Using these parameters calculated by the calculation device 36, the aggregation state of the aggregates, that is, the flocs 17 can be detected as described above.

演算装置36によって算出された凝集体すなわちフロッ
ク17の径d、数n1体積V、有効密度ρ。
The diameter d, the number n1, the volume V, and the effective density ρ of the aggregate, that is, the floc 17, calculated by the calculation device 36.

沈降速度Sおよび上澄水濁度τは、演算装と38におい
て凝集剤の住人率WAlに対して記憶される。
The settling velocity S and the supernatant water turbidity τ are stored in the calculation unit 38 with respect to the flocculant population rate WAl.

演算装2238は、凝集体すなわちフロック17の径d
2体積Vあるいは有効密度pの変化が急峻となり始める
とき、あるいはその数n、沈降速度Sもしくは上澄水濁
度τの変化か緩慢となり始めるときの凝集剤の注入率W
AIを適正注入率wA、”と決定し、所望に応じて出力
する。
The arithmetic unit 2238 calculates the diameter d of the aggregate, that is, the floc 17.
2 The injection rate W of the flocculant when the change in the volume V or the effective density p starts to become steep, or when the change in the number n, sedimentation rate S or supernatant water turbidity τ starts to become slow.
AI is determined as "appropriate injection rate wA," and output as desired.

この根拠を更に具体的に説1月する。すなわちたとえば
1Mの真水に25−gのカオリンを添加したカオリン懸
濁液を使用して、上述の測定ならびに演算を反復するご
とに、凝集体すなわちフロック17の径d、数n1体桔
Vおよび有効密度ρを算出し、凝集剤の注入率WAIに
対してプロットしたところ、第4図か得られた。
I will explain the basis for this in more detail in January. That is, each time the above-mentioned measurements and calculations are repeated using, for example, a kaolin suspension prepared by adding 25 g of kaolin to 1 M fresh water, the diameter d of the aggregates or flocs 17, the number n1 bodies V, and the effective When the density ρ was calculated and plotted against the flocculant injection rate WAI, the result shown in FIG. 4 was obtained.

同様に、前記カオリン懸濁液を使用して、上述の測定な
らびに演算を反復するごとに凝集体すなわちフロック1
7の有効密度ρおよび沈降速度Sと上澄水濁度τとを算
出し、凝集剤の注入率wA□に対してプロットしたとこ
ろ、第5図が得られた。
Similarly, using the kaolin suspension, each time the above-mentioned measurements and calculations are repeated, 1 aggregate or floc
When the effective density ρ, sedimentation rate S, and supernatant water turbidity τ of No. 7 were calculated and plotted against the flocculant injection rate wA□, FIG. 5 was obtained.

第4図および第5図から明らかなように、凝集剤の注入
率WAIの変化に伴なって、凝集体すなわちフロック1
7の径d、数n2体積V、有効密度ρおよび沈降速度S
と上澄水濁度τとが変化している。詳述すれば凝集剤の
注入率wAIが所定値WA1”  (ここでは]Omg
/見)以上になると、凝集体すなわちフロック17の数
nかあまり変化しないか、その径dgよび体桔Vが比較
的に大きくなって有効密度ρが低下しており、不安定な
凝集体すなわちフロック17が形成されているものと判
断てきる。また凝集剤の注入率WAlがその所定値WA
I”以上になると、凝集体すなわちフロック17の沈降
速度Sあるいは凝集体すなわちフロック17の沈降後の
上澄水濁度τかあまり変化しない、ひいては凝集剤の注
入率WAIかその所定値WA、”以上となっても2S集
剤の注入量か増大するに比し凝集体すなわちフロック1
7の凝集沈澱量を増加できないものと判断でき、好まし
くない。
As is clear from FIGS. 4 and 5, as the flocculant injection rate WAI changes, the flocs 1
7 diameter d, number n2 volume V, effective density ρ and sedimentation velocity S
and supernatant water turbidity τ are changing. To be more specific, the injection rate wAI of the flocculant is the predetermined value WA1” (here] Omg
/See) If the number n of aggregates, i.e., flocs 17, does not change much, or the diameter dg and body size V become relatively large, the effective density ρ decreases, and unstable aggregates, i.e. It is determined that flocs 17 are formed. In addition, the injection rate WAl of the flocculant is its predetermined value WA
If it becomes more than ``I'', the sedimentation velocity S of the flocs 17 or the supernatant water turbidity τ after settling of the flocs 17 will not change much, and the flocculant injection rate WAI or its predetermined value WA will not change much. However, as the injection amount of 2S collector increases, the aggregates, i.e., flocs 1
It can be judged that the amount of coagulated precipitate in No. 7 cannot be increased, which is not preferable.

