JPS63278509A - Method for controlling agitation of flocculation basin - Google Patents

Method for controlling agitation of flocculation basin

Info

Publication number
JPS63278509A
JPS63278509A JP11398887A JP11398887A JPS63278509A JP S63278509 A JPS63278509 A JP S63278509A JP 11398887 A JP11398887 A JP 11398887A JP 11398887 A JP11398887 A JP 11398887A JP S63278509 A JPS63278509 A JP S63278509A
Authority
JP
Japan
Prior art keywords
suspension
stirring
aggregate formation
pond
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11398887A
Other languages
Japanese (ja)
Other versions
JPH0351443B2 (en
Inventor
Shinji Yamamoto
信二 山本
Hiroshi Motohashi
本橋 寛
Shogo Tsunoda
角田 省吾
Chiaki Igarashi
千秋 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP11398887A priority Critical patent/JPS63278509A/en
Publication of JPS63278509A publication Critical patent/JPS63278509A/en
Publication of JPH0351443B2 publication Critical patent/JPH0351443B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To reduce the necessary controlling time while excluding visual observation and experience by controlling the agitation of a flocculation basin based on the flocculating time obtained from the quantity of transmitted light at the time of injecting a flocculant into a sampled suspension at a specified injection rate and the agitating velocity gradient. CONSTITUTION:A flocculant is injected into a suspension being rapidly agitated in a mixing basin 106, and the slow and rapid agitation in the succeeding flocculation basin 112 is controlled by the following method. Namely, a flocculant is firstly injected into the suspension sampled on the upstream side of the mixing basin, the suspension is agitated in an agitated vessel at a low velocity, the quantity of the light received from a light emitting device through the suspension is measured to obtain the flocculating time, and the velocity gradient of agitation is simultaneously obtained. The agitation of the flocculation basin is controlled based on the flocculating time, velocity gradient, amt. of the suspension flowing into the mixing basin 106, and volume of the flocculation basin 112. By this method, visual observation and experience can be excluded, and the time necessary for the control of agitation can be reduced.

Description

【発明の詳細な説明】 (1)発明の目的 [産業上の利用分野] 本発明は、凝集体形成池の撹拌制御方法に関し、特に採
取した懸濁液に対し攪拌しつつ凝集剤を注入したときの
速度勾配および凝集体形成時間を検知し、かつ混和池に
対する懸濁液の供給量と凝集体形成池の容績とを検知す
ることにより、凝集体形成池における攪拌制御を実行し
てなる凝集体形成池の撹拌制御方法に関するものである
Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] The present invention relates to a stirring control method for a flocculate formation pond, and in particular, the present invention relates to a method for controlling agitation in a flocculation pond, and in particular, the present invention relates to a method for controlling agitation in a flocculation pond, and in particular, a flocculant is injected into a collected suspension while stirring. The agitation control in the flocculation pond is performed by detecting the velocity gradient and flocculation time at which the mixing basin is applied, and by detecting the amount of suspension supplied to the mixing basin and the capacity of the flocculation basin. The present invention relates to a stirring control method for an aggregate formation pond.

[従来の技術] 従来この種の凝集体形成池の撹拌制御方法としては、急
速攪拌を行なう混和池で凝集剤が注入されたのち緩速攪
拌を行なう凝集体形成池で凝集体の形成せしめられた上
水、工業用水、下水、産業廃液などの懸濁液を、実際に
、ビー力に採取して試験者の目視観察および経験により
凝集体の形成状態を判断し、これに応じて凝集体形成池
に3ける攪拌制御を調整するものが提案されていた。
[Prior Art] Conventionally, as a stirring control method for this type of aggregate formation pond, a flocculant is injected into a mixing pond which performs rapid stirring, and then aggregates are formed in an aggregate formation pond which performs slow stirring. Suspensions of clean water, industrial water, sewage, industrial waste liquid, etc. are actually sampled using a beaker, and the condition of aggregate formation is determined based on visual observation and experience of the tester. It has been proposed to adjust the agitation control in the formation basin.

[解決すべき問題点] しかしながら従来の凝集体形成池の撹拌制御方法では、
凝集体形成池における攪拌処理が試験者の目視観察およ
び経験によりて判断されていたので、試験者によって判
断結果が相違し凝集体形成池における攪拌処理を適正化
できない欠点があり、また凝集体形成池における凝集体
の形成に30分以上もの時間を要するので、凝集体の形
成状態を判断することに多大の時間を要し懸濁液の変化
に即応できない欠点があり、併せて凝集体形成池におけ
る攪拌制御が高精度て実行できず、特に凝集体形成池が
複数の領域に分割されている場合、一旦形成された凝集
体を後続の領域における攪拌で破壊してしまう欠点もあ
った。
[Problems to be solved] However, in the conventional agitation control method for aggregate formation ponds,
Since the agitation process in the aggregate formation pond was judged based on visual observation and experience of the tester, there was a drawback that the judgment results differed depending on the tester and it was not possible to optimize the agitation process in the aggregate formation basin. Since it takes more than 30 minutes for the formation of aggregates in the pond, it takes a lot of time to judge the state of aggregate formation, and there is a drawback that it is not possible to respond immediately to changes in the suspension. The agitation control cannot be performed with high precision, and especially when the agglomerate formation pond is divided into a plurality of regions, there is also the disadvantage that once formed agglomerates are destroyed by agitation in subsequent regions.

そこで本発明は、これらの欠点を除去するために、採取
した懸濁液に対し所定注入率で凝集剤を注入したときの
凝集体形成時間および速度勾配を求め、これに応じて凝
集体形成池の攪拌制御を行なってなる凝集体形成池の撹
拌制御方法を提供せんとするものである。
Therefore, in order to eliminate these drawbacks, the present invention calculates the aggregate formation time and velocity gradient when a flocculant is injected into the collected suspension at a predetermined injection rate, and adjusts the aggregate formation pond accordingly. It is an object of the present invention to provide a method for controlling agitation of an aggregate formation pond by controlling agitation.

(2)発明の構成 [問題点の解決手段] 本発明により提供される問題点の第1の解決手段は。(2) Structure of the invention [Means for solving problems] A first solution to the problem provided by the present invention is as follows.

[混和池で急速攪拌しつつ懸濁液に対して凝集剤を注入
したのち、凝集体形成池で緩速攪拌することにより凝集
体を形成せしめてなる凝集体形成池の撹拌制御方法にお
いて。
[In a stirring control method for an aggregate formation pond, in which a flocculant is injected into a suspension while being rapidly stirred in a mixing basin, and then aggregates are formed by slow stirring in an aggregate formation basin.

(a) @記混和池よりも上流で採取された懸濁液に対
し凝集剤を注入 して攪拌槽内で攪拌する第1の 工程と。
(a) A first step of injecting a flocculant into the suspension collected upstream of the mixing pond and stirring it in a stirring tank.

(b)第1の工程よりも低下された攬 、拌速度において第1の工程で凝 集剤の注入された懸濁液を攪拌 する第2の工程と。(b) Lowered power than in the first step , condensation in the first step at a stirring speed of Stir the suspension containing the concentrate and the second step.

(c)第2の工程における攪拌の速度 勾配な求める第3の工程と。(c) Speed of stirring in the second step The third step is to find the gradient.

(d)少なくとも第2の工程に際し。(d) At least during the second step.

第1の工程で凝集剤の注入され た懸濁液を介して発光装置より 受光装置に与えられた受光光量 を測定する第4の工程と。In the first step, flocculant is injected. from the light-emitting device through the suspension. Amount of light received by the light receiving device and a fourth step of measuring.

(e)第4の工程で測定された受光光 量から第1の工程で凝集剤の注 入された懸濁液の凝集体形成時 間を求める第5の工程と、 (「)前記混和池に対する懸濁液の供 給量を検知する第6の工程と。(e) Received light measured in the fourth step Pour the flocculant in the first step based on the amount When aggregates form in the suspension A fifth step of determining the time, (“) supply of suspension to the mixing pond; and a sixth step of detecting the feed amount.

(g)第3め工程で求めた速度勾配と 第5の工程で求めた凝集体形成 時間と第6の工程で検知された 懸濁液の供給量と前記凝集体形 成泡の容績とを用いて前記凝集 体形成泡における攪拌を制御す る第7の工程と を備えてなることを特徴とする凝集体形成池の撹拌制御
方法」 である。
(g) The velocity gradient obtained in the third step, the aggregate formation time obtained in the fifth step, the supply amount of suspension detected in the sixth step, and the volume of the aggregate-forming foam. and a seventh step of controlling the agitation in the agglomerate-forming foam using the agitation control method for an agglomerate-forming pond."

また本発明により提供される問題点の第2の解決手段は
The second solution to the problem provided by the present invention is as follows.

「混和池で急速攪拌しつつ懸濁液に対して凝集剤を注入
したのち、凝集体形成池で緩速攪拌することにより凝集
体を形成せしめてなる凝集体形成池の撹拌制御方法にお
いて。
"In an agitation control method for an aggregate formation pond, in which a flocculant is injected into a suspension with rapid stirring in a mixing basin, and then aggregates are formed by slow stirring in an aggregate formation basin.

(a)前記混和池よりも上流で採取さ れた懸濁液に対し凝集剤を注入 して攪拌槽内で攪拌する第1の 工程と、 (b)第1の工程よりも低下された攪 拌速度において第1の工程で凝 集剤の注入された懸濁液を攪拌 する第2の工程と。(a) Collected upstream of the mixing pond Inject flocculant into the suspension The first one is stirred in the stirring tank. process and (b) reduced agitation than in the first step; Condensation occurs in the first step at the stirring speed. Stir the suspension containing the concentrate and the second step.

(c)第2の工程における攪拌の速度 勾配を求める第3の工程と。(c) Speed of stirring in the second step and the third step of finding the slope.

(d)少なくとも第2の工程に際し。(d) At least during the second step.

第1の工程で凝集剤の注入され た懸濁液を介して発光装置より 受光装置に与えられた受光光量 を測定する第4の工程と、 (e)第4の工程で測定された受光光 量から第1の工程で凝集剤の注 入された懸濁液の凝集状態を検 知する第5の工程と。In the first step, flocculant is injected. from the light-emitting device through the suspension. Amount of light received by the light receiving device a fourth step of measuring; (e) Received light measured in the fourth step Pour the flocculant in the first step based on the amount The state of agglomeration of the suspended liquid is detected. The fifth step is to know.

(f)第3の工程で求められた速度勾 配のうちから、第5の工程で検 知された凝集状態を適正とする 速度勾配を適正速度勾配と決定 する第6の工程と、 (g)第6の工程で求められた適正速 度勾配に対応して第1の工程で 凝集剤の注入された懸濁液の凝 集体形成時間を求め、適正凝集 体形成時間とする第7の工程 と、 (h)前記混和池に対する懸濁液の供 給量を検知する第8の工程と。(f) Velocity gradient obtained in the third step From the distribution, inspection is performed in the fifth step. Appropriate the known agglomeration state Determine the speed gradient as the appropriate speed gradient A sixth step of (g) Proper speed determined in the sixth step In the first step, corresponding to the degree gradient. Coagulation of suspensions injected with flocculant Determine aggregate formation time and ensure proper aggregation Seventh step as body formation time and, (h) supply of suspension to the mixing pond; and an eighth step of detecting the feed amount.