これに対し凝集剤の注入率WAIがその所定値wAl”
よりも大幅に小さくなると、凝集体すなわちフロック1
7の数nが極端に大きくなり、その径dおよび体積■も
極端に小さくなって有効密度ρか増大しており、比較的
に安定な凝集体すなわちフロック17か形成されている
ものと判断てきる。
On the other hand, the flocculant injection rate WAI is the predetermined value wAl”
, the aggregate or floc 1
The number n of 7 has become extremely large, its diameter d and volume 2 have also become extremely small, and the effective density ρ has increased, so it can be concluded that relatively stable aggregates, that is, flocs 17, have been formed. Ru.

しかしながらこのときは、凝集体すなわちフロック17
の沈降速度Sが小さく、凝集体すなわちフロック17の
沈降後の上澄水濁度τか大きい、ひいては!2集剤の注
入率WAIかその所定値WA、”よりも大幅に小さくな
ると、凝集剤の注入量を削減することはできても凝集体
すなわちフロック17を効率良く沈澱除去てきないもの
と判断てき、好ましくない。
However, in this case, the aggregates or flocs 17
The sedimentation velocity S of is small, and the supernatant water turbidity τ after sedimentation of flocs 17 is large, and therefore! 2 If the flocculant injection rate WAI or its predetermined value WA becomes significantly smaller than the flocculant injection rate WAI, it is judged that the flocculent, that is, the flocs 17, cannot be efficiently precipitated and removed even if the amount of flocculant injection can be reduced. , undesirable.

したかってこのときの所定イめwA、”を凝集剤の注入
率とすれば、凝集剤の注入量を削減しかつ懸濁液中の浮
遊物の凝集沈殿量を比較的に大きな値に維持てきるので
、!J濁液中の浮遊物を効率良く凝集沈澱せしめ除去で
きる。
Therefore, if the predetermined value wA,'' at this time is the injection rate of the flocculant, the amount of flocculant injection can be reduced and the amount of flocculation and sedimentation of suspended matter in the suspension can be maintained at a relatively large value. Therefore, floating matter in the !J suspension can be efficiently coagulated and precipitated and removed.

そのために演算装置38では、上述のようにwA、’を
凝集剤の適正注入率と判断している。
For this reason, the arithmetic unit 38 determines wA,' to be the appropriate injection rate of the flocculant, as described above.

以上により本発明ては、懸濁液に対する凝集剤の注入率
が適正注入率となるように管理している。
As described above, in the present invention, the injection rate of the flocculant into the suspension is controlled to be an appropriate injection rate.

上述では攪拌槽lOか1つだけ包有された適正注入率検
知装21130について説明した(第2図ないし第5図
参照)か、これでは凝集状態の検知に多大の時間を必要
とするので、第6図に示すように複数(ここては4つ)
の攪拌槽を並置してもよい。
In the above, we have explained the appropriate injection rate detection device 21130 that includes only one stirring tank IO (see Figs. 2 to 5), but since this requires a large amount of time to detect the agglomeration state, Multiple (here, four) as shown in Figure 6.
Two stirring tanks may be placed side by side.

第6図の適正注入率検知装置130は、懸濁液の供給源
ずなわち供給管132.凝集剤供給源28および演算装
fi38か共通化されていることを除き。
The proper injection rate detection device 130 of FIG. Except that the flocculant supply source 28 and the computing device fi 38 are shared.

構成および作用は、第2図の適正注入率検知装置130
と実質的に同一であるので、各部材に対し第2図の適正
注入率検知装置130において付した参照番号と同一の
参照番号を付し、その詳細な説明を省略する。参照番号
には、並置された攪拌槽を区別するためにA、B、C,
Dの符号か加えられている。開閉弁27A、〜、27D
は、互いに異なる時間だけ開放されており、攪拌槽10
A、〜、■oD中の混合液11^、〜、11Dに対する
凝集剤の注入率を調部している。
The structure and operation are similar to that of the appropriate injection rate detection device 130 shown in FIG.
Since the components are substantially the same as each other, the same reference numerals as those given to the appropriate injection rate detection device 130 in FIG. 2 are given to each member, and detailed explanation thereof will be omitted. Reference numbers include A, B, C,
A D sign has been added. Open/close valves 27A, ~, 27D
are open for different times, and the stirring tank 10
The injection rate of the flocculant to the mixed liquids 11^, -, 11D in A, -, ① oD is checked.

なお上述においては、濁度計138,139による濁度
検知の頻度に比し、適正注入率検知装211:10によ
る凝集剤の適正注入率の検知頻度が少ない場合について
のみ説明したが、本発明は、この場合にのみ限定される
ものではなく、所望によっては濁度計138,1:19
による濁度検知の頻度と適正注入率検知装21t:to
による凝集剤の適正注入率の検知頻度とを同等としても
よい。
In addition, in the above description, only the case where the appropriate injection rate of flocculant is detected less frequently by the appropriate injection rate detection device 211:10 than the frequency of turbidity detection by the turbidimeters 138 and 139 has been described, but the present invention is not limited to this case, and if desired, a turbidity meter 138, 1:19
Frequency of turbidity detection and appropriate injection rate detection device 21t:to
The frequency of detection of the appropriate injection rate of the flocculant may be set to be the same as the frequency of detection of the appropriate injection rate of the flocculant.