(+)第6の工程で決定された適正速 度勾配と第7の工程で求められ た適正凝集体形成時間と第8の 工程で検知された懸濁液の供給 量と前記凝集体形成池の8績と を用いて前記凝集体形成池にお ける攪拌を制御する第9の工程 を備えてなることを特徴とする凝集体形成池の撹拌制御
方法」 である。
(+) The appropriate velocity gradient determined in the sixth step, the appropriate aggregate formation time determined in the seventh step, the supply amount of the suspension detected in the eighth step, and the aggregate formation pond. 8. A method for controlling agitation in an aggregate forming pond, characterized by comprising a ninth step of controlling agitation in the aggregate forming basin using a

[作用] 本発明にかかる凝集体形成池の第1の撹拌制御方法は、
混和池で急速攪拌しつつ懸濁液に対して凝集剤を注入し
たのち、凝集体形成池で緩速攪拌することにより凝集体
を形成せしめてなる凝集体形成池の撹拌制御方法におい
て、採取された懸濁液に対し凝集剤を注入したのち攪拌
速度を低下せしめ、その低下された攪拌速度に対応する
速度勾配を求め、凝集剤の注入された懸濁液を介して発
光装置より受光装置に対して与えられた受光光量を測定
し、その受光光量から凝集体形成時間を検知し、前記混
和池に対する懸濁液の供給量を検知し、前記凝集体形成
時間および速度勾配と前記懸濁液の供給量と前記凝集体
形成池の容積とに応じて前記凝集体形成池の攪拌制御を
実行する作用ななしており、試験者の目視観察ならびに
経験を排除する作用をなし、また凝集体形成池における
攪拌処理の結果を実測することを回避しつつ凝集体形成
池の攪拌制御を短時間で適正化する作用をなす。
[Function] The first stirring control method for an aggregate formation pond according to the present invention is as follows:
In an agitation control method for an aggregate formation pond, in which a flocculant is injected into a suspension with rapid stirring in a mixing basin, and then aggregates are formed by slow stirring in an aggregate formation pond. After injecting a flocculant into the suspension, the stirring speed is reduced, a velocity gradient corresponding to the reduced stirring speed is determined, and the flow is transferred from the light emitting device to the light receiving device via the flocculant-injected suspension. The amount of light received is measured, the aggregate formation time is detected from the amount of received light, the amount of suspension supplied to the mixing pond is detected, and the aggregate formation time and velocity gradient are determined from the suspension. The agitation control of the aggregate forming pond is performed according to the supply amount of the aggregate forming pond and the volume of the aggregate forming pond. This function allows the agitation control of the aggregate formation pond to be optimized in a short time while avoiding actually measuring the results of the agitation process.

また本発明にかかる凝集体形成池の第2の撹拌制御方法
は、混和池で急速攪拌しつつ懸濁液に対して凝集剤を注
入したのち、凝集体形成池で緩速攪拌することにより凝
集体を形成せしめてなる凝集体形成池の撹拌制御方法に
おいて、採取された懸濁液に対し凝集剤を注入したのち
攪拌速度を低下せしめ、その低下された攪拌速度に対応
する速度勾配を求め、凝集剤の注入された懸濁液を介し
て発光装置より受光装置に対して与えられた受光光量を
測定し、その受光光量から凝集剤の注入された懸濁液の
凝集状態を検知し、前記速度勾配のうち前記凝集状態を
適正とする速度勾配を適正速度勾配と決定し、前記適正
速度勾配に対応して前記凝集剤の注入された懸濁液の凝
集体形成時間を求めて適正凝集体形成時間とし、前記混
和池に対する懸濁液の供給量を検知し、前記適正凝集体
形成時間および適正速度勾配と前記懸濁液の供給量と前
記凝集体形成池の容積とに応じて前記凝集体形成池の攪
拌制御を実行する作用をなしており、試験者の目視観察
ならびに経験を排除する作用と凝集体形成池における攪
拌処理の結果を実測することを回避しつつlj&集体形
成池の攪拌制御を短時間で適正化する作用とに加え、凝
集体形成池における攪拌制御を高精度で実行する作用を
なす。
Further, the second agitation control method of the flocculate formation pond according to the present invention is that after injecting the flocculant into the suspension while rapidly stirring it in the mixing basin, the flocculant is injected into the suspension and then slowly stirred in the flocculation basin. In a stirring control method for an aggregate formation pond formed by forming aggregates, a flocculant is injected into the collected suspension, the stirring speed is lowered, and a velocity gradient corresponding to the lowered stirring speed is determined, Measure the amount of light received by the light receiving device from the light emitting device through the suspension injected with the flocculant, and detect the agglomeration state of the suspension in which the flocculant is injected from the amount of received light. Of the velocity gradients, the velocity gradient that makes the agglomeration state appropriate is determined as the appropriate velocity gradient, and the agglomerate formation time of the suspension injected with the flocculant is determined in accordance with the appropriate velocity gradient to form the appropriate agglomerates. The amount of suspension supplied to the mixing pond is detected as the formation time, and the amount of the flocculation is determined according to the appropriate aggregate formation time, the appropriate velocity gradient, the amount of suspension supplied, and the volume of the aggregate formation pond. It has the function of controlling the agitation of the aggregate formation pond, and eliminates the visual observation and experience of the tester, and the agitation of the aggregate formation pond while avoiding the actual measurement of the results of the agitation process in the aggregate formation pond. In addition to the function of optimizing control in a short time, it also functions to execute stirring control in the aggregate formation pond with high precision.

[実施例] 次に本発明について添付図面を参照しつつ具体的に説明
する。
[Example] Next, the present invention will be specifically described with reference to the accompanying drawings.

第1図は1本発明にかかる凝集体形成池の撹拌制御方法
の一実施例によって凝集体形成池の攪拌制御が実行され
ている実際の懸濁液処理装置を示す断面図である。
FIG. 1 is a sectional view showing an actual suspension processing apparatus in which agitation control of an agglomerate formation pond is executed by an embodiment of the agitation control method for an agglomerate formation pond according to the present invention.

第2図は、本発明にがかる一実施例を実行すスために速
度勾配G、および凝集体形成時間T、を検知する第1図
の検知装置の一例を具体的に示す断面図である。
FIG. 2 is a sectional view specifically showing an example of the detection device of FIG. 1 for detecting the velocity gradient G and the aggregate formation time T in order to carry out an embodiment of the present invention.

第3図は、第2図に示した検知装置の動作を説明するた
めの動作説明図てあって、受光光量■の時間的変化を示
している。
FIG. 3 is an operational explanatory diagram for explaining the operation of the detection device shown in FIG. 2, and shows temporal changes in the amount of received light.

第4図は1本発明にかかる凝集体形成池の他の撹拌制御
方法の一実施例を実行するために適正速度勾配G♂およ
び適正**体形成時間T♂を検知する第1図の検知装置
の一例を具体的に示す断面図である。
FIG. 4 shows the detection of FIG. 1 for detecting an appropriate velocity gradient G♂ and an appropriate body formation time T♂ in order to carry out an embodiment of another stirring control method for an aggregate formation pond according to the present invention. FIG. 2 is a cross-sectional view specifically showing an example of the device.

第5図は、第4図の検知装置で検知した凝集体の径d、
数Nb9体lnvおよび有効密度ρと速度勾配G(どの
関係を示すグラフ図である。
Figure 5 shows the diameter d of the aggregate detected by the detection device in Figure 4;
It is a graph diagram showing the relationship between the number Nb9 body lnv and the effective density ρ and the velocity gradient G.

第6図は、第4図の検知装置で検知した上澄水濁度τ、
楽集体の沈降速度Sおよび有効密度ρと速度勾配GLと
の間の関係を示すグラフ図である。
Figure 6 shows the supernatant water turbidity τ detected by the detection device in Figure 4;
FIG. 2 is a graph diagram showing the relationship between the sedimentation velocity S and effective density ρ of a music aggregate and the velocity gradient GL.

第7図は、第4図の検知装置を4つ並置した検知装置を
示す断面図である。
FIG. 7 is a sectional view showing a detection device in which four detection devices of FIG. 4 are arranged side by side.

まず第1図を参照しつつ1本発明にかかる!211体形
成池の撹拌制御方法によって凝集体形成池の攪拌制御が
実行されている実際の懸濁液処理装置について説明する
First, let's discuss the present invention with reference to Figure 1! An actual suspension processing apparatus in which agitation control of an aggregate formation pond is executed using the 211 body formation pond agitation control method will be described.

102は着水井で、供給管104を介して適宜の懸濁液
供給源(図示せず)から懸濁液が供給されている。10
6は着水井102に対し供給管108を介して連通され
た懸濁液と凝集剤との混和池で、駆動手段たとえば電動
モータ109によって急速回転される攪拌羽根110が
配設されている。
Reference numeral 102 denotes a landing well, into which a suspension is supplied via a supply pipe 104 from an appropriate suspension supply source (not shown). 10
Reference numeral 6 denotes a mixing pond for a suspension and a flocculant, which is communicated with the landing well 102 via a supply pipe 108, and is provided with a stirring blade 110 that is rapidly rotated by a driving means, such as an electric motor 109.

!!2はa料地108に対し供給管114を介して連通
されたms体形成池で、所望の数の領域たとえば容積が
それぞれ■、、〜、vcである3つの領域112A、〜
、112Gに区分されており、それぞれ攪拌機113A
、〜、113Gが配設されている。Wl拌機113A、
〜、113Gは、それぞれ駆動手段たとえばift動モ
ー1115A、 〜、115cと、駆動手段たとえば電
動モータ115A、〜、115Gによって回転数nAe
〜oncで緩速回転される攪拌羽根116A。
! ! Reference numeral 2 denotes a ms body forming pond which is communicated with the A material land 108 via a supply pipe 114, and has a desired number of regions, for example, three regions 112A, .
, 112G, each with an agitator 113A.
, ~, 113G are arranged. Wl stirrer 113A,
. . . , 113G are driven by driving means such as ift motors 1115A, .
The stirring blade 116A is rotated slowly at ~onc.

〜、116Cを包有している。混和池106で凝集剤が
注入混和されかつ供給管114によって凝集体形成池1
12に供給された懸濁液は、まず凝集体形成池112の
うちの最初の領域すなわち第1の領域112Aにおいて
攪拌機113^の攪拌羽根116Aにより回転数nAで
所定時間にわたって緩速攪拌され、そののち第2の領域
112Bへ移行されて攪拌機113Bの攪拌羽根116
Bにより回転数nsで所定時間にわたって緩速攪拌され
、更に第3の領域112Cへ移行されて攪拌機113C
の攪拌羽根116cにより回転数ncで所定時間にわた
って緩速攪拌される。
~, 116C. The flocculant is injected and mixed in the mixing pond 106 and sent to the flocculation pond 1 through the supply pipe 114.
The suspension supplied to the aggregate forming pond 112 is first slowly stirred at a rotation speed nA for a predetermined period of time by the stirring blade 116A of the stirrer 113^ in the first region, that is, the first region 112A of the aggregate formation pond 112. The stirring blade 116 of the stirrer 113B is later transferred to the second region 112B.
It is slowly stirred by B for a predetermined period of time at a rotation speed of ns, and then transferred to the third region 112C and stirred by the stirrer 113C.
The stirring blade 116c slowly stirs at a rotation speed nc for a predetermined period of time.

118はa集体形成池112に連設された沈澱池で、凝
集体形成池112の最終の領域すなわち第3の領域11
2Cから供給されかつ凝集体すなわちフロックが十分に
形成された懸濁液を静置せしめ。
Reference numeral 118 denotes a sedimentation tank connected to the aggregation formation tank 112, which is the final region of the agglomeration formation tank 112, that is, the third region 11.
The suspension supplied from 2C and in which aggregates or flocs were sufficiently formed was allowed to stand still.

その凝集体すなわちフロックを沈澱せしめて除去してい
る。120は供給管122を介して沈澱池118の放流
口に連通された濾過池で、沈澱池118で除去できなか
った微小な凝集体すなわちフロックをか過により除去し
たのち処理水として処理水管124を介し後続の適宜の
設備へ送出している。
The aggregates or flocs are precipitated and removed. A filtration tank 120 is connected to the outlet of the sedimentation tank 118 via a supply pipe 122, and after removing minute aggregates, that is, flocs that could not be removed in the sedimentation tank 118, the treated water is passed through the treated water pipe 124 as treated water. The data is then sent to the appropriate subsequent equipment.

130は第2図に具体的に示されており、かつ懸濁液に
対し所定の注入率で凝集剤が注入されたときの速度勾配
G、および凝集体形成時間Ttを出力するための検知装
置て、供給管132およびポンプ134を介して着水井
102に連通されており、排水管133が混和池106
などの適宜の箇所に開放されている。
130 is specifically shown in FIG. 2, and is a detection device for outputting the velocity gradient G and the aggregate formation time Tt when the flocculant is injected into the suspension at a predetermined injection rate. It is connected to the landing well 102 via a supply pipe 132 and a pump 134, and a drain pipe 133 connects to the mixing pond 106.
It is open to the public at appropriate locations.

136は供給管108に配置された流量計138と検知
装gl130とにそれでれ接続された演算装置で。
136 is a calculation device connected to the flow meter 138 disposed in the supply pipe 108 and the detection device GL130.

検知装置13Gで検知された速度勾配GLおよび凝集体
形成時間TLと重量計138によって検知された流量(
すなわち混和池106への供給量)Qと予め計測され手
動操作などによって入力された凝集体形成池11217
)8領域112A、 〜、112C17)容si v 
A。
The velocity gradient GL and aggregate formation time TL detected by the detection device 13G and the flow rate (
In other words, the amount supplied to the mixing pond 106) Q and the aggregate formation pond 11217 measured in advance and inputted by manual operation etc.
) 8 areas 112A, ~, 112C17) Volume si v
A.

〜、vcなどの所要情報とを受は取り、これらを用いて
凝集体形成池112の各領域112^、〜、112Gに
それぞれ配設された撹拌11113A、〜、11:Ic
の回転数nA、〜、ncを算出している。
~, vc, and other necessary information is received, and using this information, the agitation units 11113A, ~, 11:Ic installed in each area 112^, ~, 112G of the aggregate formation pond 112 are received.
The rotational speed nA, . . . , nc is calculated.

すなわち演算装置136は、検知装置lコ0より与えら
れた速度勾配G、および凝集体形成時III T tと
凝集体形成池112における速度勾配G、、および凝集
体形成時間T、、どの間の関係(ただしαは定数) より、凝集体形成池112の各領域112A、〜、11
2Cにおける速度勾配G、、(A)、〜、 G、(c)
を定数α、。
That is, the calculation device 136 calculates the velocity gradient G given by the detection device 10, the velocity gradient G at the time of aggregate formation, the velocity gradient G in the aggregate formation pond 112, and the aggregate formation time T. From the relationship (however, α is a constant), each region 112A, ~, 11 of the aggregate formation pond 112
Velocity gradient G at 2C, (A), ~, G, (c)
be a constant α,

〜、α。を用いて G、(A)  =  αAG、。~, α. Using G, (A) = αAG,.

G、(B)  =  α、G1 G、(c)  =  αcG。G, (B) = α, G1 G, (c) = αcG.

より、速度勾配G、(^)、〜、 a、(c)をの如く
算出している。ただし定数α、、〜、α。
Therefore, the velocity gradient G, (^), ~, a, (c) is calculated as follows. However, the constant α, , ~, α.

は、凝集体形成池112の各領域112A、〜、112
Gにおける攪拌強度を考慮して α^  ≧  αn ≧  α。
are each region 112A, ~, 112 of the aggregate formation pond 112.
Considering the stirring intensity at G, α^ ≧ αn ≧ α.

とされ、かつ VAaA2+VBaa”+Vc ac”=vA+vlI
+vc とされている。ここで、凝集体形成池112の各領域1
12A、 〜、112Gが等容積すなわちvA=vfi
=vcとされておれば、定数α4.〜.αCの間には α^2+αo2+αc2=3 という関係がある。
and VAaA2+VBaa"+Vc ac"=vA+vlI
+vc. Here, each area 1 of the aggregate formation pond 112
12A, ~, 112G have equal volumes, that is, vA = vfi
=vc, the constant α4. ~. There is a relationship between αC as follows: α^2+αo2+αc2=3.

速度勾配G 、(A) 、〜、 G、(c)が、懸濁液
の粘性係数用Sよび比重ηと抗力係数Cと攪拌機tOA
The velocity gradient G, (A), ~, G, (c) is the viscosity coefficient S of the suspension, the specific gravity η, the drag coefficient C, and the stirrer tOA.
.

〜、113(:の攪拌羽根116A、 〜、116Gの
面MiaA1〜+aCおよび周速υ、、〜、υ。と凝集
体形成池112の各領域112^、〜、112Gの容積
vA、〜、VCとを用いて と表現できるので、この関係より ゛ を算出できる。ここで攪拌羽根116A、〜、116C
の周速υ、、〜、υCが1回転数nA、〜、ncおよび
半径「、、〜、rcを用いて υ^=2πrAn^ υ6=2πrAn^ υc=2πrAn^ と表現でき、ひいてはaAtlA’、〜、aCυ jが a^ v^”=Ba^ π”  rs”nA”alt 
υB″’ = 8 a 6 π3r m″n a”ac
 uc″=8acfc”  rc’nc’と算出できる
ので。
~, 113 (: surface MiaA1~+aC of stirring blades 116A, ~, 116G and circumferential velocity υ,, ~, υ. and volume vA, ~, VC of each area 112^, ~, 112G of aggregate formation pond 112 Since it can be expressed using , it is possible to calculate ゛ from this relationship.
The circumferential speed υ, ..., υC can be expressed as υ^ = 2πrAn^ υ6 = 2πrAn^ υc = 2πrAn^ using the number of revolutions nA, ~, nc and the radius ",, ~, rc, and thus aAtlA', ~, aCυ j is a^ v^”=Ba^ π” rs”nA”alt
υB"' = 8 a 6 π3r m"n a"ac
Since it can be calculated as uc''=8acfc''rc'nc'.

8ac π’ r、’nc’=シtVc a、(c)’
Cη と算出でき、回転数nA、〜、neを と算出できる。したがって回転数nA、〜n、は。
8ac π'r,'nc'=sitVca,(c)'
Cη can be calculated, and the number of revolutions nA, . . . , ne can be calculated as. Therefore, the rotational speed nA, ~n, is.

と算出できる。ただしT1は、(vA+vlI+Vc)
/Qである。これにより回転数nA、〜、ncは、検知
装fi130によって検知された速度勾配Gtおよび凝
集体形成時間Ttと凝集体形成池112の凝集体形成時
間T、(ひいては流量計138によって検知された流f
f1Q)とにょワて決定できる。
It can be calculated as However, T1 is (vA+vlI+Vc)
/Q. As a result, the rotational speed nA, . f
f1Q) can be determined.

140は演算装置136に接続された回転数制御器で、
演算装置136によって出力された回転数n A +−
−、ficに応じて攪拌@ 11:lA、〜、11:I
Cの駆動手段115^、〜、115Gの回転数を制御す
る。144は凝集剤供給装置で、予め設定された注入率
WAlに応じ凝集剤を供給管146を介して混和池10
6に供給し、懸濁液に対して注入している。
140 is a rotation speed controller connected to the arithmetic unit 136;
Rotational speed n A +- outputted by the arithmetic unit 136
-, Stir according to fic @ 11:lA, ~, 11:I
The rotation speed of the driving means 115^, 115G of C is controlled. Reference numeral 144 denotes a flocculant supply device, which supplies flocculant to the mixing pond 10 via a supply pipe 146 according to a preset injection rate WAl.
6 and injected against the suspension.

しかして本発明にかかる検知装@13Gは、ポンプ13
4および供給管132を介して着水井102から懸濁液
を採取し、かつ凝集剤供給装fi144による凝集剤の
注入率WAIとたとえば同一の注入率で凝集剤を注入し
た場合の速度勾配Gtおよび凝集体形成時間TLを後述
にしたがい出力する。
However, the detection device @13G according to the present invention
4 and the suspension from the landing well 102 via the supply pipe 132, and the velocity gradient Gt and The aggregate formation time TL is output as described below.

検知装置lコ0で検知された懸濁液の速度勾配GLおよ
び凝集体形成時間Ttは、ともに演算装1136に与え
られている。yt算装211:16では、検知装置13
0から速度勾配OLおよび凝集体形成時間Ttが入力さ
れるごとに、上述したところによって凝集体形成池11
2の各領域112A、〜、112Gにそれぞれ配設され
た攪拌Jl 113A、〜、113Cの回転数n A 
+〜+nCが算出されている。
Both the suspension velocity gradient GL and the aggregate formation time Tt detected by the detection device 10 are given to the arithmetic unit 1136. In yt calculation system 211:16, the detection device 13
Each time the velocity gradient OL and the aggregate formation time Tt are input from 0, the aggregate formation pond 11 is changed as described above.
Rotation speed n A of stirring Jl 113A, -, 113C arranged in each area 112A, -, 112G of 2, respectively
+~+nC has been calculated.

演算装置lコロから出力された回転数n A +〜。The rotational speed n A + ~ output from the arithmetic unit l roller.

ncは1回転数制御器140に与えられている。nc is given to the 1-rotation speed controller 140.

回転数制御器140は1回転数n A +〜、n(に応
じてそれぞれ凝集体形成池112の攪拌機113A。
The rotational speed controller 140 controls the agitator 113A of the aggregate formation pond 112 according to the rotational speed n A + , n (, respectively).

〜、113Gを駆動する。ここで凝集体形成池112に
は、混和池106て作成されかつ凝集剤の注入率がWA
+である懸濁液が供給されている。
~, 113G are driven. Here, the flocculation pond 112 is created by the mixing pond 106 and has a flocculant injection rate of WA.
A suspension that is + is being supplied.