[発明の効果] 上述より明らかなように本発明にかかる凝集剤の注入管
理方法は、 (a)懸濁液を採取する第1の工程と、(b)懸濁液の
濁度を検知する第2の工程と、 (c)採取した懸濁液に対する凝集剤の適正注入率を、
第2の工程で濁度が検知さ れるときに応じかつ第2の工程て濁度 か検知される頻度以下の頻度で間歇的 に検知する第3の工程と、 (cl)第2の工程で検知した濁度の属する濁度範囲に
応じて前記濁度範囲中の最古 の記憶値に代え第3の工程で検知した 適正注入率を記憶する第4の工程と、 (e)第4の工程て記憶された適正注入率を用いて注入
管理式を作成し従前の注入 管理式に代えて記憶する第5の工程 (f)第2の工程で検知した濁度に応じて前記注入管理
式により凝集剤の注入率を 算出する第6の工程と、 (g)第6の工程で算出された注入率に応じて凝集剤を
処理すべき懸濁液に対して 注入する第7の工程と を備えてなるのて、 (i)試験者のU視観察ならびに経験を排除てきる効果 を有し、また (ii)注入管理式をある濁度範囲に応じてそれぞれ更
新てきる効果 を有し、ひいては (iii)最新の検知結果に応じて凝集剤の注入率ない
し注入量を適正化できる効果 を有する。
[Effects of the Invention] As is clear from the above, the flocculant injection management method according to the present invention includes (a) a first step of collecting a suspension, and (b) detecting the turbidity of the suspension. (c) determining the appropriate injection rate of the flocculant for the collected suspension;
a third step of intermittently detecting turbidity depending on when turbidity is detected in the second step and at a frequency less than the frequency at which turbidity is detected in the second step; (cl) in the second step; a fourth step of storing the appropriate injection rate detected in the third step in place of the oldest stored value in the turbidity range according to the turbidity range to which the detected turbidity belongs; (e) a fourth step; A fifth step (f) of creating an injection management formula using the appropriate injection rate stored in the step and storing it in place of the previous injection management formula. (g) a seventh step of injecting the flocculant into the suspension to be treated according to the injection rate calculated in the sixth step; (i) It has the effect of eliminating the U-view observation and experience of the tester, and (ii) It has the effect of updating the injection control formula depending on a certain turbidity range. Furthermore, (iii) there is an effect that the injection rate or injection amount of the coagulant can be optimized according to the latest detection results.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の凝集剤の注入管理方法の一実施例によ
って凝集剤の注入か管理されている実際の懸濁液処理装
置を示す断面図、第2図は第1図の懸濁液処理袋とに含
まれており本発明の一実施例を実行するために凝集剤の
適正注入率を検知する適正注入率検知袋はを示す断面図
、第3図は第2図の適正注入率検知装置の動作を説明す
るための動作説明図、第4図は第3図の動作説明図より
求めた凝集体の径d、数n1体積Vおよび有効密度ρと
凝集剤の注入率WAIとの間の関係を示すグラフ図、第
5図は第3図の動作説明図より求めた上澄水濁度で、凝
集体の沈降速度Sおよび有効密度ρと凝集剤の注入率W
A1との間の関係を示すグラフ図、第6図は第2図の適
正注入率検知装置を4つ並こした適正注入率検知装置を
示す断面図、第7図(a)〜(c)は第1図の懸濁液処
理装置において本発明の一実施例により凝集剤の注入管
理を実行した結果を示すグラフ図である。 102・・・・・・・・・・・−・・・・・・着水井1
06・・・・・・・−・・・・・・・・・・混和池11
2・・・・・・・・・・・・・・・・・・凝集体形成池
118・・・・・・・・・・・・・・・・・・沈澱池1
20・・・・・・・・・・・・・・・・・・濾過池13
0−・・−・・・・・・・・・・・・・・適正注入率検
知装置136−・・・・・・−・−・・・・・・・・演
算装置1”l、13’l・・・・・・・−・・・・・−
濁度計140・・・・・・・・・・・・・・・・・・乗
算器142・・・・・・・・・−・・・・・・・・流量
計144・・・・・・・・・・・・・・・・・・凝集剤
供給装置10・・・・・・・・・・・・・・・・・・・
−攪拌槽11・・・・・・・・・・・・・・・・・・・
−混合液12・・・・・・・・・・・・・・・・・・・
・攪拌羽根14・−・・・・・・−・・・・・・・・・
・・WIA動手段16・・・・・・・・・・・・・・・
・・・・・出力軸18・・・・・・・−・・・・・・・
・・・・・発光装置20・・・・・・・・・・・・・・
・・・・・・受光装置22・−・・・・・・・・・・・
・・・・・・−測定装置24・・・・・・・・・・・・