上述した検知装置130による検知動作を間歇的に反復
することにより、懸濁液処理装置における凝集体形成を
適正効率で実行でき、ひいては懸濁液の処理時間を短縮
できる。
By intermittently repeating the detection operation by the detection device 130 described above, aggregate formation in the suspension processing device can be performed with appropriate efficiency, and the processing time of the suspension can be shortened.

更に第2図および第3図を参照しつつ、検知装置130
の構成について、詳細に説明する。
Further referring to FIGS. 2 and 3, the detection device 130
The configuration will be explained in detail.

lOは回分式の攪拌槽で、適宜の容量たとえばlfLの
容量を有しており、凝集剤の注入された懸濁液(以下、
単に懸濁液と称することもある)11が収容されている
。 12は攪拌槽lO内に配設された攪拌羽根で、攪拌
槽IOの下方に配置された駆動手段たとえば電動モータ
14の出力軸16の自由端部に適宜に装着されている。
1O is a batch-type stirring tank with an appropriate capacity, for example, lfL, in which a suspension containing a flocculant (hereinafter referred to as
11 (sometimes simply referred to as a suspension) is contained therein. Reference numeral 12 denotes a stirring blade disposed within the stirring tank IO, which is appropriately attached to the free end of the output shaft 16 of a drive means, for example, an electric motor 14, arranged below the stirring tank IO.

18はり−ド1Q19によって適宜の電源(図示せず)
に接続された発光装置で、Wl拌槽10の側面に配設さ
れており、蛍光ランプ、タングステンランプ、ハロゲン
ランプ、発光ダイオード、レーザ発光手段などの適宜の
光源によって発生された光を適宜の光学系たとえばスリ
ットを介して平行光線束とし攪拌槽lO内の懸濁液11
に供給している。
18 A suitable power supply (not shown) is provided by the beam 1Q19.
A light-emitting device connected to the Wl stirring tank 10, which is arranged on the side surface of the Wl stirring tank 10, converts light generated by a suitable light source such as a fluorescent lamp, tungsten lamp, halogen lamp, light-emitting diode, or laser emitting means into a suitable optical device. For example, the suspension 11 in the stirring tank lO is made into a parallel beam of light through a slit.
is supplied to.

20はフォトトランジスタ、フォトダイオード。20 is a phototransistor and a photodiode.

CdS、CCDなどの適宜の光電変換素子を受光手段と
して包有している受光装置で、攪拌槽10の側面に配設
されており1発光装3!118により平行光線束として
供給された光を懸濁液11を介して受光している0発光
装置!18によって与えられた光が。
This is a light receiving device that includes an appropriate photoelectric conversion element such as CdS or CCD as a light receiving means, and is disposed on the side of the stirring tank 10 and receives light supplied as a parallel beam bundle by the 1 light emitting device 3!118. 0 light emitting device receiving light through suspension 11! The light given by 18.

懸濁液11中の凝集体すなわちフロック17によって散
乱あるいは遮断されるので、受光波N20は、散乱光あ
るいは減衰された透過光を受光している。
Since the received light wave N20 is scattered or blocked by the aggregates, that is, the flocs 17 in the suspension 11, the received light wave N20 is received as scattered light or attenuated transmitted light.

受光装置20は、透過光を受光するために発光装置18
に対し対向せしめてもよく、また散乱光を受光するため
に発光装2t18からの平行光線束に対し所定の角度を
もって配置せしめてもよい、加えて透過光および散乱光
を受光するために、2つの受光?を置20を配置しても
よい、説明を簡潔とするために以下、受光装置20は、
発光装置118に対して対向されているものとする。ま
た第2図では1発光装置18および受光装置20が一組
だけ配置されているが、これに限定されるものてはなく
、発光装置18および受光装置20を複数組配置しても
よい6発光装置iasよび受光波W120は、特に同一
水平面上に配設されておれば、凝集体すなわちフロック
17の沈降状態を高精度で検知するために好都合である
The light receiving device 20 includes a light emitting device 18 to receive transmitted light.
The light emitting device 2t18 may be placed at a predetermined angle with respect to the parallel light beam from the light emitting device 2t18 in order to receive the scattered light. One light reception? In order to simplify the explanation, the light receiving device 20 may be arranged as follows.
It is assumed that the light emitting device 118 is opposed to the light emitting device 118. Although only one set of light emitting device 18 and light receiving device 20 is arranged in FIG. 2, the present invention is not limited to this, and multiple sets of light emitting device 18 and light receiving device 20 may be arranged. In particular, if the device ias and the received light wave W120 are arranged on the same horizontal plane, it is convenient for detecting the sedimentation state of the aggregates, that is, the flocs 17 with high precision.

22は受光装置20にリード線21を介して接続された
測定装置で、受光波2120の受光した光量(以下“受
光光量”という)■を測定する。また測定袋2122は
、測定した受光光量Iから、凝集剤の注入前の受光光量
I、(τ)と攪拌羽根12による緩速攪拌に伴なって平
坦化したときの受光光量■の変動幅(すなわち所定値I
LおよびI□間の差分)Δ■および変動周期Fとを求め
て出力し、更に所望により攪拌羽根12が停止されかつ
凝集体すなわちフロック17の沈降が完了した後の受光
光量Ir(τ)を求めて出力している。加えて測定装置
22は、攪拌羽根12の緩速攪拌の開始時刻t3から受
光光IIが平坦化する時刻t4までの時間すなわち凝集
体形成時間T(な、測定した受光光IIから求めて演算
波ff1136に対し出力している(第1図参照)。
Reference numeral 22 denotes a measuring device connected to the light receiving device 20 via a lead wire 21, which measures the amount of light received by the received light wave 2120 (hereinafter referred to as "received light amount"). In addition, the measurement bag 2122 calculates the fluctuation range of the received light amount I, (τ) before the injection of the flocculant and the received light amount ■ when flattened due to slow stirring by the stirring blade 12, from the measured received light amount I. That is, the predetermined value I
The difference between L and I□) Δ■ and the fluctuation period F are determined and output, and if desired, the amount of received light Ir(τ) after the stirring blade 12 is stopped and the settling of the flocs 17 is completed is determined. It is searched and output. In addition, the measuring device 22 measures the time from the start time t3 of slow stirring of the stirring blade 12 to the time t4 when the received light II becomes flat, that is, the aggregate formation time T (calculated from the measured received light II). It is output to ff1136 (see Figure 1).

2りは一端部が開閉弁25を介して攪拌IfJtoに開
口された供給管で、他端部が供給管132に連通されて
いる(第1[jU参照)、26は凝集剤供給源28に一
端部が連通された凝集剤供給管て、他端部が開閉弁27
を介して攪拌槽lOに開口されている。30は排水管て
、一端部が攪拌槽10の底部に開口され、かつ他端部が
開閉弁32を介して排水管133に連通されており、攪
拌槽lOから検知法の懸濁液11を排除する(第1図参
照)、34は暗箱で、少なくとも攪拌槽lO1発光装2
118および受光装置20を収容しており、外光の影響
を除去している。
2 is a supply pipe whose one end is opened to the agitation IfJto via the on-off valve 25, and the other end is communicated with the supply pipe 132 (see 1st [jU); 26 is connected to the flocculant supply source 28. One end of the flocculant supply pipe is connected to the other end of the on-off valve 27.
It is opened to the stirring tank IO through. Reference numeral 30 denotes a drain pipe, one end of which is opened at the bottom of the stirring tank 10, and the other end communicated with a drain pipe 133 via an on-off valve 32. 34 is a dark box, at least stirring tank lO1 light emitting device 2
118 and the light receiving device 20, and eliminates the influence of external light.

36は駆動手段14と開閉弁25.27とに接続された
演算装置で、駆動手段14から攪拌羽根12の周速υあ
るいは回転数nが与えられ、かつ開閉弁25.27から
それぞれ懸濁液の供給量Mおよび凝集剤の供給量Nが与
えられており、これらの情報を用いて速度勾配G、を算
出している。すなわち演算装置コ5は、攪拌槽10の容
a(ここではM十N)と懸濁液の粘性係数路および比重
ηと抗力係数Cと攪拌羽根12の面v1aおよび周速υ
(すなわち回転数n)とを用いて、速度勾配Gtを と算出し、これを演算装fi136に向けて出力してい
る(第1図参照)。
36 is a calculation device connected to the driving means 14 and the on-off valves 25.27, to which the driving means 14 gives the circumferential speed υ or rotational speed n of the stirring blade 12, and the on-off valves 25.27 give the suspension liquid. The supply amount M of the coagulant and the supply amount N of the flocculant are given, and the velocity gradient G is calculated using these information. In other words, the calculation device 5 calculates the capacity a of the stirring tank 10 (here M1N), the viscosity coefficient path of the suspension, the specific gravity η, the drag coefficient C, the surface v1a of the stirring blade 12, and the circumferential speed υ.
(that is, the number of revolutions n), the speed gradient Gt is calculated and outputted to the arithmetic unit fi 136 (see FIG. 1).

加えて第2図および第3図を参照しつつ、検知装置+:
lOの作用について、詳細に説明する。
In addition, with reference to FIGS. 2 and 3, the detection device +:
The action of IO will be explained in detail.

開閉弁32を開放し排水管30を介して攪拌槽10内に
残留する懸濁液11を排除したのち、開閉弁32を閉鎖
する。
After opening the on-off valve 32 and removing the suspension 11 remaining in the stirring tank 10 through the drain pipe 30, the on-off valve 32 is closed.

開閉弁25を所定時間だけ開放し、供給管24を介して
懸濁液の供給源(図示せず)から、所定量M(たとえば
l見)の懸濁液を攪拌槽10内に供給する。
The on-off valve 25 is opened for a predetermined period of time, and a predetermined amount M (for example, 1 volume) of the suspension is supplied into the stirring tank 10 from a suspension supply source (not shown) via the supply pipe 24.

攪拌槽10内への懸濁液の供給が完了すると、時刻t1
において駆動手段たとえば電動モータ■4により攪拌羽
根I2が急速回転すなわち高速度て回転され始める。
When the supply of the suspension into the stirring tank 10 is completed, time t1
At this point, the stirring blade I2 begins to rotate rapidly, that is, at a high speed, by the driving means, for example, the electric motor 4.

そののち時刻tえにおいて開閉弁27を所定時間だけ開
放することにより、所定量Nの凝集剤が。
Thereafter, by opening the on-off valve 27 for a predetermined time at time t, a predetermined amount N of flocculant is released.

凝集剤供給源28から凝集剤供給管26を介して攪拌槽
lOに対し注入される。!2集剤としては、ポリアルミ
ニウムクロライドなどの既知の凝集剤を所望に応じて使
用すればよい、ここでNは、たとえばN/ (M+N)
が凝集剤供給管!1144による凝集剤の注入率WAl
となるように適宜に設定されている。
The flocculant is injected from the flocculant supply source 28 through the flocculant supply pipe 26 into the stirring tank IO. ! As the aggregating agent, known flocculants such as polyaluminum chloride may be used as desired, where N is, for example, N/(M+N).
is the flocculant supply pipe! Coagulant injection rate WAl according to 1144
It is set appropriately so that.

攪拌羽根12の急速回転の開始に先立つて1発光S装置
18.受光装置20および測定装置22が始動されてお
り、攪拌槽10内の懸濁液を介して透過光の受光光量I
を測定している。
Prior to the start of rapid rotation of the stirring blade 12, 1 light emitting S device 18. The light receiving device 20 and the measuring device 22 have been started, and the received light amount I of transmitted light through the suspension in the stirring tank 10 is measured.
are being measured.

時刻t2すなわち凝集剤が供給される時刻までの受光光
量lは、懸濁液に含有されている浮遊物の初期濃度W□
に対応して一定値Iばτ)となっている0時刻t2にお
いて凝集剤が所定量Nだけ注入されると、懸濁液ll内
で凝集体すなわちフロック17が徐々に形成され、かつ
懸濁液11が攪拌槽IO内で急速に攪拌移動されている
ので、受光装置20の受光光量■が緩慢に増大する。
The amount of light received until time t2, that is, the time when the flocculant is supplied, is equal to the initial concentration W of suspended matter contained in the suspension.
When a predetermined amount N of flocculant is injected at time t2, which has a constant value I (τ) corresponding to Since the liquid 11 is being stirred and moved rapidly in the stirring tank IO, the amount of light received by the light receiving device 20 increases slowly.

時刻tユにおいて、攪拌羽根12が緩速回転すなわち低
速度で回転され始めると、更に懸濁液If内で凝集体す
なわちフロック17が形成されてその径dが漸次増大し
、かつ懸濁液IIが攪拌槽10内で緩速に攪拌移動され
ているので、受光波′a20の受光光Qtが小刻みに増
減しながら全体として増大する。
At time tU, when the stirring blade 12 starts to be rotated at a slow speed, that is, at a low speed, aggregates, that is, flocs 17 are further formed in the suspension If, and their diameter d gradually increases, and the suspension II is slowly stirred and moved in the stirring tank 10, so the received light Qt of the received light wave 'a20 increases and decreases little by little while increasing as a whole.

時刻t4に達すると、懸濁液11内で凝集体すなわちフ
ロック17が十分に!!2集されそのIdが変化しなく
なり、かつ懸濁液11が攪拌槽lO内で緩速に攪拌移動
されているので、受光装置20の受光光量■が平坦化し
凝集体すなわちフロック17の通過に伴なって所定値!
、および■□間で周期的に変動するようになる。このと
きの変動周期が、Fとして第3図に示されている。
When time t4 is reached, there are enough aggregates or flocs 17 in the suspension 11! ! Since the suspension 11 is slowly stirred and moved in the stirring tank 10, the amount of light received by the light receiving device 20 becomes flat, and as the aggregates, that is, the flocs 17 pass, It's a predetermined value!
, and ■□. The fluctuation period at this time is shown as F in FIG.

更に時刻t5において、攪拌羽根12の回転を停止して
緩速攪拌を停止せしめると、懸濁液11内で形成された
凝集体すなわちフロック17が沈降を開始するので、受
光装置20の受光光量Iが小刻みに増減しつつ1時刻t
6においてほぼ一定の値tr(τ)に達する0時刻t6
以降では、懸濁液ll中の凝集体すなわち70ツクI7
がもはや沈降しないので、受光光量■は一定の値Ir(
τ)を維持する。
Further, at time t5, when the rotation of the stirring blade 12 is stopped to stop the slow stirring, the aggregates, that is, the flocs 17 formed in the suspension 11 start to settle, so that the amount of light received by the light receiving device 20 I increases and decreases little by little at time t.
0 time t6 reaching a nearly constant value tr(τ) at 6
Hereinafter, the aggregates in the suspension 11, i.e. 70 pieces I7
no longer settles, the amount of received light ■ becomes a constant value Ir (
τ) is maintained.

たとえばl見の真水にカオリン251gを添加したカオ
リン懸濁液を用い、かつポリアルミニウムクロライトを
15■g/lの注入率となるように注入した場合の受光
装置20による受光光量■を測定装置22で測定したと
ころ、第3図のとおりであった。
For example, when using a kaolin suspension made by adding 251 g of kaolin to fresh water and injecting polyaluminum chlorite at an injection rate of 15 g/l, the device measures the amount of light received by the light receiving device 20. 22, the results were as shown in FIG.

測定装置22は、受光装置20によって受光された光量
すなわち受光光91より、攪拌羽根12による°緩速攪
拌の開始時刻t3から平坦化が開始する時刻1<  (
すなわち凝集体17の形成が完了する時刻)までの時間
を測定し、凝集体形成時間Ttとして演算装fi136
に対し送出している(第1図参照)。
The measuring device 22 determines, based on the amount of light received by the light receiving device 20, that is, the received light 91, that the flattening starts from the time t3 when slow stirring by the stirring blade 12 starts.
In other words, the time until the formation of the aggregates 17 is completed is measured, and the calculation device fi 136 calculates the aggregate formation time Tt.
(See Figure 1).

また演算装置コロが、上述したところによって懸濁液1
1の速度勾配atを算出し、演算装g113Gに対して
送出している(第1図参照)。
In addition, the calculation device roller is configured to have the suspension 1
The speed gradient at of 1 is calculated and sent to the arithmetic unit g113G (see FIG. 1).

上述では速度勾配GLおよび凝集体形成時間Ttが検知
装fi130に3いて単に検知されているのみであるが
、これを以下のように適正化すれば凝集体形成池112
の攪拌制御を一層効率化できる。
In the above, the velocity gradient GL and the aggregate formation time Tt are simply detected by the detection device fi130, but if this is optimized as follows, the aggregate formation pond 112
Stirring control can be made more efficient.

すなわち演算装置36を、第4図に示すように測定装置
22および開閉弁25.27にも接続しておき、上述に
加え受光光量1.(τ)と受光光量■の変動幅Δ■およ
び変動周期Fと懸濁液の供給量Mと凝集剤の供給iNな
どの所要情報とを与える。これにより演算装置36に、
凝集体すなわちフロックI7の形成状態を判断するに有
用なパラメータを算出せしめる。
That is, the computing device 36 is also connected to the measuring device 22 and the on-off valves 25 and 27 as shown in FIG. 4, and in addition to the above, the amount of received light is 1. (τ), the fluctuation range Δ■ of the amount of received light (■), the fluctuation period F, the suspension supply amount M, the flocculant supply iN, and other necessary information are given. As a result, the arithmetic unit 36
Parameters useful for determining the state of formation of aggregates, that is, flocs I7, are calculated.

換言すれば@算装2236は、受光光量■の変動幅△I
(ボルト)と定数αとを用いて凝集体すなわちフロック
17の径d(cm)を d=αΔ■ と算出し、受光光Biの変動周期F(秒)と攪拌羽根1
2の周速υ(17秒)あるいは回転数n(1/秒)と定
数β、β°を用いて凝集体すなわちフロック17の数N
b(1/am3)をと算出し、凝集体すなわちフロック
17の径d(cm)および数Nb(1/c■3)と定数
εとを用いて凝集体すなわちフロック17の体1V(c
mコ)を■=εd’  Nb と算出し、°受光光1ift(τ)(ボルト)より求め
た懸濁液の浮遊物の初期濃度W。(■g/立)と供給1
1M、Nより求めた凝集剤の注入率W A+ (■gi
n)と凝集体すなわちフロック17の径d (cm)お
よび数Nb(170膳3)と定数γと凝集剤に固有の係
数aとを用いて凝集体すなわちフロック17の有効密度
ρ(g/cm′3)  を と算出して3す、更に所望によっては、時間Tと定数δ
とを用いて凝集体すなわちフロック17の沈降速度S 
(cm/分)を と算出し、受光光量xr(τ)と定数入とを用いて凝集
体すなわちフロック17の沈降したのちの上澄水濁度τ
(度)を τ=入■tcτ) と算出している。ここで演算装置36の算出したパラメ
ータと凝集体すなわちフロック17の実際の凝集状態と
の関係は、径dあるいは数Nb2体植V。
In other words, @Sosou 2236 has the fluctuation range △I of the amount of received light ■
(volts) and the constant α, calculate the diameter d (cm) of the aggregate, that is, the floc 17, as d=αΔ■, and calculate the fluctuation period F (seconds) of the received light Bi and the stirring blade 1.
Using the circumferential speed υ (17 seconds) or rotational speed n (1/second) of 2 and constants β and β°, calculate the number N of aggregates, that is, flocs 17.
b (1/am3), and using the diameter d (cm) and number Nb (1/c 3) of the aggregate, that is, the floc 17, and the constant ε, the body 1V (c
The initial concentration W of suspended matter in the suspension was calculated from the received light 1ift (τ) (volts). (g/stand) and supply 1
Injection rate W A+ of coagulant determined from 1M and N (■gi
The effective density ρ (g/cm '3) Calculate 3, and if desired, calculate the time T and the constant δ
The settling velocity S of the floc 17 is calculated using
(cm/min), and using the amount of received light xr(τ) and a constant, the supernatant water turbidity τ after the flocs 17 have settled.
(degree) is calculated as τ=in ■tcτ). Here, the relationship between the parameters calculated by the calculation device 36 and the actual agglomeration state of the flocs 17 is the diameter d or the number of Nb2 bodies V.

有効密度ρ、沈沈降速度S上上澄水濁度の順で緊密とな
っているので、凝集体すなわちフロック17の凝集状態
を精密に検知することが所望であれば後者のパラメータ
を利用すればよく、更にその凝集状態を一層精密に検知
することが所望であれば複数のパラメータを組合せて利
用すればよい。ちなみに演算装置36は、利用しないパ
ラメータを算出しない構成としてもよい。
Effective density ρ, sedimentation velocity S, supernatant water turbidity are closely related in this order, so if it is desired to accurately detect the flocculation state of flocs 17, the latter parameter may be used. Furthermore, if it is desired to detect the aggregation state more precisely, a combination of a plurality of parameters may be used. Incidentally, the calculation device 36 may be configured not to calculate parameters that are not used.

更に演算装置36は、所望により凝集体すなわちフロッ
ク17の径d、数Nb、体gv、有効密度ρ、沈降速度
Sおよび凝集体すなわちフロック17の沈降したのちの
上澄水濁度τのうちの少なくとも1つをそのときの速度
勾配G、に対して順次記憶しておき、速度勾配Gtの適
正値(すなわち適正速度勾配)G♂を算出している。す
なわち演算装fa36は、速度勾配GLの変化に対し、
凝集体すなわちフロック17の径d9体2v、数Nb、
有効密度ρあるいは沈降速度Sの変化が急峻となり始め
、もしくは上澄水濁度τの変化が極小に接近するときに
対応して、速度勾配Gtを適正速度勾配G♂と決定し、
これを演算装置136に対して出力すればよい(第1図
と第4図ないし第6図とを参照)、また演算装gf36
は、受光光riEから求めた凝集体形成時間Ttのうち
適正速度勾配G♂に対応する凝集体形成時間TLを適正
凝集体形成時間TL”と決定し、これを演算装置113
6に対して出力すればよい(第1図とt54図ないし第
6図とを参照)。
Further, the calculation device 36 may optionally calculate at least the diameter d, the number Nb, the body gv, the effective density ρ, the sedimentation velocity S, and the supernatant water turbidity τ after the flocs 17 have settled. One value is sequentially stored for each speed gradient G at that time, and an appropriate value of the speed gradient Gt (that is, an appropriate speed gradient) G♂ is calculated. In other words, the arithmetic unit fa36 calculates the change in the velocity gradient GL,
Diameter d9 of the aggregate or floc 17 2v, number Nb,
Corresponding to when the change in effective density ρ or sedimentation velocity S begins to become steep, or when the change in supernatant water turbidity τ approaches a minimum, the velocity gradient Gt is determined as the appropriate velocity gradient G♂,
This can be outputted to the arithmetic unit 136 (see FIG. 1 and FIGS. 4 to 6), or the arithmetic device gf36
Of the aggregate formation time Tt determined from the received light riE, the aggregate formation time TL corresponding to the appropriate velocity gradient G♂ is determined as the appropriate aggregate formation time TL, and this is determined by the arithmetic unit 113.
6 (see Figure 1 and Figures t54 to 6).