−・・・・・・−供給管25.27・・・・・・・・・
・・・・・・・開閉弁25・・・・・・・   ・・・
・・・凝集剤供給管28・・・・・・・・・・・・・・
・・・・−・凝集剤供給源30・・・・・・・・・・・
・・・・・・・・・積木管32・・・・・・・・・・・
・・・・・・・・・開閉弁34・・・・・・−・・・・
・・・・・・・・・暗箱36.38・・・・・・・・・
・・・・・・・演算装に特許出願人 荏原インフィルコ
株式会社株式会社荏原総合研究所 代理人   弁理士   工 籐   隆 夫第1頁の
絖き [F]発 明 者  今 井    満口発明者中島 
睦雄 @発明者 五十嵐 千秋 東京都港区港南1丁目6番27号 荏原インフィルコ株
式会社内 東京都港区港南1丁目6番27号 荏原インフィルコ株
式会社内
FIG. 1 is a sectional view showing an actual suspension processing apparatus in which the injection of a flocculant is controlled by an embodiment of the flocculant injection management method of the present invention, and FIG. A cross-sectional view showing the appropriate injection rate detection bag included in the processing bag and used to detect the appropriate injection rate of the flocculant in order to carry out an embodiment of the present invention. An operation explanatory diagram for explaining the operation of the detection device, FIG. 4 shows the relationship between the diameter d, number n1 volume V, and effective density ρ of the aggregate obtained from the operation explanatory diagram in FIG. 3 and the flocculant injection rate WAI. Figure 5 is a graph showing the relationship between the supernatant water turbidity determined from the operation diagram in Figure 3, and the sedimentation rate S and effective density ρ of the flocculent and the injection rate W of the flocculant.
Graph showing the relationship between FIG. 2 is a graph diagram showing the result of executing flocculant injection management according to an embodiment of the present invention in the suspension processing apparatus of FIG. 1. FIG. 102・・・・・・・・・・・・・・・・・・・Waterfall well 1
06・・・・・・・・−・・・・・・・・・Mixing pond 11
2・・・・・・・・・・・・・・・ Aggregate formation pond 118・・・・・・・・・・・・・・・・・・Settlement basin 1
20・・・・・・・・・・・・・・・Filtration pond 13
0-・・・・・・・・・・Appropriate injection rate detection device 136 −・・・・・−・−・・・・Computation device 1”l, 13 'l・・・・・・・・・−・・・・・・・−
Turbidity meter 140・・・・・・・・・・・・・・・ Multiplier 142・・・・・・・・・−・・・・・・・・・Flow meter 144...・・・・・・・・・・・・・・・Flocculant supply device 10・・・・・・・・・・・・・・・・・・
- Stirring tank 11・・・・・・・・・・・・・・・・・・
-Mixed liquid 12・・・・・・・・・・・・・・・・・・
・Agitating blade 14・−・・・・・・・・・・・・・・・・・・・
・・WIA operation means 16・・・・・・・・・・・・・・・
・・・・・・Output shaft 18・・・・・・・・・・・・・・・・・・
.....Light emitting device 20.....
......Light receiving device 22...
......-Measuring device 24...
−・・・・− Supply pipe 25.27・・・・・・・・・
・・・・・・Opening/closing valve 25・・・・・・・・・
...Flocculant supply pipe 28...
......Flocculant supply source 30...
・・・・・・・・・Building pipe 32・・・・・・・・・・・・
......Opening/closing valve 34...
・・・・・・・・・Dark box 36.38・・・・・・・・・
・・・・・・Patent applicant for computing device Ebara Infilco Co., Ltd. Ebara Research Institute Co., Ltd. Representative Patent attorney Takao Satoh, engineer Page 1 [F] Inventor Mitsuguchi Imai Inventor Nakajima
Mutsuo @ Inventor Chiaki Igarashi 1-6-27 Konan, Minato-ku, Tokyo Inside Ebara Infilco Corporation 1-6-27 Konan, Minato-ku, Tokyo Inside Ebara Infilco Corporation

Claims (13)

【特許請求の範囲】[Claims] (1)(a)懸濁液を採取する第1の工程と、 (b)懸濁液の濁度を検知する第2の工程と、 (c)採取した懸濁液に対する凝集剤の適正注入率を、
第2の工程で濁度が検知されるときに応じかつ第2の工
程で濁度が検知される頻度以下の頻度で間歇的に検知す
る第3の工程と、 (d)第2の工程で検知した濁度の属する濁度範囲に応
じて前記濁度範囲中の最古の記憶値に代え第3の工程で
検知した適正注入率を記憶する第4の工程と、 (c)第4の工程で記憶された適正注入率を用いて注入
管理式を作成し従前の注入管理式に代えて記憶する第5
の工程と、 (f)第2の工程で検知した濁度に応じて前記注入管理
式により凝集剤の注入率を算出する第6の工程と、 (g)第6の工程で算出された注入率に応じて凝集剤を
処理すべき懸濁液に対して注入する第7の工程と を備えてなることを特徴とする凝集剤の注入管理方法。
(1) (a) First step of collecting the suspension; (b) Second step of detecting the turbidity of the suspension; (c) Proper injection of flocculant into the collected suspension. rate,
(d) in the second step, detecting the turbidity intermittently depending on when the turbidity is detected in the second step and at a frequency less than or equal to the frequency at which the turbidity is detected in the second step; a fourth step of storing the appropriate injection rate detected in the third step in place of the oldest stored value in the turbidity range according to the turbidity range to which the detected turbidity belongs; (c) a fourth step; The fifth step is to create an injection management formula using the appropriate injection rate stored in the process and store it in place of the previous injection management formula.
(f) a sixth step of calculating the injection rate of the flocculant according to the injection control formula according to the turbidity detected in the second step; (g) injection calculated in the sixth step; and a seventh step of injecting the flocculant into the suspension to be treated according to the rate.
(2)第3の工程が、 (a)採取された懸濁液を攪拌する第1の部分工程と、 (b)攪拌中の懸濁液に対し凝集剤を注入する第2の部
分工程と、 (c)凝集剤の注入ののち第1の部分工程よりも低下さ
れた攪拌速度で懸濁液と凝集剤との混合液を攪拌する第
3の部分工程と、 (d)少なくとも第3の部分工程に際して前記混合液を
介して発光装置より受光装置に与えられた受光光量を測
定する第4の部分工程と、 (e)第4の部分工程で測定された受光光量から前記混
合液の凝集状態を検知する第5の部分工程と、 (f)第5の部分工程で検知された凝集状態に応じて凝
集剤の適正注入率を決定する第6の部分工程と を備えてなることを特徴とする特許請求の範囲第(1)
項記載の凝集剤の注入管理方法。
(2) The third step includes (a) a first partial step of stirring the collected suspension, and (b) a second partial step of injecting a flocculant into the suspension being stirred. , (c) a third partial step of stirring the mixture of suspension and flocculant after the injection of the flocculant at a lower stirring speed than in the first partial step; and (d) at least a third partial step. a fourth partial step of measuring the amount of light received from the light emitting device to the light receiving device via the mixed liquid during the partial step; (e) aggregation of the mixed liquid based on the amount of received light measured in the fourth partial step; (f) a sixth partial step of determining an appropriate injection rate of the flocculant according to the agglomeration state detected in the fifth partial step; Claim No. (1)
Method for controlling the injection of flocculant described in Section 1.
(3)(i)第5の部分工程において、受光光量が平坦
化したときの変動周期および第3の部分工程における攪
拌速度から凝集体の数を算出することにより、混合液の
凝集状態を検知し、かつ (ii)第6の部分工程において、凝集体の数の変化が
緩慢となり始めるときに対応した凝集剤の注入率を適正
注入率と決定し てなることを特徴とする特許請求の範囲第(2)項記載
の凝集剤の注入管理方法。
(3) (i) In the fifth partial step, the aggregation state of the mixed liquid is detected by calculating the number of aggregates from the fluctuation period when the amount of received light becomes flat and the stirring speed in the third partial step. and (ii) in the sixth partial step, the injection rate of the flocculant corresponding to when the change in the number of aggregates starts to slow down is determined as the appropriate injection rate. The method for managing injection of a flocculant according to item (2).
(4)(i)第5の部分工程において、受光光量が平坦
化したときの変動幅から凝集体の径を算出することによ
り、混合液の凝集状態を検知し、かつ (ii)第6の部分工程において、凝集体の径の変化が
急峻となり始めるときに対応した凝集剤の注入率を適正
注入率と決定し てなることを特徴とする特許請求の範囲第(2)項もし
くは第(3)項記載の凝集剤の注入管理方法。
(4) (i) In the fifth sub-step, the aggregation state of the mixed liquid is detected by calculating the diameter of the aggregate from the fluctuation range when the amount of received light is flattened, and (ii) in the sixth sub-step Claim (2) or (3) characterized in that, in the partial step, the injection rate of the flocculant corresponding to when the change in the diameter of the aggregate starts to become steep is determined as the appropriate injection rate. ) Method for controlling the injection of flocculant described in section 2.
(5)(i)第5の部分工程において、受光光量が平坦
化したときの変動周期および第3の部分工程における攪
拌速度から凝集体の数を算出し、かつ受光光量が平坦化
したときの変動幅から凝集体の径を算出し、かつ前記凝
集体の数および径から凝集体の体積を算出することによ
り、混合液の凝集状態を検知し、かつ (ii)第6の部分工程において、凝集体の数の変化が
緩慢となり始めかつ径および体積の変化が急峻となり始
めるときに対応した凝集剤の注入率を適正注入率と決定
し てなることを特徴とする特許請求の範囲第(2)項記載
の凝集剤の注入管理方法。