この適正速度勾配G♂および適正凝集体形成時間TL′
を、それぞれ上述の速度勾配Gtおよび凝集体形成時間
TLとして使用すれば、凝集体形成池112の攪拌制御
を一層効率化できる。
This appropriate velocity gradient G♂ and appropriate aggregate formation time TL'
If these are used as the above-mentioned velocity gradient Gt and aggregate formation time TL, respectively, the stirring control of the aggregate formation pond 112 can be made more efficient.

なお第2図では、演算装置コロにおいて、!拌羽根12
の周速Vから速度勾配G1を直接算出しているが、ここ
では を周速υとして利用して速度勾配Gtを算出してもよい
In addition, in FIG. 2, in the arithmetic unit roller, ! Stirring blade 12
Although the speed gradient G1 is directly calculated from the circumferential speed V, here, the speed gradient Gt may be calculated using as the circumferential speed υ.

第4図では、攪拌l7etOが1つだけ包有された検知
装置130について説明したが、これでは楽集状態の検
知に多大の時間を必要とし、ひいては適正速度勾配Gt
”および適正凝集体形成時間T♂の検知に手間取るので
、第7図に示すように複数(ここては4つ)の攪拌槽を
並置してもよい。
In FIG. 4, the detection device 130 containing only one stirring l7etO was explained, but with this, a large amount of time is required to detect the music collection state, and furthermore, the appropriate speed gradient Gt
Since it takes time to detect the appropriate aggregate formation time T♂, a plurality of (four in this case) stirring tanks may be arranged in parallel as shown in FIG.

第7図の検知装置130は、懸濁液の供給S(図示せず
)、凝集剤供給源28が共通化されており。
In the detection device 130 of FIG. 7, a suspension supply S (not shown) and a flocculant supply source 28 are shared.

@算装置コ8および制御装置40が追加され、かつ演算
装置36の機能の一部が演算装置コ8に分担せしめられ
ていることを除き、構成および作用は、第4図の検知装
とと実質的に同一であるので、共通化された部材および
追加された部材に関する以下の説明を除き、各部材に対
し第4図(ひいては第2図)の検知装置において付した
参照番号と同一の参照番号を付し、その詳細な説明を省
略する。参照番号には、並置された攪拌槽を区別するた
めにA、B、C,Dの符号が加えられている。開閉弁2
5A、へ、25Dおよび27^、〜、27Dは、Wl拌
槽10A、〜。
The configuration and operation are the same as those of the detection device shown in FIG. 4, except that a calculation device 8 and a control device 40 are added, and a part of the function of the calculation device 36 is assigned to the calculation device 8. Since they are substantially the same, each member will be referred to by the same reference numeral as in the detection device of FIG. 4 (and therefore, FIG. They are numbered and their detailed description will be omitted. The letters A, B, C, and D are added to the reference numbers to distinguish between the juxtaposed stirring vessels. Open/close valve 2
5A, 25D and 27^, ~, 27D are Wl stirring tanks 10A, ~.

1(10中の懸濁液II^、〜、110に対するJJl
集剤の注入率を一致せしめるように適宜開放されている
1 (suspension II^ in 10, ~, JJl for 110
It is opened as appropriate to match the injection rate of the concentration agent.

演算装置38は、測定袋fi22A、〜、22Dおよび
演算装置36A、〜、36Dに接続されており、演算装
置コロ^。
The computing device 38 is connected to the measurement bags fi22A, -, 22D and the computing devices 36A, -, 36D.

〜、36Dで算出された速度勾配G(のうちから凝集体
の形成状態を適正とする速度勾配Gtを適正速度勾配G
L″と決定し、かつ演算装置36A、〜、36Dで算出
された凝集体形成時間Ttのうちからこの適正速度勾配
G♂に対応する凝集体形成時間Ttを適正凝集体形成時
間TL”と決定し、適正速度勾配Gt”および適正凝集
体形成時間Tt”を演算装置136に向けて送出してい
る(第1図参照)、ここで制御装2140は、それぞれ
駆動手段14A、〜、 14Dを介して攪拌羽根12A
、〜、 120を互いに異なる回転数ひいては周速で回
転せしめている。
~, the velocity gradient G calculated in 36D (the velocity gradient Gt that makes the aggregate formation state appropriate is the appropriate velocity gradient G)
From among the aggregate formation times Tt determined as L'' and calculated by the calculation devices 36A to 36D, the aggregate formation time Tt corresponding to this appropriate velocity gradient G♂ is determined as the appropriate aggregate formation time TL''. The controller 2140 sends the appropriate velocity gradient Gt" and the appropriate aggregate formation time Tt" to the arithmetic unit 136 (see FIG. 1). stirring blade 12A
, .

なお上述においては、攪拌機11:lA、〜、113c
の回転数nA、〜、n(を制御することによって!2集
体形成池112の攪拌制御を実行しているが1本発明は
、これに限定されるものではなく、攪拌機113A、〜
、113Gの回転速度あるいは凝集体形成池112A、
〜、112Cの容積などを制御することによって凝集体
形成池112の攪拌制御を達成してもよい。
In addition, in the above description, the stirrer 11:lA, ~, 113c
Although the agitation control of the agglomerate formation pond 112 is executed by controlling the rotational speed nA, ~, n (!2), the present invention is not limited to this, and the agitators 113A, ~,
, 113G rotational speed or aggregate formation pond 112A,
Agitation control of the aggregate formation pond 112 may be achieved by controlling the volume of the aggregates 112C, 112C, and the like.

(3)発明の効果 上述より明らかなように本発明にかかるl!2集体形成
池の第1の撹拌制御方法は、混和池で急速攪拌しつつ懸
濁液に対して凝集剤を注入したのち、凝集体形成池で緩
速攪拌することにより凝集体を形成せしめてなる凝集体
形成池の撹拌制御方法において、 (a)前記混和池よりも上流で採取された懸濁液に対し
凝集剤を注入して攪拌槽内で攪拌する第1の工程と、 (b)第1の工程よりも低下された攪拌速度において第
1の工程で凝集剤の注入された懸濁液を攪拌する第2の
工程と、 (c)第2の工程における攪拌の速度勾配を求める第3
の工程と。
(3) Effects of the invention As is clear from the above, the l! 2 The first agitation control method for the agglomerate formation pond is to inject a flocculant into the suspension while rapidly agitating it in the mixing basin, and then slowly stirring it in the agglomerate formation pond to form agglomerates. In the agitation control method for an agglomerate formation pond, (a) a first step of injecting a flocculant into a suspension collected upstream of the mixing pond and stirring it in a stirring tank; (b) a second step of stirring the suspension into which the flocculant was injected in the first step at a stirring speed lower than that of the first step; (c) a step of determining the speed gradient of stirring in the second step; 3
With the process.

(d)少なくとも第2の工程に際し、第1の工程で凝集
剤の注入された懸濁液を介して発光装置より受光装置に
与えられた受光光量を測定する第4の工程と、 (e)第4の工程で測定された受光光量から第1の工程
で凝集剤の注入された懸濁液の凝集体形成時間を求める
第5の工程と。
(d) at least in the second step, a fourth step of measuring the amount of light received from the light emitting device to the light receiving device via the suspension into which the flocculant was injected in the first step; a fifth step of determining the aggregate formation time of the suspension into which the flocculant was injected in the first step from the amount of received light measured in the fourth step;

(f)前記混和池に対する懸濁液の供給量を検知する第
6の工程と。
(f) a sixth step of detecting the amount of suspension supplied to the mixing pond;

(g)第3の工程で求めた速度勾配と第5の工程で求め
た1!J集体形成時間とtIS8の工程で検知された懸
濁液の供給量と前記凝集体形成池の容積とを用いて前記
凝集体形成池における攪拌を制御する第7の工程と を備えてなるので。
(g) Velocity gradient obtained in the third step and 1! obtained in the fifth step! and a seventh step of controlling the agitation in the aggregate formation pond using the J aggregate formation time, the supply amount of the suspension detected in the step tIS8, and the volume of the aggregate formation pond. .

(i)試験者の目視観察ならびに経験を排除できる効果 を有し、また (ii)凝集体形成池の攪拌制御に所要の時間を短縮化
できる効果 を有する。
(i) It has the effect of eliminating the visual observation and experience of the tester, and (ii) it has the effect of shortening the time required to control stirring of the aggregate formation pond.

また本発明にかかる凝集体形成池の第2の撹拌制御方法
は、混和池で急速攪拌しつつ懸濁液に対して凝集剤を注
入したのち、凝集体形成池で緩速攪拌することにより凝
集体を形成せしめてなる凝集体形成池の撹拌制御方法に
おいて、 (a)前記混和池よりも上流で採取された懸濁液に対し
凝集剤を注入して攪拌槽内で攪拌するrtSlの工程と
Further, the second agitation control method of the flocculate formation pond according to the present invention is that after injecting the flocculant into the suspension while rapidly stirring it in the mixing basin, the flocculant is injected into the suspension and then slowly stirred in the flocculation basin. A stirring control method for an aggregate formation pond formed by forming aggregates includes: (a) an rtSl step in which a flocculant is injected into the suspension collected upstream of the mixing pond and the mixture is stirred in a stirring tank; .

(b)第1の工程よりも低下された攪拌速度において第
1の工程で凝集剤の注入された懸濁液を攪拌する第2の
工程と、 (c)第2の工程における撹拌の速度勾配を求める第3
の工程と。
(b) a second step of stirring the suspension into which the flocculant was injected in the first step at a stirring speed lower than that of the first step; and (c) a speed gradient of stirring in the second step. The third step is to find
With the process.

(d)少なくとも第2の工程に際し、第1の工程で凝集
剤の注入された懸濁液を介して発光装置より受光装置に
与えられた受光光量を測定する第4の工程と、 (e)第4の工程で測定された受光光量から第1の工程
で凝集剤の注入された懸濁液の凝集状態を検知する第5
の工程と。
(d) at least in the second step, a fourth step of measuring the amount of light received from the light emitting device to the light receiving device via the suspension into which the flocculant was injected in the first step; A fifth step detects the agglomeration state of the suspension into which the flocculant was injected in the first step from the amount of received light measured in the fourth step.
With the process.