(5) (i) In the fifth partial step, calculate the number of aggregates from the fluctuation period when the amount of received light is flattened and the stirring speed in the third partial step, and calculate the number of aggregates when the amount of received light is flattened. By calculating the diameter of the aggregate from the fluctuation width and calculating the volume of the aggregate from the number and diameter of the aggregate, the agglomeration state of the mixed liquid is detected, and (ii) in the sixth partial step, Claim 2, characterized in that the injection rate of the flocculant corresponding to when the change in the number of aggregates starts to slow down and the change in diameter and volume starts to become steep is determined as the appropriate injection rate. ) Method for controlling the injection of flocculant described in section 2.
(6)(i)第5の部分工程において、受光光量が平坦
化したときの変動周期および第3の部分工程における攪
拌速度から凝集体の数を算出し、かつ受光光量が平坦化
したときの変動幅から凝集体の径を算出し、かつ前記凝
集体の数および径と懸濁液の浮遊物濃度と凝集剤の注入
率とから凝集体の有効密度を算出することにより、混合
液の凝集状態を検知し、かつ (ii)第6の部分工程において、凝集体の数の変化が
緩慢となり始めかつ径および有効密度の変化が急峻とな
り始めるときに対応した凝集剤の注入率を適正注入率と
決定し てなることを特徴とする特許請求の範囲第(2)項記載
の凝集剤の注入管理方法。
(6) (i) In the fifth partial step, calculate the number of aggregates from the fluctuation period when the amount of received light becomes flat and the stirring speed in the third partial step, and calculate the number of aggregates when the amount of received light becomes flat. By calculating the diameter of the aggregates from the fluctuation range, and calculating the effective density of the aggregates from the number and diameter of the aggregates, the suspended solids concentration of the suspension, and the injection rate of the flocculant, the flocculation of the mixed liquid is performed. (ii) In the sixth partial step, the injection rate of the flocculant corresponding to when the change in the number of aggregates starts to slow down and the change in diameter and effective density starts to become steep is determined as an appropriate injection rate. A method for managing injection of a flocculant according to claim (2), characterized in that the method comprises determining:
(7)第3の工程が、 (a)採取された懸濁液を攪拌する第1の部分工程と、 (b)攪拌中の懸濁液に対し凝集剤を注入する第2の部
分工程と、 (c)凝集剤の注入ののち第1の部分工程よりも低下さ
れた攪拌速度で懸濁液と凝集剤との混合液を攪拌する第
3の部分工程と、 (d)少なくとも第3の部分工程に際して前記混合液を
介して発光装置より受光装置に与えられた受光光量を測
定する第4の部分工程と、 (e)第4の部分工程で測定された受光光量が平坦化し
たのち、前記混合液の攪拌を停止する第5の部分工程と
、 (f)第5の部分工程に際して前記混合液を介して発光
装置より受光装置に与えられた受光光量を測定する第6
の部分工程と、 (g)第4の部分工程および第6の部分工程で測定され
た受光光量から前記混合液の凝集状態を検知する第7の
部分工程と、 (h)第7の部分工程で検知された凝集状態に応じて凝
集剤の適正注入率を決定する第8の部分工程と を備えてなることを特徴とする特許請求の範囲第(1)
項記載の凝集剤の注入管理方法。
(7) The third step includes (a) a first partial step of stirring the collected suspension, and (b) a second partial step of injecting a flocculant into the suspension being stirred. , (c) a third partial step of stirring the mixture of suspension and flocculant after the injection of the flocculant at a lower stirring speed than in the first partial step; and (d) at least a third partial step. a fourth partial step of measuring the amount of received light given from the light emitting device to the light receiving device via the mixed liquid during the partial step; (e) after the amount of received light measured in the fourth partial step is flattened; a fifth partial step of stopping stirring of the liquid mixture; (f) a sixth partial step of measuring the amount of light received by the light-emitting device through the liquid mixture in the fifth partial step;
(g) a seventh partial step of detecting the agglomeration state of the liquid mixture from the amount of received light measured in the fourth partial step and the sixth partial step; (h) the seventh partial step and an eighth partial step of determining an appropriate injection rate of the flocculant according to the agglomeration state detected in the claim (1).
Method for controlling the injection of flocculant described in Section 1.
(8)(i)第7の部分工程において、第6の部分工程
で測定された受光光量が平坦化したときの受光光量から
凝集体が沈澱されたのちの上澄水濁度を算出することに
より、混合液の凝集状態を検知し、かつ (ii)第8の部分工程において、上澄水濁度の変化が
緩慢となり始めるときに対応した凝集剤の注入率を適正
注入率と決定し てなることを特徴とする特許請求の範囲第(7)項記載
の凝集剤の注入管理方法。
(8) (i) In the seventh partial step, by calculating the supernatant water turbidity after the aggregates have been precipitated from the amount of light received when the amount of received light measured in the sixth partial step is flattened. , detecting the flocculating state of the liquid mixture, and (ii) determining the injection rate of the flocculant corresponding to when the change in supernatant water turbidity starts to slow down as the appropriate injection rate in the eighth partial step; A flocculant injection management method according to claim (7), characterized in that:
(9)(i)第7の部分工程において、第5の部分工程
で攪拌を停止したのち第6の部分工程で測定された受光
光量が平坦化するまでの時間から凝集体の沈降速度を算
出することにより、混合液の凝集状態を検知し、かつ (ii)第8の部分工程において、凝集体の沈降速度の
変化が緩慢となり始めるときに対応した凝集剤の注入率
を適正注入率と決定し てなることを特徴とする特許請求の範囲第(7)項記載
の凝集剤の注入管理方法。