CD第3の工程で求められた速度勾配のうちから、!8
5の工程で検知された凝集状態を適正とする速度勾配を
適正速度勾配と決定する第6の工程と、 (g)第6の工程で決定された適正速度勾配に対応して
第1の工程で凝集剤の注入された懸濁液の凝集体形成時
間を求め、適正!21i体形成時間とする第7の工程と
、(h)#2混料地に対する懸濁液の供給量を検知する
第8の工程と、 (i)第6の工程で決定された適正速度勾配と第7の工
程で求められた適正凝集体形成時間と第8の工程で検知
された懸濁液の供給量と前記凝集体形成池の容積とを用
いて前記凝集体形成池における攪拌な制御する第9の工
程と を備えてなるので、上記(i)(ii)の効果に加え(
iii)凝集体形成池の攪拌制御を高精度とできる効果 を有する。
From among the velocity gradients found in the third CD step,! 8
(g) a first step corresponding to the appropriate speed gradient determined in the sixth step; Find the aggregate formation time of the suspension injected with the flocculant, and check the appropriateness! (h) an eighth step of detecting the amount of suspension supplied to the #2 blend; (i) an appropriate velocity gradient determined in the sixth step; The agitation control in the aggregate formation pond is performed using the appropriate aggregate formation time determined in the seventh step, the supply amount of the suspension detected in the eighth step, and the volume of the aggregate formation pond. In addition to the effects (i) and (ii) above, (
iii) It has the effect of highly accurate stirring control of the aggregate formation pond.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる凝集体形成池の撹拌制御方法の
一実施例によって凝集体形成池の攪拌制御が実行されて
いる実際の懸濁液処理装置を示す断面図、第i図は本発
明にかかる一実施例を実行するために速度勾配Gtおよ
び凝集体形成時間TLを検知する第1図の検知装置の一
例を具体的に示す断面図、第3図は第2図に示した検知
装置の動作を説明するための動作説明図、第4図は本発
明にかかる凝集体形成池の他の撹拌制御方法の一実施例
を実行するために適正速度勾配G♂および適正凝集体形
成時間T♂を検知する第1図の検知装置の一例を具体的
に示す断面図、第5図は第4図の検知装置で検知した凝
集体の径d、数Nb1体積体積上び有効密度ρと速度勾
配Gtとの関係を示すグラフ図、第6図は第4図の検知
装置で検知した上澄水濁度τ、凝集体の沈降速度Sおよ
び有効密度ρと速度勾配GLとの間の関係を示すグラフ
図、第7図は第4図の検知装置を4つ並こした検知袋こ
を示す断面図である。 102・・・・・・・・・・・・・・・・・・着水井+
06・・・・・・・・・・・・・・・・・・混和池+1
2・・・・・・・・・・・・・・・・・・凝集体形成池
+18・・・・・・・・・・・・・・・・・・沈澱池1
20・・・・・・・・・・・・・・・・・・濾過池13
0・・・・・・・・・・・・・・・・・・検知装置13
5・・・・・・・・・・・・・・・・・・演算装置13
8・・・・・・・・・・・・・・・・・・流量計140
・・−・・・・−・・・・・・・・・・回転数制御器1
44・・・・・・・・・・・・・・・・・・凝集剤供給
装置lO・・・・・・・・・・・・・・・・・・・・攪
拌槽11・・・・・・・・・・・・・・・・・・・・懸
濁液I2・・・・・・・・・・・・・・・・・・・・攪
拌羽根14・・・・・・・・・・・・・・・・・・・・
駆動手段16・・・・・・・・・・・・・・・・・・・
・出力軸18・・・・・・・・・・・・・・・・・・・
・発光装置20・・・・・・・・・・・・・・・・・・
・・受光装置22・・・・・・・・・・・・・・・・・
・・・測定装置24・・・・・・・・・・・・・・・・
・・・・供給管25.27・・・・・・・・・・・・・
・・・開閉弁26・・・・・・・・・・・・・・・・・
・・・a増剤供給管28・・・・・・・・・・・・・・
・・・・・・凝集剤供給源30・・・・・・・・・・・
・・−・・・・・・排水管32・・・・・・・・・・・
・・・・・・・・・開閉弁34・・・・・・・・・・・
・・・・・・・・・暗箱36.38・・・・・・・・・
・・・・・・・演算装置40・・・・・・・・・・・・
・・・・・・・・制御装置特許出願人 荏原インフィル
コ株式会社株式会社荏原総合研究所 代理人   弁理士   工 藤   隆 夫G%(+
/秒) 第6図 G% (1/秒)
FIG. 1 is a sectional view showing an actual suspension processing apparatus in which agitation control of an agglomerate formation pond is executed according to an embodiment of the agitation control method for an agglomerate formation pond according to the present invention, and FIG. A sectional view specifically showing an example of the detection device shown in FIG. 1 for detecting the velocity gradient Gt and the aggregate formation time TL in order to carry out an embodiment of the invention, and FIG. 3 is a cross-sectional view showing the detection device shown in FIG. 2. FIG. 4 is an operation explanatory diagram for explaining the operation of the apparatus, and FIG. A cross-sectional view specifically showing an example of the detection device shown in FIG. 1 that detects T♂, and FIG. Figure 6 is a graph showing the relationship between the velocity gradient Gt and the velocity gradient GL. The graph shown in FIG. 7 is a sectional view showing a detection bag in which four detection devices of FIG. 4 are arranged side by side. 102・・・・・・・・・・・・・・・Waterfall well +
06・・・・・・・・・・・・・・・Mixing pond +1
2・・・・・・・・・・・・・・・ Aggregate formation pond +18・・・・・・・・・・・・・・・Settling basin 1
20・・・・・・・・・・・・・・・Filtration pond 13
0・・・・・・・・・・・・・・・Detection device 13
5・・・・・・・・・・・・・・・ Arithmetic device 13
8・・・・・・・・・・・・・・・・・・Flow meter 140
・・・・・・・−・・・・・・・・・・Rotation speed controller 1
44・・・・・・・・・・・・・・・Flocculant supply device lO・・・・・・・・・・・・・・・・Stirring tank 11...・・・・・・・・・・・・・・・・・・Suspension I2・・・・・・・・・・・・・・・・・・Stirring blade 14・・・・・・・・・・・・・・・・・・・・・
Driving means 16・・・・・・・・・・・・・・・・・・
・Output shaft 18・・・・・・・・・・・・・・・・・・
・Light-emitting device 20・・・・・・・・・・・・・・・・・・
・・Light receiving device 22・・・・・・・・・・・・・・・・
・・・Measuring device 24・・・・・・・・・・・・・・・
・・・・Supply pipe 25.27・・・・・・・・・・・・・
・・・Opening/closing valve 26・・・・・・・・・・・・・・・・・・
・・・a Additive supply pipe 28 ・・・・・・・・・・・・・・・
...Flocculant supply source 30...
・・・-・・・・・・Drain pipe 32・・・・・・・・・・・・
......Opening/closing valve 34...
・・・・・・・・・Dark box 36.38・・・・・・・・・
...... Arithmetic device 40 ......
・・・・・・Control device patent applicant Ebara Infilco Co., Ltd. Ebara Research Institute Co., Ltd. Agent Patent attorney Takashi Kudo G% (+
/sec) Figure 6 G% (1/sec)

Claims (8)