(9) (i) In the seventh partial step, calculate the sedimentation rate of the aggregate from the time from the time when stirring is stopped in the fifth partial step until the amount of received light measured in the sixth partial step becomes flat. By doing so, the flocculation state of the liquid mixture is detected, and (ii) in the eighth partial step, the injection rate of the flocculant corresponding to when the change in the sedimentation rate of the aggregates starts to become slow is determined as the appropriate injection rate. A method for managing injection of a flocculant according to claim (7), characterized in that:
(10)(i)第7の部分工程において、第4の部分工
程で測定された受光光量が平坦化したときの変動周期お
よび第3の部分工程における攪拌速度から凝集体の数を
算出することにより、混合液の凝集状態を検知し、かつ (ii)第8の部分工程において、凝集体の数の変化が
緩慢となり始めるときに対応した凝集剤の注入率を適正
注入率と決定し てなることを特徴とする特許請求の範囲第(7)項ない
し第(9)項のいずれか一項記載の凝集剤の注入管理方
法。
(10) (i) In the seventh partial step, calculate the number of aggregates from the fluctuation period when the amount of received light measured in the fourth partial step is flattened and the stirring speed in the third partial step. (ii) in the eighth partial step, the injection rate of the flocculant corresponding to when the change in the number of aggregates starts to become slow is determined as the appropriate injection rate. A flocculant injection management method according to any one of claims (7) to (9).
(11)(i)第7の部分工程において、第4の部分工
程で測定された受光光量が平坦化したときの変動幅から
凝集体の径を算出することにより、混合液の凝集状態を
検知し、 かつ (ii)第8の部分工程において、凝集体の径の変化が
急峻となり始めるときに対応した凝集剤の注入率を適正
注入率と決定し てなることを特徴とする特許請求の範囲第(7)項ない
し第(10)項のいずれか一項記載の凝集剤の注入管理
方法。
(11) (i) In the seventh partial step, the aggregation state of the mixed liquid is detected by calculating the diameter of the aggregate from the fluctuation width when the amount of received light measured in the fourth partial step becomes flat. and (ii) in the eighth partial step, the injection rate of the flocculant corresponding to when the change in the diameter of the aggregate starts to become steep is determined as the appropriate injection rate. The method for managing injection of a flocculant according to any one of items (7) to (10).
(12)(i)第7の部分工程において、第4の部分工
程で測定された受光光量が平坦化したときの変動周期お
よび第3の部分工程における攪拌速度から凝集体の数を
算出し、 かつ第4の部分工程で測定された受光光量が平坦化した
ときの変動幅から凝集体の径を算出し、かつ前記凝集体
の数および径とから凝集体の体積を算出することにより
、混合液の凝集状態を検知し、かつ (ii)第8の部分工程において、凝集体の数の変化が
緩慢となり始めかつ径および体積の変化が急峻となり始
めるときに対応した凝集剤の注入率を適正注入率と決定
し てなることを特徴とする特許請求の範囲第(7)項記載
の凝集剤の注入管理方法。
(12) (i) In the seventh partial step, calculate the number of aggregates from the fluctuation period when the amount of received light measured in the fourth partial step is flattened and the stirring speed in the third partial step, Then, the diameter of the aggregate is calculated from the variation width when the amount of received light measured in the fourth partial step is flattened, and the volume of the aggregate is calculated from the number and diameter of the aggregate, thereby performing mixing. Detecting the flocculating state of the liquid, and (ii) adjusting the injection rate of the flocculant appropriately when the change in the number of aggregates starts to slow down and the change in diameter and volume starts to steepen in the eighth partial step. A method for controlling injection of a flocculant according to claim (7), characterized in that the injection rate is determined.
(13)(i)第7の部分工程において、第4の部分工
程で測定された受光光量が平坦化したときの変動周期お
よび第3の部分工程における攪拌速度から凝集体の数を
算出し、 かつ第4の部分工程で測定された受光光量が平坦化した
ときの変動幅から凝集体の径を算出し、かつ前記凝集体
の数および径と懸濁液の浮遊物濃度と凝集剤の注入率と
から凝集体の有効密度を算出することにより、混合液の
凝集状態を検知し、かつ (ii)第8の部分工程において、凝集体の数の変化が
緩慢となり始めかつ径および有効密度の変化が急峻とな
り始めるときに対応した凝集剤の注入率を適正注入率と
決定し てなることを特徴とする特許請求の範囲第(7)項記載
の凝集剤の注入管理方法。
(13) (i) In the seventh partial step, calculate the number of aggregates from the fluctuation period when the amount of received light measured in the fourth partial step is flattened and the stirring speed in the third partial step, Then, calculate the diameter of the aggregate from the fluctuation range when the amount of received light measured in the fourth partial step is flattened, and calculate the number and diameter of the aggregate, the suspended matter concentration of the suspension, and the injection of the flocculant. (ii) In the eighth partial step, the change in the number of aggregates begins to slow and the diameter and effective density of the aggregates are detected. The flocculant injection management method according to claim (7), characterized in that the flocculant injection rate corresponding to when the change starts to become steep is determined as the appropriate injection rate.
JP8922687A 1987-04-10 1987-04-10 Method for controlling injection of flocculant Granted JPS63256108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8922687A JPS63256108A (en) 1987-04-10 1987-04-10 Method for controlling injection of flocculant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8922687A JPS63256108A (en) 1987-04-10 1987-04-10 Method for controlling injection of flocculant

Publications (2)

Publication Number Publication Date
JPS63256108A true JPS63256108A (en) 1988-10-24
JPH0418883B2 JPH0418883B2 (en) 1992-03-30

Family

ID=13964825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8922687A Granted JPS63256108A (en) 1987-04-10 1987-04-10 Method for controlling injection of flocculant

Country Status (1)

Country Link
JP (1) JPS63256108A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021166A (en) * 1988-09-30 1991-06-04 Patrick Torpey Method and an apparatus for extracting a liquid from a sludge
JP2011011107A (en) * 2009-06-30 2011-01-20 Metawater Co Ltd Apparatus and method for controlling infusion rate of flocculant
JP2011200841A (en) * 2010-03-26 2011-10-13 Metawater Co Ltd Method and apparatus for controlling injection rate of flocculant in real time

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239955A (en) * 1975-09-26 1977-03-28 Toshiba Corp Water purification control system
JPS5293160A (en) * 1976-02-02 1977-08-05 Toshiba Corp Control device for amount of chemical released at filter plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239955A (en) * 1975-09-26 1977-03-28 Toshiba Corp Water purification control system
JPS5293160A (en) * 1976-02-02 1977-08-05 Toshiba Corp Control device for amount of chemical released at filter plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021166A (en) * 1988-09-30 1991-06-04 Patrick Torpey Method and an apparatus for extracting a liquid from a sludge
JP2011011107A (en) * 2009-06-30 2011-01-20 Metawater Co Ltd Apparatus and method for controlling infusion rate of flocculant
JP2011200841A (en) * 2010-03-26 2011-10-13 Metawater Co Ltd Method and apparatus for controlling injection rate of flocculant in real time

Also Published As

Publication number Publication date
JPH0418883B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
JP3205450B2 (en) Automatic injection rate determination device and automatic determination method
JP2008055299A (en) Flocculating sedimentation treating equipment
JPS63256108A (en) Method for controlling injection of flocculant
WO2022018974A1 (en) Machine learning device, data processing system, and machine learning method
JP7357878B2 (en) Machine learning device, data processing system, inference device and machine learning method
JPH0238243B2 (en)
JPS63253236A (en) Method for detecting flocculation condition of suspension
JPS63278509A (en) Method for controlling agitation of flocculation basin
JPH0358761B2 (en)
JPH08299706A (en) Turbid water treatment system
CN206051650U (en) It is a kind of based on automatically control reinforcement sludge backflow coagulating treatment system
JPH05240767A (en) Floc measuring/controlling device
JPH09122681A (en) Water quality controlling apparatus
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JP5579404B2 (en) Apparatus and method for controlling flocculant injection rate
WO2022018976A1 (en) Machine learning device, data processing system, and machine learning method
JP5183699B2 (en) Densitometer
JPH07171307A (en) Flocculation test of suspension and determination of injection amount of flocculant
WO2022018975A1 (en) Machine-learning device, data processing system, and machine-learning method
NL2033129B1 (en) Intelligent dosing system of flocculating agent in water plant based on equipment optimization and big data analysis
JPH0739000B2 (en) Sludge control device for sedimentation pond
NO173931B (en) PROCEDURE AND DEVICE FOR CLEANING OF LIQUID MEDIUM, SPECIAL CLOCK
KR101936416B1 (en) Coagulant feeding device and sludge filtering system
JP3500606B2 (en) How to determine the optimal coagulant injection amount
KR200401687Y1 (en) Apparatus for supplying high molecule cohesive agents for water treatment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 16