【特許請求の範囲】[Claims] (1)混和池で急速攪拌しつつ懸濁液に対して凝集剤を
注入したのち、凝集体形成池で緩速攪拌することにより
凝集体を形成せしめてなる凝集体形成池の攪拌制御方法
において、 (a)前記混和池よりも上流で採取された懸濁液に対し
凝集剤を注入して攪拌槽内で攪拌する第1の工程と、 (b)第1の工程よりも低下された攪拌速度において第
1の工程で凝集剤の注入された懸濁液を攪拌する第2の
工程と、 (c)第2の工程における攪拌の速度勾配を求める第3
の工程と、 (d)少なくとも第2の工程に際し、第1の工程で凝集
剤の注入された懸濁液を介して発光装置より受光装置に
与えられた受光光量を測定する第4の工程と、 (e)第4の工程で測定された受光光量から第1の工程
で凝集剤の注入された懸濁液の凝集体形成時間を求める
第5の工程と、 (f)前記混和池に対する懸濁液の供給量を検知する第
6の工程と、 (g)第3の工程で求めた速度勾配と第5の工程で求め
た凝集体形成時間と第6の工程で検知された懸濁液の供
給量と前記凝集体形成池の容積とを用いて前記凝集体形
成池における攪拌を制御する第7の工程と を備えてなることを特徴とする凝集体形成池の攪拌制御
方法。
(1) In an agitation control method for an aggregate formation pond, in which a flocculant is injected into a suspension while being rapidly stirred in a mixing basin, and then aggregates are formed by slow stirring in an aggregate formation basin. (a) a first step of injecting a flocculant into the suspension collected upstream of the mixing pond and stirring it in a stirring tank; (b) agitation that is lower than the first step; (c) a third step of determining the speed gradient of the stirring in the second step;
(d) At least in the second step, a fourth step of measuring the amount of light received by the light emitting device to the light receiving device via the suspension into which the flocculant was injected in the first step. (e) a fifth step of determining the aggregate formation time of the suspension into which the flocculant was injected in the first step from the amount of received light measured in the fourth step; a sixth step of detecting the supply amount of the suspension; (g) the velocity gradient determined in the third step, the aggregate formation time determined in the fifth step, and the suspension detected in the sixth step; a seventh step of controlling agitation in the aggregate forming pond using the supply amount of the aggregate forming pond and the volume of the aggregate forming pond.
(2)混和池で急速攪拌しつつ懸濁液に対して凝集剤を
注入したのち、凝集体形成池で緩速攪拌することにより
凝集体を形成せしめてなる凝集体形成池の攪拌制御方法
において、 (a)前記混和池よりも上流で採取された懸濁液に対し
凝集剤を注入して攪拌槽内で攪拌する第1の工程と、 (b)第1の工程よりも低下された攪拌速度において第
1の工程で凝集剤の注入された懸濁液を攪拌する第2の
工程と、 (c)第2の工程における撹拌の速度勾配を求める第3
の工程と、 (d)少なくとも第2の工程に際し、第1の工程で凝集
剤の注入された懸濁液を介して発光装置より受光装置に
与えられた受光光量を測定する第4の工程と、 (e)第4の工程で測定された受光光量から第1の工程
で凝集剤の注入された懸濁液の凝集状態を検知する第5
の工程と、 (f)第3の工程で求められた速度勾配のうちから、第
5の工程で検知された凝集状態を適正とする速度勾配を
適正速度勾配と決定する第6の工程と、 (g)第6の工程で求められた適正速度勾配に対応して
第1の工程で凝集剤の注入された懸濁液の凝集体形成時
間を求め、適正凝集体形成時間とする第7の工程と、 (h)前記混和池に対する懸濁液の供給量を検知する第
8の工程と、 (i)第6の工程で決定された適正速度勾配と第7の工
程で求められた適正凝集体形成時間と第8の工程で検知
された懸濁液の供給量と前記凝集体形成池の容積とを用
いて前記凝集体形成池における攪拌を制御する第9の工
程と を備えてなることを特徴とする凝集体形成池の攪拌制御
方法。
(2) In an agitation control method for an aggregate formation pond, in which a flocculant is injected into a suspension while being rapidly stirred in a mixing basin, and then aggregates are formed by slow stirring in an aggregate formation basin. (a) a first step of injecting a flocculant into the suspension collected upstream of the mixing pond and stirring it in a stirring tank; (b) agitation that is lower than the first step; (c) a third step of determining the speed gradient of the stirring in the second step;
(d) At least in the second step, a fourth step of measuring the amount of light received by the light emitting device to the light receiving device via the suspension into which the flocculant was injected in the first step. (e) a fifth step for detecting the agglomeration state of the suspension into which the flocculant was injected in the first step from the amount of received light measured in the fourth step;
(f) A sixth step of determining, from among the velocity gradients determined in the third step, a velocity gradient that makes the aggregation state detected in the fifth step appropriate as the appropriate velocity gradient; (g) In response to the appropriate velocity gradient determined in the sixth step, the aggregate formation time of the suspension in which the flocculant was injected in the first step is determined, and the seventh step is determined as the appropriate aggregate formation time. (h) an eighth step of detecting the amount of suspension supplied to the mixing pond; (i) detecting the appropriate velocity gradient determined in the sixth step and the appropriate coagulation determined in the seventh step; and a ninth step of controlling the stirring in the aggregate formation pond using the aggregate formation time, the supply amount of the suspension detected in the eighth step, and the volume of the aggregate formation pond. A stirring control method for an aggregate formation pond, characterized by:
(3)(i)第5の工程において、受光光量が平坦化し
たときの変動周期および第2の工程における攪拌速度か
ら凝集体の数を算出することにより、懸濁液の凝集状態
を検知し、かつ (ii)第6の工程において、前記凝集体の数の変化が
急峻となり始めるときに対応した速度勾配を適正速度勾
配と決定してなることを特徴とする特許請求の範囲第(
2)項記載の凝集体形成池の攪拌制御方法。
(3) (i) In the fifth step, the aggregation state of the suspension is detected by calculating the number of aggregates from the fluctuation period when the amount of received light becomes flat and the stirring speed in the second step. and (ii) in the sixth step, a velocity gradient corresponding to when the change in the number of aggregates starts to become steep is determined as an appropriate velocity gradient.
2) Agitation control method for an aggregate formation pond as described in section 2).
(4)(i)第5の工程において、受光光量が平坦化し
たときの変動幅から凝集体の径を算出することにより、
懸濁液の凝集状態を検知し、かつ (ii)第6の工程において、前記凝集体の径の変化が
急峻となり始めるときに対応した速度勾配を適正速度勾
配と決定してなることを特徴とする特許請求の範囲第(
2)項もしくは第(3)項記載の凝集体形成池の攪拌制
御方法。
(4) (i) In the fifth step, by calculating the diameter of the aggregate from the fluctuation range when the amount of received light is flattened,
Detecting the aggregation state of the suspension, and (ii) determining, in the sixth step, a velocity gradient corresponding to when the change in the diameter of the aggregate starts to become steep as an appropriate velocity gradient. Claim No. (
The method for controlling agitation in an aggregate formation pond according to item 2) or item (3).
(5)(i)第5の工程において、受光光量が平坦化し
たときの変動周期および第2の工程における攪拌速度か
ら凝集体の数を算出し、かつ受光光量が平坦化したとき
の変動幅から凝集体の径を算出し、かつ 前記凝集体の数および径から凝集体の体積を算出するこ
とにより、懸濁液の凝集状態を検知し、かつ (ii)第6の工程において、前記凝集体の数と径と体
積との変化が急峻となり始めるときに対応した速度勾配
を適正速度勾配と決定してなることを特徴とする特許請
求の範囲第(2)項記載の凝集体形成池の攪拌制御方法
(5) (i) In the fifth step, calculate the number of aggregates from the fluctuation period when the amount of received light is flattened and the stirring speed in the second step, and the width of fluctuation when the amount of received light is flattened. (ii) detecting the agglomeration state of the suspension by calculating the diameter of the aggregates from the number of aggregates and calculating the volume of the aggregates from the number and diameter of the aggregates; The aggregate formation pond according to claim (2), characterized in that the velocity gradient corresponding to when the changes in the number, diameter, and volume of aggregates start to become steep is determined as the appropriate velocity gradient. Stirring control method.
(6)(i)第5の工程において、受光光量が平坦化し
たときの変動周期および第2の工程における攪拌速度か
ら凝集体の数を算出し、かつ受光光量が平坦化したとき
の変動幅から凝集体の径を算出し、かつ 前記凝集体の数および径と懸濁液の浮遊物濃度と凝集剤
の注入率とから凝集体の有効密度を算出することにより
、懸濁液の凝集状態を検知し、かつ (ii)第6の工程において、前記凝集体の数および径
の変化が急峻となり始めかつ有効密度の変化が緩慢とな
り始めるときに対応した速度勾配を適正速度勾配と決定
してなることを特徴とする特許請求の範囲第(2)項記
載の凝集体形成池の攪拌制御方法。
(6) (i) In the fifth step, the number of aggregates is calculated from the fluctuation period when the amount of received light is flattened and the stirring speed in the second step, and the width of fluctuation when the amount of received light is flattened. The aggregation state of the suspension can be determined by calculating the diameter of the aggregates from the above, and calculating the effective density of the aggregates from the number and diameter of the aggregates, the suspended solids concentration of the suspension, and the injection rate of the flocculant. and (ii) in the sixth step, a velocity gradient corresponding to when the change in the number and diameter of the aggregates begins to become steep and the change in effective density begins to become slow is determined as the appropriate velocity gradient. A stirring control method for an aggregate formation pond according to claim (2).
(7)(i)第5の工程において、第2の工程における
攪拌が停止されたのちに受光光量が平坦化したときの受
光光量から凝集体が沈澱されたのちの上澄水濁度を算出
することにより、懸濁液の凝集状態を検知し、 かつ (ii)第6の工程において、上澄水濁度の変化が極小
となり始めるときに対応した速度勾配を適正速度勾配と
決定してなることを特徴とする特許請求の範囲第(2)
項記載の凝集体形成池の撹拌制御方法。
(7) (i) In the fifth step, calculate the supernatant water turbidity after the aggregates have been precipitated from the amount of received light when the amount of received light becomes flat after the stirring in the second step is stopped. (ii) In the sixth step, the velocity gradient corresponding to when the change in supernatant water turbidity starts to become minimum is determined as the appropriate velocity gradient. Characteristic Claim No. (2)
A stirring control method for an aggregate formation pond as described in Section 1.
(8)(i)第5の工程において、第2の工程における
攪拌が停止されたときから受光光量が平坦化するまでの
時間から凝集体の沈降速度を算出することにより、懸濁
液の凝集状態を検知し、かつ (ii)第6の工程において、凝集体の沈降速度の変化
が急峻となり始めるときに対応した速度勾配を適正速度
勾配と決定してなることを特徴とする特許請求の範囲第
(2)項記載の凝集体形成池の攪拌制御方法。
(8) (i) In the fifth step, the aggregation of the suspension is determined by calculating the sedimentation rate of the aggregate from the time from when the stirring in the second step is stopped until the amount of received light becomes flat. Claims characterized in that the state is detected, and (ii) in the sixth step, a velocity gradient corresponding to when the change in sedimentation velocity of the aggregate starts to become steep is determined as an appropriate velocity gradient. The method for controlling agitation in an aggregate formation pond according to item (2).
JP11398887A 1987-05-11 1987-05-11 Method for controlling agitation of flocculation basin Granted JPS63278509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11398887A JPS63278509A (en) 1987-05-11 1987-05-11 Method for controlling agitation of flocculation basin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11398887A JPS63278509A (en) 1987-05-11 1987-05-11 Method for controlling agitation of flocculation basin

Publications (2)

Publication Number Publication Date
JPS63278509A true JPS63278509A (en) 1988-11-16
JPH0351443B2 JPH0351443B2 (en) 1991-08-06

Family

ID=14626244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11398887A Granted JPS63278509A (en) 1987-05-11 1987-05-11 Method for controlling agitation of flocculation basin

Country Status (1)

Country Link
JP (1) JPS63278509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693121A1 (en) * 1992-07-02 1994-01-07 Atochem Elf Sa New coagulation-flocculation process.
FR2694706A1 (en) * 1992-07-02 1994-02-18 Atochem Elf Sa Coagulation flocculation process with multi-speed agitation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693121A1 (en) * 1992-07-02 1994-01-07 Atochem Elf Sa New coagulation-flocculation process.
FR2694706A1 (en) * 1992-07-02 1994-02-18 Atochem Elf Sa Coagulation flocculation process with multi-speed agitation
JPH0663311A (en) * 1992-07-02 1994-03-08 Elf Atochem Sa New method for coagulation and cohesion
US5451328A (en) * 1992-07-02 1995-09-19 Elf Atochem S.A. Coagulation/flocculation technique

Also Published As

Publication number Publication date
JPH0351443B2 (en) 1991-08-06

Similar Documents

Publication Publication Date Title
JP4950908B2 (en) Method and apparatus for determining coagulant injection rate in water treatment method for coagulation sedimentation treatment
US4170553A (en) Process and apparatus for the controlled flocculating or precipitating of foreign substances from a liquid
US8012759B2 (en) Method and apparatus for determination of coagulant injection rate in water treatment process
EP0677315A2 (en) Automatic feedback control system and method for a water treatment apparatus
US10338631B1 (en) System for automated water sample jar testing
JP2019193916A (en) Coagulant injection control device, coagulant injection control method, and computer program
US3731807A (en) Apparatus for automatically determining the optimum amounts of reagents to be added to a liquid for its clarification
JP2008055299A (en) Flocculating sedimentation treating equipment
US5620609A (en) Process and apparatus for dewatering controlled by monitoring light scattered by supernatant
CN107532984A (en) For processing the optical characterisation system of facility
JPS63278509A (en) Method for controlling agitation of flocculation basin
JP2001137835A (en) Facility control system
JPS63256108A (en) Method for controlling injection of flocculant
JPH0358761B2 (en)
JPH0238243B2 (en)
JPS63253236A (en) Method for detecting flocculation condition of suspension
US5426054A (en) Process and apparatus for determining an optimal energy insertion in coagulating systems
KR100266545B1 (en) Method of speed control and operation of a bridge travelling type sludge collector
JPH05240767A (en) Floc measuring/controlling device
JP2004141773A (en) Flocculation and precipitation equipment
US20130024132A1 (en) Method for validation of polymer aqueous solutions concentration and activation in water treatment applications and polymer make-up unit therefor
JP4037615B2 (en) Aggregation condition determination method
JPH07171307A (en) Flocculation test of suspension and determination of injection amount of flocculant
JP6385860B2 (en) Aggregation state determination method and aggregation state determination device
KR20090061336A (en) Apparatus for automatic jar test and method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees