JP2004141773A - Flocculation and precipitation equipment - Google Patents

Flocculation and precipitation equipment Download PDF

Info

Publication number
JP2004141773A
JP2004141773A JP2002309825A JP2002309825A JP2004141773A JP 2004141773 A JP2004141773 A JP 2004141773A JP 2002309825 A JP2002309825 A JP 2002309825A JP 2002309825 A JP2002309825 A JP 2002309825A JP 2004141773 A JP2004141773 A JP 2004141773A
Authority
JP
Japan
Prior art keywords
concentration
tank
particulate matter
coagulation
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002309825A
Other languages
Japanese (ja)
Inventor
Yuichiro Toba
鳥羽 裕一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002309825A priority Critical patent/JP2004141773A/en
Publication of JP2004141773A publication Critical patent/JP2004141773A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make always and stably demonstrable the excellent functions of a high speed flocculation and precipitation equipment, that is, a high speed treatment function and a water quality improvement function by always monitoring the concentration of particulates in a flocculation tank and preferably keeping the concentration automatically within a target concentration range. <P>SOLUTION: The flocculation and precipitation equipment having the flocculation tank for flocculating suspended solids in raw water into a flock by the addition of a flocculant and the particulates and a precipitation tank which precipitates the flock in water from the flocculation tank to separate the flock from treatment water, is characterized by being provided with a densitometer which can continuously measure the concentration of the particulates in the flocculation tank. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、原水中の懸濁物質を凝集沈澱により汚泥と処理水とに分離する凝集沈澱装置に関し、とくに、粒状物を添加、循環使用し懸濁物質をフロックに形成して迅速な沈澱を行わせて高速処理を可能にした凝集沈澱装置において、粒状物を常時、処理に適切な濃度に維持、管理できるようにする技術に関する。
【0002】
【従来の技術】
原水中の懸濁物質を凝集剤と粒状物の添加によりフロックとして凝集させる凝集槽と、凝集槽からの導入水中のフロックを沈澱させ処理水とフロックとに分離する沈澱槽とを備え、沈澱槽における処理の線速度が30〜100m/hという高速での処理が可能な凝集沈澱装置が知られている(たとえば、特許文献1)。
この高速凝集沈澱装置においては、沈澱槽で沈澱、分離されたフロックは、サイクロン等の分離器により汚泥と粒状物とに分離され、粒状物は再び凝集槽に戻されて循環使用されるようになっている。
【0003】
このような凝集沈澱装置では、処理水の水質を良好かつ安定に保つため、凝集槽の粒状物濃度(これは、凝集槽内の汚泥濃度で近似される。)をある適切な範囲(通常、5〜200g/L)内に維持することが必要であり、運転管理として、汚泥濃度を測定し、この範囲から外れている、あるいは近いうちに外れることが予想される場合には、粒状物を凝集槽に補給することが必要になる。
【0004】
上記のような粒状物を循環使用する凝集沈澱装置の運転においては、凝集槽内の粒状物濃度は、意図的に粒状物を補給しない限り、長期的には減少する。これは、サイクロン等の分離器において汚泥と粒状物の分離が完全ではなく、粒状物の一部は汚泥と共に系外に排出されてしまう、あるいは処理水に混入して流出してしまうためである。処理水の水質を良好かつ安定に保つためには、凝集槽内の粒状物濃度(汚泥濃度)を一定値以上(通常、5g/L以上)に保持することが重要であり、頻繁に濃度を測定し、必要に応じて粒状物を補給するなど、一定値を下回ることのないように濃度を管理することが求められる。従来、このような管理のための濃度測定は、凝集槽、つまりフロック形成槽からサンプリングコック等を介してサンプルを採水し、手動で測定していた。しかし、手動測定では、採水の仕方により大きな誤差が生じる場合があり、厳密な濃度管理は難しい。また、測定に数時間を要し、操作も煩雑である。
【0005】
なお、上記のような高速凝集沈澱装置とは別の技術として、被測定液中の濁質成分の濃度を、レーザー光の拡散反射光を利用して高精度で測定できるようにした濃度計が知られている(たとえば、特許文献2)。
【0006】
【特許文献1】
特開2000−317215号公報(特許請求の範囲)
【特許文献2】
特開2002−98637号公報(特許請求の範囲)
【0007】
【発明が解決しようとする課題】
本発明の課題は、上記のような粒状物を循環使用する高速凝集沈澱装置における問題点に着目し、凝集槽における管理すべき粒状物の濃度を常時監視できるようにし、望ましくは目標濃度範囲内に自動的に維持できるようにして、高速凝集沈澱装置が有する優れた機能、つまり高速処理機能と優れた処理水水質が得られる機能とを、常時安定して発揮できるようにすることにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る凝集沈澱装置は、原水中の懸濁物質を凝集剤と粒状物の添加によりフロックとして凝集させる凝集槽と、凝集槽からの導入水中のフロックを沈澱させ処理水とフロックとに分離する沈澱槽とを備えた凝集沈澱装置において、前記凝集槽内に、前記粒状物の濃度を連続測定可能な濃度計を設けたことを特徴とするものからなる。
【0009】
この凝集沈澱装置は、上記沈澱槽における処理の線速度が30〜100m/hである高速処理を行うことができる凝集沈澱装置に構成することができる。
【0010】
上記濃度計としては、凝集槽内における粒状物の濃度を連続測定可能な濃度計であれば、とくに限定されないが、測定精度および測定対象範囲の観点から、とくに、レーザー光発光用の光ファイバーと受光用の光ファイバーのそれぞれ複数を束ねてひとつのセンサー部に構成し、被測定液中の濁質成分の濃度を、被測定液中に向けて発光されたレーザー光の拡散反射光を検知することにより測定する濃度計からなることが好ましい。このような構成を有する濃度計は、少なくとも1〜30g/Lの濃度測定対象範囲を有するように構成することができる。凝集槽内における粒状物濃度は通常5〜20g/Lの範囲内に管理するのが好ましいため、上記濃度計はこのような粒状物の管理値付近の濃度測定に適している。
【0011】
また、本発明に係る凝集沈澱装置においては、前記濃度計からの測定情報に基づき、前記凝集槽内における粒状物の濃度が目標濃度範囲内となるよう粒状物を自動補給する粒状物自動供給系を有することが好ましい。目標濃度範囲としては、前述の如く5〜20g/Lの範囲内に設定するのが好ましい。粒状物自動供給系の構成は特に限定しないが、たとえば、粒状物貯槽と、粒状物貯槽から送り出される粒状物を計量する手段と、粒状物を水とのスラリーとして前記凝集槽内に送る粒状物移送手段を備えた構成とできる。
【0012】
上記のような本発明に係る凝集沈澱装置においては、凝集槽内に連続測定可能な濃度計が設けられるので、凝集槽内における粒状物の濃度を、従来のようにサンプリングおよび分析操作を行うことなく、処理系内において連続的に測定、監視でき、測定値に応じて粒状物濃度を目標とする範囲内に常時維持することが可能となる。また、粒状物自動供給系を設ければ、必要に応じて粒状物を自動補給することが可能になり、凝集槽内における粒状物濃度が、常時、安定して、目標とする範囲内に制御される。その結果、粒状物を用いてフロックを形成し、それを迅速に沈澱処理できるようにした高速凝集沈澱装置を、手間のかかる分析操作を行うことなく、常時最適な条件で運転できるようになり、安定して優れた処理水水質を得ることができるようになる。
【0013】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施態様に係る凝集沈澱装置を示している。凝集沈澱装置1は、凝集槽2と、それに隣接配置された沈澱槽3を備えており、本実施態様では、凝集槽2の前段に無機凝集剤混和槽4が設けられている。無機凝集剤混和槽4には、原水供給ライン5を介して原水6が供給され、本実施態様では、原水供給ライン5に無機凝集剤としてPAC7(ポリ塩化アルミニウム)が注入される。PAC7が注入された原水は、無機凝集剤混和槽4内で攪拌機8によって攪拌され、原水中に無機凝集剤としてPAC7が混和される。無機凝集剤混和槽4から、越流ぜき9を介して無機凝集剤が混和された原水が凝集槽2内にその下部側から導入される。凝集槽2内には高分子凝集剤10が添加され、攪拌機11により凝集槽2のブランケット12内で後述の粒状物とともに攪拌される。この高分子凝集剤10は、凝集槽2への導入ライン13にてライン注入することも可能である。
【0014】
無機凝集剤7としては、上記ポリ塩化アルミニウム(PAC)以外、たとえば、塩化第二鉄、硫酸第二鉄等も使用可能であり、高分子凝集剤10としては、たとえばノニオン性、アニオン性あるいは両性の高分子凝集剤を用いることができる。アニオン性の高分子凝集剤としては、たとえば、アクリル酸またはその塩の重合物、アクリル酸またはその塩とアクリルアミドとの共重合物、アクリルアミドと2−アクリルアミド−2メチルプロパンスルホン酸塩の共重合物、アクリル酸またはその塩とアクリルアミドと2−アクリルアミド−2−メチルプロパンスルホン酸塩の3元共重合物、ポリアクリルアミドの部分加水分解物などが挙げられるが、特にこれらに限定されるものではない。ノニオン性の高分子凝集剤としては、代表的なものとしてポリアクリルアミドが挙げられるが、特にこれに限定されるものではない。両性の高分子凝集剤としては、たとえば、ジメチルアミノエチル(メタ)アクリレートの3級塩および4級塩(塩化メチル塩等)等の少なくとも1種のカチオン性単量体と、アクリル酸およびその塩(ナトリウム、カルシウム等の塩類)、2−アクリルアミド−2−メチルプロパンスルホン酸塩(ナトリウム、カルシウム等の塩類)等の少なくとも1種のアニオン性単量体の共重合物、あるいは、上記の少なくとも1種のカチオン性単量体および上記の少なくとも1種のアニオン性単量体とアクリルアミド等の少なくとも1種のノニオン性単量体との三元もしくは四元以上の共重合物等が挙げられるが、特にこれらに限定されるものではない。高分子凝集剤の分子量の範囲は特に限定されないが、500万〜2000万の範囲が好ましい。これらの高分子凝集剤は、単独で又は混合物として用いることができる。高分子凝集剤の添加量は、一般的に経済的な観点から0.3〜2mg/l程度である。
【0015】
凝集槽2内には、粒状物としての砂14が添加され、凝集沈澱装置における沈降促進材として機能する。添加量は、たとえば、凝集槽2内における砂14の濃度が5g/L以上になるように初期添加され、後述の如く、所定の濃度を維持できるように、適時に不足分が補充される。添加量は、好ましくは5g/L〜200g/Lの範囲とされるが、少ない添加量で所定の処理効果を発揮できるのが、経済的観点等から最も好ましいので、望ましくは目標とする凝集槽2内における粒状物濃度を5〜20g/Lの範囲に管理あるいは制御するのが好ましい。
【0016】
凝集槽2では、そのブランケット12内で攪拌機11による攪拌により、原水中の懸濁物質が、無機凝集剤7、高分子凝集剤10、砂14を含むフロックとして凝集される。
【0017】
この凝集においては、無機凝集剤7が懸濁物質を凝集させて微細なフロックを生成させ、それに高分子凝集剤10が絡まってより大きなフロックに成長させ、成長したフロックには比重の大きい粒状物としての砂14が含有され、全体として比較的大きな、比重の大きい沈澱しやすいフロックに成長する。
【0018】
フロックの成長は、攪拌機11の攪拌翼近傍よりはむしろその上方部位で進む。凝集槽2の下部2aは、下方に向かって狭まるコーン状に形成されており、攪拌翼の回転に伴って回動する被処理水の回転流の流速が下部2aにおいて高められるため、凝集槽2の下部2aへのフロックの沈澱や堆積は適切に防止されている。
【0019】
凝集槽2内のブランケット12内には、濃度計15、とくにそのセンサー部16が設けられ、凝集槽2外に濃度計15の変換器および濃度表示部17が設けられている。この濃度計15は、凝集槽2内における粒状物の濃度を連続測定可能な濃度計からなる。濃度計15のセンサー部16は、凝集槽2の中でも粒状物が吸合したフロックが滞留している部分(フロックブランケット12)内に設置されており、ブランケット12内で、撹拌翼の回転の妨害にならないところであればどこでもよいが、測定精度を高めるため、望ましくは、ブランケット12の中位に設置し、かつ、槽の壁面から2cm以上離れた位置にあるのが良い。濃度計本体、つまり上記変換器および濃度表示部17を含む濃度計本体は、凝集沈澱装置1(とくにその凝集槽2)の近くにある必要はなく、凝集沈澱装置1の制御盤付近など表示が見やすく、管理のしやすい場所に設置すればよい。
【0020】
濃度計15は、本実施態様では、図2に示すような基本構成を有する濃度計からなる。図2において、濃度計15は、先端部がセンサーの形態に構成され、その先端部がたとえば凝集槽2内を臨むように取り付けられる。濃度計15は、凝集槽2内の被測定液43中の濁質成分44(本発明においては、粒状物濃度測定のための凝集フロック)に向けて発光されたレーザー照射光45の拡散反射光46を検知することにより、被測定液43中の濁質成分44の濃度を測定する、拡散反射光方式の濃度計に構成されている。
【0021】
本実施態様では、レーザー光源として、レーザー光発光に好適な特定の波長域で強度の高いレーザー光を発光するレーザー発光ダイオード47(レーザーダイオードと略称されることもある。)が使用され、発振器を備えた駆動回路48によるパルス駆動により、所定のパルスの形態でレーザー光が発光されるようになっている。レーザー発光ダイオード47で発光されたレーザー光は、レーザー光拡散板49を介して、光ファイバー固定金具50で束ねられて保持された多数の発光用光ファイバー51の入射端に入射される。レーザー光拡散板49により、レーザー光は、均一に拡散された状態で発光用光ファイバー51の入射端に照射される。
【0022】
多数の発光用光ファイバー51と、実質的に同数の多数の受光用光ファイバー52とが束ねられて、一つのセンサー部53に構成されている。束ねられた発光用光ファイバー51および受光用光ファイバー52は、たとえば固定金具54内に相対位置が固定された状態で保持され、各光ファイバーの先端面の位置が揃えられてセンサー面55に形成されている。センサー面55からは、発光用光ファイバー51中を導光され、発光用光ファイバー51の出射端から発光されたレーザー光が被測定液43中に向けて照射され、被測定液43中の濁質成分44に当たって拡散、反射してきたレーザー光は、受光用光ファイバー52の入射端に受光される。本実施態様では、このセンサー面55におけるレーザー光の受発光は、センサー面55上に設けたガラス板56を通して行われるようになっている。
ガラス板56の材質としては、特に限定しないが、硬くて傷が付きにくく、化学的に安定で、耐酸性、耐アルカリ性、耐溶剤性に優れ熱的にも安定なサファイアガラスが好ましい。また、このガラス板56の被測定液43側の面を鏡面仕上げしておくと、汚泥による汚れが付着しにくくなり、また、スラッジ等による傷も付きにくくなるので、好ましい。なお、図2には平板状のガラス板56として図示したが、このようなガラス板56に代えて、適当な焦点距離を有するレンズを採用することも可能である。レンズとしては、センサー面側が平面で、他面側を凸面に形成してレンズ機能をもたせた平凸レンズ等が好ましい。
【0023】
受光用光ファイバー52の入射端から受光されたレーザー光の拡散反射光は、受光用光ファイバー52中を導光されて、反対側の端部である出射端から出射される。受光用光ファイバー52の出射端側の端部においても、多数の受光用光ファイバー52が光ファイバー固定金具57により束ねられた状態で保持されている。
【0024】
受光用光ファイバー52の出射端から出射された拡散反射光は、本実施態様では可視光カットフィルター58を通して、反射光受光素子としてのフォトダイオード59に受光され、その光量が検知される。この可視光カットフィルター58を配置しておくことで、外乱光(たとえば、蛍光灯等からの外乱光)による濃度測定への影響を小さく抑えることができる。フォトダイオード59の受光量信号は、本実施態様では、増幅回路60で増幅されることにより、濃度測定に適切な大きさの信号として出力され、必要に応じて適当な表示装置に検出濃度として表示される。
【0025】
センサー部53のセンサー面55における発光用光ファイバー51と受光用光ファイバー52の配置としては、ランダムな配置や、同心円状の配置、それぞれを半円状に配置した形態等を採り得る。センサー面55における光ファイバーの総数は、たとえば、総数100〜50,000本程度の範囲内から適宜設定される。1本1本の光ファイバーが極細光ファイバーであり、単芯では光量が不足し測定が不能である場合であっても、たとえば発光用光ファイバーを1500本、受光用光ファイバーを1500本、合計3000本程度とすることで、十分に大きな発光量および受光量が得られる。
【0026】
このように多数の発光用光ファイバー51と受光用光ファイバー52が束ねられて一つのセンサー部53を構成し、これらがセンサー面55において所定の形態で配置されることにより、1本1本の光ファイバーは細く受光光量が小さくても、多数本を束ねることにより、トータルとしては、十分に大きな発光量、受光量を得ることができる。その結果、濃度測定に対し、発光、受光ともに、光量不足が生じることは回避され、高感度を得るために必要かつ十分な光量が得られることになる。より具体的には、100〜50,000本、とくにトータルで1000本以上、より好ましくは3000本程度の本数とすることにより、十分な光量が得られる。
【0027】
また、多数束ねられた発光用光ファイバー51および受光用光ファイバー52は、それぞれ極細の光ファイバーからなるから、濃度測定におけるライトスパンも極限に近くまで低減することができる。たとえばランダム配置の場合で、光ファイバーの径が30μmの場合、互いに隣接する発光用光ファイバー51と受光用光ファイバー52間のライトスパンは30μm程度となり、極めて小さいライトスパンが得られる。5mm程度の長いライトスパンをもつ形態に比べ、ライトスパンの比率は、実に、30:5000=1:167となる。すなわち、光学的に濃度測定に対する感度として、167倍も高い感度が得られることになる。感度が大幅に高められる結果、濁質成分が低濃度である場合はもちろんのこと、1%を超える高濃度、中でも3%を超える高濃度、さらには5%を超える高濃度まで高感度で測定することが可能になる。また、高感度であるから、濁質成分の性状や濃度の変化にも良好に追従でき、安定した高精度の濃度測定が可能になる。
【0028】
また、レーザー光の光源として、通常のLEDではなく特定の波長域で高強度のレーザー光を発光するレーザー発光ダイオード47を使用しているから、他の光源に比べ、光源としても十分な強度が得られ、かつ、優れた再現性が得られるとともに、パルス駆動の際に目標とする周波数特性が正確に得られ、しかもシャープに所望の発光を行うことができる優れたパルス駆動特性も得られる。その結果、この濃度計15を使用することにより、凝集槽2内の濁質成分の濃度を、極めて高感度かつ高精度で、連続測定することが可能となる。凝集槽2内における濁質成分の濃度は、凝集槽2内における粒状物14の濃度を代表する。
【0029】
さて、再び図1を参照して説明するに、凝集槽2内における粒状物濃度が上記のように連続的に測定されつつ、凝集槽2内で成長した凝集フロックを含む被処理水は、越流ぜき18を介して沈澱槽3へと導入される。沈澱槽3では、導入水中のフロックが下方に沈澱され、沈澱されたフロックは上方の処理水19に対して分離される。沈澱槽3内の上部には、複数の傾斜板20が並設されており、処理水19とともにフロックが流出するのを抑制している。
【0030】
沈澱槽3の底部には、沈澱されたフロックを引き抜くための引抜ライン21が接続されており、汚泥引抜ポンプ22によって、沈澱した凝集フロックが引き抜かれる。引き抜かれたフロックは、分離器としてのサイクロン23に送られ、サイクロン23内における遠心分離により、汚泥24と粒状物14とに分離される。分離された粒状物14は、再び凝集槽2内に戻されて循環使用される。
【0031】
このように構成された凝集沈澱装置1においては、凝集槽2内の粒状物濃度を濃度計15で、常時自動で測定できるため、従来のようなサンプリング採水による場合に比べ、測定の手間が省略され、測定濃度が迅速に連続的に出力される。
したがって、粒状物濃度の管理や制御に測定結果を時間遅れなくフィードバックでき、容易にかつ高精度に目標とする濃度範囲内に安定して維持することが可能になる。
【0032】
また、濃度計15のセンサー部が凝集槽2内の汚泥内に設置されているため、採水誤差等は発生せず、常時高精度で濃度測定することが可能である。また、連続的に測定できるため、粒状物濃度が管理範囲を外れ処理水水質が悪化する前に、その傾向を的確に把握でき、必要に応じて適宜粒状物を補給することにより、処理水水質を常時安定して良好な水質に保つことができる。
【0033】
図3は、本発明の別の実施態様に係る凝集沈澱装置31を示している。
本実施態様では、図1に示した凝集沈澱装置に、濃度計15からの測定情報に基づき、凝集槽2内における粒状物の濃度が目標濃度範囲(たとえば、5〜20g/L)内となるよう粒状物を自動補給する粒状物自動供給系32を有するものに構成されている。
【0034】
粒状物自動供給系32は、粒状物貯槽33と、粒状物貯槽33から送り出される粒状物を計量する手段としての計量送出器34と、粒状物を水とのスラリーとして凝集槽2内に送る粒状物移送手段35を備えている。粒状物移送手段35は、本実施態様では、定量送出器34からの粒状物を収容する受ホッパー36と、凝集沈澱装置31における処理水を収容する処理水タンク37と、処理水タンク37内の処理水を引き抜いて前記受ホッパー36内に送るとともに移送用水として送り出す処理水ポンプ38と、受ホッパー36内からの粒状物を水スラリーの形態で吸引、圧送するホッパーエゼクタ39と、該粒状物の水スラリーを凝集槽2内へと供給する粒状物補給ライン40とを有している。濃度計15からの濃度測定信号に基づき、制御装置41を備えた制御系42による作動指示信号を処理水ポンプ38と定量送出器34に送ることにより、これらの作動が制御され、凝集槽2内における粒状物の濃度が目標濃度範囲に維持されるように、粒状物が自動補給される。
【0035】
本実施態様では、上記のように粒状物自動供給系32が構成されているが、粒状物の貯槽から設定した補給量を凝集槽に投入できる装置であれば、この構成に限定されない。また、粒状物の凝集槽への移送に要するエネルギーを考慮すると、自動供給装置は、凝集沈澱装置にできるだけ近い位置に設置されることが望ましい。
【0036】
上記本実施態様に係る粒状物自動供給系32では、予め設定された補給量の粒状物が、粒状物貯槽33から計量送出器34により受ホッパー36内に投入される。同時に、給水ポンプ(処理水ポンプ38)が稼動し、給水の一部が分岐した管より受ホッパー36内に上部から噴射され、ホーパーエゼクタ39を介し、粒状物補給ライン40を通して水スラリーの形態で粒状物が凝集槽2へと移送される。移送のための給水には、このように処理水を用いるのが効率的であるが、水道水等を使用してもよい。また、計量送出器34としては、粒状物貯槽33の底部に取り付けたローター方式(回転軸に平行に溝のある回転棒などで、回転数を制御することにより、粒状物を所定量下方に落とすもの)を用いるのが最も簡単である。ただし、設定量の粒状物を計量補給できるものであれば、この方式に限定されない。粒状物の水スラリーの注入箇所は、凝集槽2のフロックブランケット内に注入し、無機凝集剤および高分子凝集剤のフロックに直ちに吸合させるのが望ましい。
【0037】
制御においては、補給開始濃度、補給量を設定する(補給量は、補給後、目標の濃度になるように設定する)。濃度が補給開始濃度にまで低下したら、粒状物自動供給系が稼動し、設定した補給量分の粒状物の補給が開始される。
【0038】
このように粒状物自動供給系32を備えた凝集沈澱装置31では、常時精度良く汚泥濃度(凝集槽2内の粒状物濃度)が測定され、その測定値をもとに粒状物の補給量が計算され、自動的に凝集槽2内に補給されるため、粒状物濃度管理が大幅に省力化される。
【0039】
また、粒状物濃度を安定的にかつ低い値(管理値の下限付近、例えば5g/L程度)に保つことができるため、サイクロン等の分離器において汚泥と粒状物の分離が効率的に行われ、粒状物の損失を低く抑えることができる。また、その分、粒状物補給に係るコストを低く抑えることができる。
【0040】
【実施例】
実施例1
ある河川水を原水として図1に示した凝集沈澱装置による処理試験を行った。凝集沈澱装置:
無機凝集剤混和槽(0.5m):本槽流入部において、pH調整用の硫酸および無機凝集剤ポリ塩化アルミニウム(以下、PAC)を注入。
凝集槽(0.5m):本槽流入部において、有機高分子凝集剤(ノニオン性ポリアクリルアミド)およびサイクロンで分離された粒状物を注入。
沈殿槽(0.5 m):上向流式 傾斜板沈殿槽(表面積0.5m×0.5m)
濃度計:センサー部を凝集槽内フロックブランケット内部に浸漬して設置し、
本体は、装置外部に設置。
【0041】
運転条件:
処理水量:10m/ 時
沈殿槽表面積負荷:40m/m/時
PAC注入率:30mg/L
有機高分子凝集剤注入率:0.6mg/L(ノニオン性ポリアクリルアミド、分子量1600×10
循環流量:0.6m/時
実験開始時の粒状物濃度: 7.0g/L
【0042】
結果:
試験期間中、原水は、濁度で4〜20度の範囲で不規則に変動した。
実験開始後、1ヶ月間、処理水濁度は0.2〜0.3度で安定していた。粒状物濃度の指示値は、実験開始当初、7.0g/Lであったが、1ヶ月後には、4.5g/Lにまで低下していた。さらに十日後、3.5g/Lにまで低下した。
1ヶ月を超えた頃から、処理水濁度は徐々に上昇し、粒状物濃度が3.5g/Lになった日には0.6度にまで上昇した。この上昇は、粒状物濃度の低下に伴うものであり、濃度が5.0g/L以下になると処理水濁度が悪化する傾向にあった。なお、濃度指示値の確認のため、フロックブランケットの水を採水し、粒状物濃度を別途、手動の固形物測定法によって測定したところ、実験開始当初の濃度は7.2g/L、1ヶ月後の濃度は4.3g/L、さらに十日後の濃度は3.9g/Lであり、濃度計の濃度指示値はほぼこれらに一致し、指示値に大きな狂いは無いことを確認した。
【0043】
なお、濃度が3.5g/Lに下がった時点で、粒状物を凝集槽に1.75kg補給し、7.0g/Lになるようにした。補給後、処理水濁度は、再び、0.2〜0.3度となり安定に推移した。補給後3週間で粒状物濃度は5.0g/Lとなったため、凝集槽に粒状物を1kg補給投入し、粒状物濃度を7.0g/Lに調整した。補給前0.2〜0.3度、補給後も0.2〜0.3度で推移した。すなわち、濃度計の濃度指示値をもとに、粒状物濃度が低下したのを把握し、処理水濁度が悪化する前に粒状物を補給することできた。
【0044】
実施例2
原水として実施例1と同じ河川水を使用して処理試験を行った。
凝集沈澱装置:実施例1と同様。
濃度計:実施例1と同様。
粒状物自動供給系:
粒状物補給開始濃度:5.0g/L
粒状物補給量:1.0kg(目標濃度:7.0g/L)
移送水:処理水槽に貯留した凝集沈澱処理水を利用。
移送水流量:20L/分×6分
計量送出器:200g/分×5分で1.0kgをホッパーエゼクタへ移送。
【0045】
結果:
試験期間中、原水は、実施例1とほぼ同じように、濁度で4〜18度の範囲で不規則に変動した。
試験開始後、処理水濁度は0.2〜0.3度で安定していた。粒状物濃度の指示値は、実験開始当初、7.0g/Lであったが、3週間後には、補給開始濃度の5.0g/Lにまで低下した。自動補給系が稼動され、粒状物1.0kgが凝集槽に補給されたところ、凝集槽濃度は、7.0g/Lに回復した。補給後も処理水濁度は0.2〜0.3度で安定して推移した。すなわち、本試験では、処理水水質が悪化するまえに、粒状物の補給を自動で行うことができ、処理水水質を安定的に保つことができた。また、粒状物濃度の管理および補給に伴う手間が大幅に低減された。
【0046】
【発明の効果】
以上説明したように、本発明に係る凝集沈澱装置によれば、凝集槽における粒状物の濃度を常時精度良く自動測定できるようになり、従来のサンプリング採水の場合に比べて測定の手間を大幅に削減できるととともに、凝集槽内で直接的に濃度測定できるので測定精度を大幅に向上することができ、粒状物の濃度を常時安定して目標濃度範囲内に維持することが可能になる。その結果、高速凝集沈澱装置が有する優れた高速処理機能と優れた処理水水質が得られる機能とを、常時安定して発揮させることが可能になる。
【0047】
また、とくに粒状物自動供給系を設けておけば、粒状物濃度の自動測定に加え、目標濃度範囲内に保つために必要な粒状物の補給を自動的に行うことができ、より確実に目標濃度範囲内に維持できるとともに、循環粒状物の使用量を必要最小限に抑えることも可能となり、運転コストの低減をはかることが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係る凝集沈澱装置の全体構成図である。
【図2】図1の装置に使用される濃度計の基本構成を示す概略構成図である。
【図3】本発明の別の実施態様に係る凝集沈澱装置の全体構成図である。
【符号の説明】
1 凝集沈澱装置
2 凝集槽
2a 凝集槽の下部
3 沈澱槽
4 無機凝集剤混和槽
5 原水供給ライン
6 原水
7 無機凝集剤
8 攪拌機
9 越流ぜき
10 高分子凝集剤
11 攪拌機
12 ブランケット
13 凝集槽への導入ライン
14 粒状物としての砂
15 濃度計
16 センサー部
17 変換器および濃度表示部
18 越流ぜき
19 処理水
20 傾斜板
21 引抜ライン
22 汚泥引抜ポンプ
23 分離器としてのサイクロン
24 汚泥
31 凝集沈澱装置
32 粒状物自動供給系
33 粒状物貯槽
34 計量送出器
35 粒状物移送手段
36 受ホッパー
37 処理水タンク
38 処理水ポンプ
39 ホッパーエゼクタ
40 粒状物補給ライン
41 制御装置
42 制御系
43 被測定液
44 濁質成分
45 発光されたレーザー光
46 レーザー光の拡散反射光
47 レーザー発光ダイオード
48 レーザー光の駆動回路
49 レーザー光拡散板
50 光ファイバー固定金具
51 発光用光ファイバー
52 受光用光ファイバー
53 センサー部
54、57 固定金具
55 センサー面
56 ガラス板
58 可視光カットフィルター
59 フォトダイオード
60 増幅回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coagulation sedimentation apparatus for separating suspended matter in raw water into sludge and treated water by coagulation sedimentation, and in particular, adding particulate matter, circulating and forming a suspended matter into flocs to quickly sediment. TECHNICAL FIELD The present invention relates to a technique for allowing a particulate substance to be constantly maintained and controlled at a concentration appropriate for processing in a coagulation sedimentation apparatus which is capable of performing high-speed processing.
[0002]
[Prior art]
A coagulation tank for coagulating a suspended substance in raw water as floc by adding a coagulant and a particulate matter; and a sedimentation tank for precipitating floc in the water introduced from the coagulation tank and separating it into treated water and floc. There is known a coagulation / sedimentation apparatus capable of performing a treatment at a high linear speed of 30 to 100 m / h.
In this high-speed coagulation sedimentation apparatus, the floc settled and separated in the sedimentation tank is separated into sludge and particulate matter by a separator such as a cyclone, and the particulate matter is returned to the coagulation tank and recycled. Has become.
[0003]
In such a coagulation sedimentation apparatus, in order to keep the quality of treated water good and stable, the concentration of particulate matter in the coagulation tank (this is approximated by the concentration of sludge in the coagulation tank) is within a certain appropriate range (usually, 5 to 200 g / L), and the sludge concentration is measured as an operation management. If the sludge concentration is out of this range or expected to be soon, the granular material is removed. It is necessary to supply the coagulation tank.
[0004]
In the operation of the coagulation-sedimentation apparatus using the above-mentioned circulating granules, the concentration of the granules in the coagulation tank is reduced in the long term unless the granules are intentionally supplied. This is because the separation of the sludge and the particulate matter in a separator such as a cyclone is not complete, and a part of the granular matter is discharged out of the system together with the sludge or mixed into the treated water and flows out. . In order to keep the quality of the treated water good and stable, it is important to keep the concentration of the particulate matter (sludge concentration) in the flocculation tank at a certain value or more (usually 5 g / L or more). It is required to control the concentration so as not to fall below a certain value, such as by measuring and replenishing particulate matter as needed. Conventionally, for such a concentration measurement for management, water was sampled from a flocculation tank, that is, a floc forming tank, via a sampling cock or the like, and was manually measured. However, in the manual measurement, a large error may occur depending on the method of water sampling, and it is difficult to strictly control the concentration. In addition, the measurement requires several hours and the operation is complicated.
[0005]
As a technique different from the high-speed coagulation and sedimentation apparatus described above, a densitometer capable of measuring the concentration of a turbid component in a liquid to be measured with high accuracy using diffuse reflection light of a laser beam is known. It is known (for example, Patent Document 2).
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-317215 (Claims)
[Patent Document 2]
JP-A-2002-98637 (Claims)
[0007]
[Problems to be solved by the invention]
The object of the present invention is to pay attention to the problems in the high-speed coagulation and sedimentation apparatus using the above-mentioned granules in circulation, and to constantly monitor the concentration of the granules to be controlled in the coagulation tank, preferably within the target concentration range. The purpose of the present invention is to make it possible to constantly and stably exhibit the excellent function of the high-speed coagulation and sedimentation apparatus, that is, the function of obtaining high-speed treatment and excellent quality of treated water.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, an aggregating and settling apparatus according to the present invention comprises an aggregating tank for aggregating suspended substances in raw water as flocs by adding a flocculant and particulate matter, and a method for sedimenting flocs in water introduced from the aggregating tank. A coagulation sedimentation apparatus having a sedimentation tank for separating treated water and floc, wherein a concentration meter capable of continuously measuring the concentration of the particulate matter is provided in the coagulation tank.
[0009]
This coagulation-sedimentation apparatus can be configured as a coagulation-sedimentation apparatus capable of performing high-speed processing in which the linear velocity of the processing in the above-mentioned sedimentation tank is 30 to 100 m / h.
[0010]
The concentration meter is not particularly limited as long as it is a concentration meter capable of continuously measuring the concentration of the particulate matter in the coagulation tank.From the viewpoint of measurement accuracy and the measurement target range, particularly, an optical fiber for emitting laser light and a light receiving device are used. A plurality of optical fibers are bundled together to form a single sensor unit, and the concentration of turbid components in the liquid to be measured is detected by detecting the diffuse reflection of laser light emitted toward the liquid to be measured. It preferably comprises a densitometer for measuring. The densitometer having such a configuration can be configured to have at least a concentration measurement target range of 1 to 30 g / L. Since the concentration of the particulate matter in the coagulation tank is generally preferably controlled within the range of 5 to 20 g / L, the above-mentioned densitometer is suitable for measuring the concentration near the control value of such a particulate matter.
[0011]
Further, in the coagulation / sedimentation apparatus according to the present invention, based on the measurement information from the densitometer, a particulate matter automatic supply system for automatically replenishing the particulate matter in the coagulation tank so that the concentration of the particulate matter is within a target concentration range. It is preferable to have The target concentration range is preferably set within the range of 5 to 20 g / L as described above. The configuration of the automatic granular material supply system is not particularly limited, but, for example, a granular material storage tank, a unit for measuring the granular material sent out from the granular material storage tank, and a granular material sent to the flocculation tank as a slurry of the granular material with water. It can be configured to include a transfer means.
[0012]
In the coagulation / sedimentation apparatus according to the present invention as described above, since a concentration meter capable of continuously measuring is provided in the coagulation tank, the concentration and concentration of the particulate matter in the coagulation tank are sampled and analyzed in the conventional manner. Instead, it can be continuously measured and monitored in the processing system, and the concentration of particulate matter can be constantly maintained within a target range according to the measured value. In addition, if an automatic supply system for particulate matter is provided, it is possible to automatically replenish the particulate matter as needed, and the concentration of the particulate matter in the coagulation tank is always stable and controlled within the target range. Is done. As a result, a high-speed coagulating sedimentation apparatus that forms flocs using the particulate matter and can quickly settle the flocs can be always operated under optimal conditions without performing a complicated analysis operation. Excellent treated water quality can be obtained stably.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a coagulation / sedimentation apparatus according to one embodiment of the present invention. The coagulation / sedimentation apparatus 1 includes a coagulation tank 2 and a precipitation tank 3 disposed adjacent to the coagulation tank 2. In this embodiment, an inorganic coagulant mixing tank 4 is provided in front of the coagulation tank 2. Raw water 6 is supplied to the inorganic coagulant mixing tank 4 via a raw water supply line 5, and in this embodiment, PAC 7 (polyaluminum chloride) is injected into the raw water supply line 5 as an inorganic coagulant. The raw water into which the PAC 7 has been injected is stirred by the stirrer 8 in the inorganic coagulant mixing tank 4, and PAC 7 is mixed with the raw water as the inorganic coagulant. Raw water mixed with the inorganic coagulant is introduced from the inorganic coagulant mixing tank 4 through the overflow weir 9 into the coagulation tank 2 from below. The polymer flocculant 10 is added into the flocculation tank 2 and is stirred by the stirrer 11 in the blanket 12 of the flocculation tank 2 together with the particulate matter described later. The polymer coagulant 10 can be injected into the coagulation tank 2 through an introduction line 13.
[0014]
As the inorganic coagulant 7, besides the above-mentioned polyaluminum chloride (PAC), for example, ferric chloride, ferric sulfate or the like can be used. As the polymer coagulant 10, for example, nonionic, anionic or amphoteric Can be used. Examples of the anionic polymer coagulant include a polymer of acrylic acid or a salt thereof, a copolymer of acrylic acid or a salt thereof and acrylamide, and a copolymer of acrylamide and 2-acrylamido-2-methylpropanesulfonic acid salt And a tertiary copolymer of acrylic acid or a salt thereof, acrylamide and 2-acrylamido-2-methylpropanesulfonate, and a partial hydrolyzate of polyacrylamide, but are not particularly limited thereto. A typical nonionic polymer coagulant includes polyacrylamide, but is not particularly limited thereto. Examples of the amphoteric polymer flocculant include at least one cationic monomer such as tertiary salt and quaternary salt of dimethylaminoethyl (meth) acrylate (eg, methyl chloride salt), acrylic acid and a salt thereof. (Salts such as sodium and calcium), copolymers of at least one anionic monomer such as 2-acrylamido-2-methylpropanesulfonate (salts such as sodium and calcium), or at least one of Examples include tertiary or quaternary or higher copolymers of at least one kind of cationic monomer and at least one kind of anionic monomer and at least one kind of nonionic monomer such as acrylamide, It is not particularly limited to these. The range of the molecular weight of the polymer flocculant is not particularly limited, but is preferably in the range of 5,000,000 to 20,000,000. These polymer flocculants can be used alone or as a mixture. The amount of the polymer flocculant to be added is generally about 0.3 to 2 mg / l from an economic viewpoint.
[0015]
Sand 14 as granular material is added into the coagulation tank 2 and functions as a sedimentation promoting material in the coagulation sedimentation device. The addition amount is initially added, for example, so that the concentration of the sand 14 in the flocculation tank 2 becomes 5 g / L or more, and as described later, a shortage is replenished in a timely manner so as to maintain a predetermined concentration. The addition amount is preferably in the range of 5 g / L to 200 g / L, but it is most preferable from an economic viewpoint that a predetermined treatment effect can be exhibited with a small addition amount. It is preferable to control or control the concentration of the particulate matter in 2 within a range of 5 to 20 g / L.
[0016]
In the flocculation tank 2, the suspended substance in the raw water is flocculated as flocs containing the inorganic flocculant 7, the polymer flocculant 10, and the sand 14 by stirring in the blanket 12 by the stirrer 11.
[0017]
In this flocculation, the inorganic flocculant 7 flocculates the suspended substance to form fine flocs, and the polymer flocculant 10 becomes entangled and grows into larger flocs. And grows into flocs which are relatively large as a whole and have a large specific gravity and are easy to precipitate.
[0018]
Flock growth proceeds in a region above the stirring blades of the stirrer 11 rather than near the stirring blades. The lower portion 2a of the flocculation tank 2 is formed in a cone shape narrowing downward, and the flow velocity of the rotating flow of the water to be treated, which rotates with the rotation of the stirring blade, is increased in the lower portion 2a. Precipitation and accumulation of floc on the lower portion 2a of the fin are properly prevented.
[0019]
In the blanket 12 in the coagulation tank 2, a densitometer 15, particularly a sensor unit 16 thereof, is provided. Outside the coagulation tank 2, a converter of the densitometer 15 and a concentration display unit 17 are provided. The densitometer 15 is a densitometer capable of continuously measuring the concentration of particulate matter in the coagulation tank 2. The sensor unit 16 of the densitometer 15 is installed in a portion (flock blanket 12) of the flocculation tank 2 where the flocs in which the particulate matter has absorbed are retained (flock blanket 12). Any place may be used as long as it does not cause any problem. However, in order to increase the measurement accuracy, it is desirable that the blanket 12 be installed at the middle position and at a position separated from the wall surface of the tank by 2 cm or more. The main body of the densitometer, that is, the main body of the densitometer including the converter and the concentration display section 17 does not need to be near the coagulation / sedimentation apparatus 1 (in particular, the coagulation tank 2). It should be installed in a place that is easy to see and manage.
[0020]
In this embodiment, the densitometer 15 comprises a densitometer having a basic configuration as shown in FIG. In FIG. 2, the concentration meter 15 has a tip in the form of a sensor, and is attached so that the tip faces, for example, the inside of the coagulation tank 2. The densitometer 15 is a diffuse reflection light of the laser irradiation light 45 emitted toward the turbid component 44 (in the present invention, the flocculant for measuring the concentration of the particulate matter) in the liquid 43 to be measured in the flocculation tank 2. This is configured as a diffuse reflection light type densitometer that detects the concentration of the turbid component 44 in the liquid 43 to be measured by detecting 46.
[0021]
In this embodiment, a laser light emitting diode 47 (which may be abbreviated as a laser diode) that emits high-intensity laser light in a specific wavelength range suitable for laser light emission is used as a laser light source, and an oscillator is used. Laser light is emitted in a predetermined pulse form by pulse driving by the driving circuit 48 provided. The laser light emitted from the laser light emitting diode 47 is incident on the incident ends of a large number of light emitting optical fibers 51 bundled and held by an optical fiber fixing bracket 50 via a laser light diffusion plate 49. The laser light is applied to the incident end of the light emitting optical fiber 51 in a state of being uniformly diffused by the laser light diffusion plate 49.
[0022]
A large number of light emitting optical fibers 51 and a substantially equal number of light receiving optical fibers 52 are bundled to constitute one sensor unit 53. The bundled light-emitting optical fiber 51 and light-receiving optical fiber 52 are held, for example, in a state in which their relative positions are fixed in a fixture 54, and are formed on the sensor surface 55 such that the positions of the tip surfaces of the optical fibers are aligned. . From the sensor surface 55, the light is guided through the light emitting optical fiber 51, and the laser light emitted from the emission end of the light emitting optical fiber 51 is irradiated toward the liquid to be measured 43, and the turbid component in the liquid to be measured 43 The laser light that has been diffused and reflected at 44 is received at the incident end of the light receiving optical fiber 52. In the present embodiment, the reception and emission of the laser light on the sensor surface 55 are performed through a glass plate 56 provided on the sensor surface 55.
The material of the glass plate 56 is not particularly limited, but sapphire glass that is hard and hard to be scratched, is chemically stable, has excellent acid resistance, alkali resistance, solvent resistance, and is thermally stable is preferable. Further, it is preferable that the surface of the glass plate 56 on the side of the liquid 43 to be measured is mirror-finished because dirt by sludge hardly adheres and scratches by sludge hardly occur. Although FIG. 2 shows the glass plate 56 as a flat plate, a lens having an appropriate focal length may be employed instead of the glass plate 56. As the lens, a plano-convex lens or the like having a lens function by forming the sensor surface side as a flat surface and the other surface side as a convex surface is preferable.
[0023]
The diffusely reflected light of the laser beam received from the incident end of the light receiving optical fiber 52 is guided through the light receiving optical fiber 52, and is emitted from the emission end which is the opposite end. A large number of light receiving optical fibers 52 are held in a bundled state by an optical fiber fixing bracket 57 also at the end of the light receiving optical fiber 52 on the emission end side.
[0024]
In this embodiment, the diffuse reflected light emitted from the emission end of the light receiving optical fiber 52 is received by a photodiode 59 as a reflected light receiving element through a visible light cut filter 58, and the light amount is detected. By disposing the visible light cut filter 58, the influence of disturbance light (for example, disturbance light from a fluorescent lamp or the like) on the density measurement can be suppressed. In the present embodiment, the received light amount signal of the photodiode 59 is amplified by the amplifier circuit 60 and output as a signal having a magnitude suitable for density measurement, and is displayed as a detected density on an appropriate display device as necessary. Is done.
[0025]
As the arrangement of the light emitting optical fiber 51 and the light receiving optical fiber 52 on the sensor surface 55 of the sensor section 53, a random arrangement, a concentric arrangement, a form in which each is arranged in a semicircle, or the like can be adopted. The total number of optical fibers on the sensor surface 55 is appropriately set, for example, within a range of about 100 to 50,000. Even if each optical fiber is an ultra-fine optical fiber and the measurement is impossible due to the shortage of light with a single core, for example, 1500 optical fibers for light emission and 1500 optical fibers for light reception, about 3000 in total. By doing so, a sufficiently large light emission amount and light reception amount can be obtained.
[0026]
As described above, a large number of light emitting optical fibers 51 and light receiving optical fibers 52 are bundled to form one sensor section 53, and these are arranged in a predetermined form on the sensor surface 55, so that each optical fiber is Even if it is thin and the amount of received light is small, it is possible to obtain a sufficiently large amount of emitted light and received light as a whole by bundling a large number. As a result, it is possible to avoid a shortage of light quantity in both light emission and light reception in the density measurement, and to obtain a light quantity necessary and sufficient for obtaining high sensitivity. More specifically, a sufficient quantity of light can be obtained by setting the number to 100 to 50,000, particularly 1000 or more, and more preferably about 3000 in total.
[0027]
Further, since the light emitting optical fiber 51 and the light receiving optical fiber 52 bundled in a large number are each made of an ultrafine optical fiber, the light span in the concentration measurement can be reduced to the limit. For example, in the case of random arrangement, when the diameter of the optical fiber is 30 μm, the light span between the light emitting optical fiber 51 and the light receiving optical fiber 52 adjacent to each other is about 30 μm, and an extremely small light span can be obtained. Compared to a mode having a long light span of about 5 mm, the ratio of the light span is actually 30: 5000 = 1: 167. That is, a sensitivity as high as 167 times as high as the sensitivity for density measurement can be obtained. As a result of the significant increase in sensitivity, high sensitivity is measured not only when the concentration of the turbid component is low, but also when the concentration is higher than 1%, especially higher than 3%, and even higher than 5%. It becomes possible to do. In addition, since it has high sensitivity, it can favorably follow changes in the properties and concentration of the turbid component, and stable and accurate concentration measurement can be performed.
[0028]
In addition, since a laser light emitting diode 47 that emits high-intensity laser light in a specific wavelength region is used instead of a normal LED as a light source of the laser light, sufficient intensity as a light source is obtained as compared with other light sources. As a result, excellent reproducibility can be obtained, and at the same time, excellent pulse drive characteristics can be obtained in which a target frequency characteristic can be accurately obtained at the time of pulse drive and a desired light emission can be sharply performed. As a result, by using the densitometer 15, the concentration of the turbid component in the flocculation tank 2 can be continuously measured with extremely high sensitivity and high accuracy. The concentration of the turbid component in the coagulation tank 2 represents the concentration of the particulate matter 14 in the coagulation tank 2.
[0029]
Now, referring again to FIG. 1, while the concentration of the particulate matter in the flocculation tank 2 is continuously measured as described above, the water to be treated including the flocculated flocs grown in the flocculation tank 2 is over-flowed. It is introduced into the precipitation tank 3 via the weir 18. In the sedimentation tank 3, the flocs in the introduced water are sedimented downward, and the sedimented flocs are separated from the upper treated water 19. A plurality of inclined plates 20 are juxtaposed at the upper part in the settling tank 3 to prevent the floc from flowing out together with the treated water 19.
[0030]
The bottom of the settling tank 3 is connected to a drawing line 21 for drawing out the settled flocs, and the settled flocs are drawn out by a sludge drawing pump 22. The pulled-out floc is sent to a cyclone 23 as a separator, and is separated into sludge 24 and particulate matter 14 by centrifugation in the cyclone 23. The separated particulate matter 14 is returned to the flocculation tank 2 again and used for circulation.
[0031]
In the coagulation / sedimentation apparatus 1 configured as described above, the concentration of the particulate matter in the coagulation tank 2 can always be automatically measured by the densitometer 15, so that the time and effort for the measurement are reduced as compared with the conventional sampling water sampling. Omitted, the measured concentration is output quickly and continuously.
Therefore, the measurement result can be fed back to the management and control of the concentration of the particulate matter without delay, and the concentration can be easily and stably maintained within the target concentration range with high accuracy.
[0032]
Further, since the sensor unit of the concentration meter 15 is installed in the sludge in the flocculation tank 2, there is no error in water sampling, and the concentration can be always measured with high accuracy. In addition, since the measurement can be performed continuously, the tendency can be accurately grasped before the particulate matter concentration goes out of the control range and the quality of the treated water deteriorates. Can be constantly maintained in good water quality.
[0033]
FIG. 3 shows a coagulation-sedimentation apparatus 31 according to another embodiment of the present invention.
In the present embodiment, the concentration of the particulate matter in the flocculation tank 2 falls within the target concentration range (for example, 5 to 20 g / L) based on the measurement information from the densitometer 15 in the coagulation sedimentation apparatus shown in FIG. It has a granular material automatic supply system 32 for automatically replenishing granular materials.
[0034]
The automatic granular material supply system 32 includes a granular material storage tank 33, a metering / sending device 34 as a means for measuring the granular material sent out from the granular material storage tank 33, and a granular material that feeds the granular material into the flocculation tank 2 as a slurry with water. An object transfer means 35 is provided. In the present embodiment, the particulate matter transfer means 35 includes a receiving hopper 36 for containing the particulate matter from the fixed-quantity sending device 34, a treated water tank 37 for containing treated water in the coagulating sedimentation device 31, and a treated water tank 37. A treated water pump 38 for extracting the treated water and sending it into the receiving hopper 36 and sending it out as transfer water; a hopper ejector 39 for sucking and pumping particulate matter from inside the receiving hopper 36 in the form of a water slurry; A particulate supply line 40 for supplying the water slurry into the flocculation tank 2; Based on the concentration measurement signal from the densitometer 15, an operation instruction signal from a control system 42 including a control device 41 is sent to the treated water pump 38 and the fixed-rate sending device 34, whereby these operations are controlled, and The particulate matter is automatically replenished such that the concentration of the particulate matter in is maintained within the target concentration range.
[0035]
In the present embodiment, the automatic granular material supply system 32 is configured as described above. However, the present invention is not limited to this configuration as long as the apparatus can supply the set replenishment amount from the storage tank of the granular material to the coagulation tank. Further, in consideration of the energy required for transferring the particulate matter to the coagulation tank, it is desirable that the automatic supply device is installed at a position as close as possible to the coagulation and sedimentation device.
[0036]
In the automatic granular material supply system 32 according to the present embodiment, a predetermined supply amount of the granular material is put into the receiving hopper 36 from the granular material storage tank 33 by the metering / sending device 34. At the same time, the water supply pump (process water pump 38) is operated, and a part of the water supply is injected from the branch pipe into the receiving hopper 36 from the upper portion, passes through the hopper ejector 39, and passes through the particulate supply line 40 to form the water slurry. The granular material is transferred to the coagulation tank 2 by. It is efficient to use treated water for water supply for transfer, but tap water or the like may be used. Further, as the metering / sending device 34, the granular material is dropped downward by a predetermined amount by controlling the number of rotations by a rotor system (a rotating rod having a groove parallel to the rotation axis) attached to the bottom of the granular material storage tank 33. Is the easiest to use. However, the present invention is not limited to this method as long as the set amount of granular material can be metered and supplied. It is desirable that the injection point of the water slurry of the granular material is injected into a floc blanket of the flocculation tank 2 and immediately absorbed into the floc of the inorganic flocculant and the polymer flocculant.
[0037]
In the control, the replenishment start concentration and the replenishment amount are set (the replenishment amount is set to the target concentration after replenishment). When the concentration drops to the replenishment start concentration, the automatic particulate supply system is activated, and replenishment of the set amount of particulates is started.
[0038]
In the coagulating sedimentation apparatus 31 having the automatic particulate matter supply system 32, the sludge concentration (the concentration of the particulate matter in the flocculation tank 2) is always accurately measured, and the replenishment amount of the particulate matter is determined based on the measured value. Since it is calculated and automatically replenished into the flocculation tank 2, the control of the concentration of the particulate matter is greatly reduced.
[0039]
Further, since the concentration of the particulate matter can be stably maintained at a low value (near the lower limit of the control value, for example, about 5 g / L), the separation of the sludge and the particulate matter is efficiently performed in a separator such as a cyclone. In addition, the loss of the granular material can be kept low. In addition, the cost for replenishing particulate matter can be reduced accordingly.
[0040]
【Example】
Example 1
A treatment test using a coagulating sedimentation apparatus shown in FIG. 1 was performed using certain river water as raw water. Coagulation sedimentation equipment:
Inorganic flocculant mixing tank (0.5m 3 ): Sulfuric acid for pH adjustment and an inorganic coagulant polyaluminum chloride (hereinafter, PAC) were injected into the inflow section of this tank.
Coagulation tank (0.5m 3 ): At the inlet of the main tank, an organic polymer flocculant (nonionic polyacrylamide) and a granular material separated by a cyclone are injected.
Sedimentation tank (0.5 m 3 ): Upflow type inclined plate sedimentation tank (surface area 0.5m × 0.5m)
Densitometer: Install the sensor part by immersing it in the floc blanket inside the coagulation tank.
The main unit is installed outside the device.
[0041]
Operating conditions:
Treated water volume: 10m 3 / Time
Sedimentation tank surface area load: 40m 3 / M 2 /Time
PAC injection rate: 30 mg / L
Organic polymer flocculant injection rate: 0.6 mg / L (nonionic polyacrylamide, molecular weight 1600 × 10 4 )
Circulation flow rate: 0.6m 3 /Time
Particulate matter concentration at start of experiment: 7.0 g / L
[0042]
result:
During the test period, the raw water fluctuated randomly in the range of 4 to 20 degrees turbidity.
One month after the start of the experiment, the treated water turbidity was stable at 0.2 to 0.3 degrees. The indicated value of the concentration of the particulate matter was 7.0 g / L at the beginning of the experiment, but decreased to 4.5 g / L after one month. Ten days later, it decreased to 3.5 g / L.
After about one month, the turbidity of the treated water gradually increased, and rose to 0.6 degrees on the day when the concentration of the particulate matter became 3.5 g / L. This increase was accompanied by a decrease in the concentration of the particulate matter, and when the concentration became 5.0 g / L or less, the turbidity of the treated water tended to deteriorate. In order to confirm the indicated concentration value, water from a floc blanket was sampled, and the concentration of the particulate matter was separately measured by a manual solid matter measurement method. The concentration at the beginning of the experiment was 7.2 g / L, one month. After that, the concentration was 4.3 g / L, and the concentration ten days later was 3.9 g / L, and the indicated concentration values of the densitometer almost coincided therewith, and it was confirmed that there was no large deviation in the indicated values.
[0043]
When the concentration dropped to 3.5 g / L, 1.75 kg of the particulate matter was supplied to the coagulation tank so that the concentration became 7.0 g / L. After the replenishment, the turbidity of the treated water was again 0.2 to 0.3 degrees and remained stable. Three weeks after the replenishment, the concentration of the particulate matter became 5.0 g / L, so 1 kg of the particulate matter was replenished into the coagulation tank, and the concentration of the particulate matter was adjusted to 7.0 g / L. It changed from 0.2 to 0.3 degrees before replenishment and 0.2 to 0.3 degrees after replenishment. That is, based on the concentration indication value of the densitometer, it was understood that the concentration of the particulate matter had decreased, and the particulate matter could be supplied before the turbidity of the treated water deteriorated.
[0044]
Example 2
A treatment test was performed using the same river water as in Example 1 as raw water.
Coagulation sedimentation apparatus: Same as in Example 1.
Densitometer: Same as in Example 1.
Granular material automatic supply system:
Granule replenishment start concentration: 5.0 g / L
Granular material replenishment amount: 1.0 kg (target concentration: 7.0 g / L)
Transfer water: Coagulated sediment treated water stored in a treated water tank is used.
Transfer water flow rate: 20 L / min x 6 minutes
Metering and sending device: 200 kg / min × 5 minutes, 1.0 kg was transferred to the hopper ejector.
[0045]
result:
During the test period, the raw water fluctuated irregularly in the turbidity range of 4 to 18 degrees, almost as in Example 1.
After the start of the test, the treated water turbidity was stable at 0.2 to 0.3 degrees. The indicated value of the concentration of particulate matter was 7.0 g / L at the beginning of the experiment, but decreased to 5.0 g / L of the starting concentration after 3 weeks. When the automatic replenishment system was operated and 1.0 kg of the granular material was supplied to the coagulation tank, the concentration of the coagulation tank was restored to 7.0 g / L. Even after replenishment, the treated water turbidity was stable at 0.2 to 0.3 degrees. That is, in this test, before the quality of the treated water deteriorated, the replenishment of the particulate matter could be automatically performed, and the quality of the treated water could be stably maintained. In addition, the labor involved in managing and replenishing the concentration of particulate matter has been greatly reduced.
[0046]
【The invention's effect】
As described above, according to the coagulation / sedimentation apparatus according to the present invention, the concentration of the particulate matter in the coagulation tank can be automatically measured with high accuracy at all times, which greatly reduces the time and effort required for measurement as compared with the conventional sampling water sampling. And the concentration can be measured directly in the coagulation tank, so that the measurement accuracy can be greatly improved, and the concentration of the particulate matter can be constantly and stably maintained within the target concentration range. As a result, the excellent high-speed treatment function of the high-speed coagulation and sedimentation apparatus and the function of obtaining excellent treated water quality can always be stably exhibited.
[0047]
In particular, if an automatic supply system for particulate matter is provided, in addition to the automatic measurement of the concentration of particulate matter, the replenishment of particulate matter necessary to maintain the concentration within the target concentration range can be performed automatically, and the target The concentration can be maintained within the range, the amount of the circulating granules used can be minimized, and the operating cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a coagulation / sedimentation apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram showing a basic configuration of a densitometer used in the apparatus of FIG.
FIG. 3 is an overall configuration diagram of a coagulation / sedimentation apparatus according to another embodiment of the present invention.
[Explanation of symbols]
1 Coagulation sedimentation equipment
2 Coagulation tank
2a Lower part of coagulation tank
3 Sedimentation tank
4 Inorganic flocculant mixing tank
5 Raw water supply line
6 Raw water
7 Inorganic flocculants
8 Stirrer
9 Overflow Wet
10 Polymer flocculant
11 Stirrer
12 blanket
13 Introduction line to coagulation tank
14. Sand as granular material
15 Densitometer
16 Sensor section
17 Converter and density display
18 Overflow Wet
19 Treated water
20 Inclined plate
21 Drawing line
22 Sludge extraction pump
23 Cyclone as separator
24 sludge
31 Coagulation sedimentation equipment
32 Automatic supply system for granular materials
33 granular material storage tank
34 Metering transmitter
35 Granular material transfer means
36 Receiving hopper
37 Treated water tank
38 Treated water pump
39 Hopper ejector
40 granular material supply line
41 Control device
42 Control system
43 Liquid to be measured
44 Suspended components
45 Laser light emitted
46 Diffuse reflected light of laser light
47 Laser light emitting diode
48 Laser drive circuit
49 Laser light diffuser
50 Optical fiber fixing bracket
51 Optical fiber for light emission
52 Optical fiber for receiving light
53 Sensor section
54, 57 Fixing bracket
55 sensor surface
56 glass plate
58 Visible light cut filter
59 Photodiode
60 amplifying circuit

Claims (7)

原水中の懸濁物質を凝集剤と粒状物の添加によりフロックとして凝集させる凝集槽と、凝集槽からの導入水中のフロックを沈澱させ処理水とフロックとに分離する沈澱槽とを備えた凝集沈澱装置において、前記凝集槽内に、前記粒状物の濃度を連続測定可能な濃度計を設けたことを特徴とする凝集沈澱装置。Coagulation sedimentation equipped with a flocculation tank for flocculating suspended substances in raw water as flocs by adding a flocculant and granules, and a sedimentation tank for sedimenting flocs in water introduced from the flocculation tank and separating them into treated water and flocs The apparatus according to claim 1, wherein a concentration meter capable of continuously measuring the concentration of the particulate matter is provided in the flocculation tank. 前記沈澱槽における処理の線速度が30〜100m/hである、請求項1の凝集沈澱装置。The coagulating sedimentation apparatus according to claim 1, wherein the linear velocity of the treatment in the sedimentation tank is 30 to 100 m / h. 前記濃度計が、レーザー光発光用の光ファイバーと受光用の光ファイバーのそれぞれ複数束ねてひとつのセンサー部に構成し、被測定液中の濁質成分の濃度を、被測定液中に向けて発光されたレーザー光の拡散反射光を検知することにより測定する濃度計からなる、請求項1または2の凝集沈澱装置。The densitometer, a plurality of optical fibers for emitting laser light and a plurality of optical fibers for receiving light are bundled to form one sensor unit, and the concentration of the turbid component in the liquid to be measured is emitted toward the liquid to be measured. 3. The coagulating sedimentation apparatus according to claim 1, comprising a densitometer for measuring by detecting diffuse reflection of the laser light. 前記濃度計が、少なくとも1〜30g/Lの測定濃度範囲を有する、請求項1〜3のいずれかに記載の凝集沈澱装置。The coagulation sedimentation device according to any one of claims 1 to 3, wherein the densitometer has a measured concentration range of at least 1 to 30 g / L. 前記濃度計からの測定情報に基づき、前記凝集槽内における粒状物の濃度が目標濃度範囲内となるように粒状物を自動補給する粒状物自動供給系を有する、請求項1〜4のいずれかに記載の凝集沈澱装置。The apparatus according to any one of claims 1 to 4, further comprising an automatic particle supply system for automatically replenishing the particulate matter based on the measurement information from the densitometer so that the concentration of the particulate matter in the coagulation tank falls within a target concentration range. 3. The coagulation sedimentation apparatus according to item 1. 前記目標濃度範囲が5〜20g/Lの範囲内に設定されている、請求項5の凝集沈澱装置。The coagulation sedimentation device according to claim 5, wherein the target concentration range is set within a range of 5 to 20 g / L. 前記粒状物自動供給系が、粒状物貯槽と、粒状物貯槽から送り出される粒状物を計量する手段と、粒状物を水とのスラリーとして前記凝集槽内に送る粒状物移送手段を備えている、請求項5または6の凝集沈澱装置。The granular material automatic supply system includes a granular material storage tank, a unit for measuring the granular material sent out from the granular material storage tank, and a granular material transfer unit for sending the granular material as a slurry with water into the agglomeration tank, The coagulation sedimentation device according to claim 5 or 6.
JP2002309825A 2002-10-24 2002-10-24 Flocculation and precipitation equipment Pending JP2004141773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309825A JP2004141773A (en) 2002-10-24 2002-10-24 Flocculation and precipitation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309825A JP2004141773A (en) 2002-10-24 2002-10-24 Flocculation and precipitation equipment

Publications (1)

Publication Number Publication Date
JP2004141773A true JP2004141773A (en) 2004-05-20

Family

ID=32455522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309825A Pending JP2004141773A (en) 2002-10-24 2002-10-24 Flocculation and precipitation equipment

Country Status (1)

Country Link
JP (1) JP2004141773A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025141A1 (en) * 2007-08-17 2009-02-26 Hisaaki Ochiai Method of flocculating sedimentation treatment
JP2009241045A (en) * 2008-03-31 2009-10-22 Ebara Environmental Plant Co Ltd Slurry circulation type coagulation and sedimentation treatment device, and its operation method
JP2009545432A (en) * 2006-08-01 2009-12-24 オテヴェ・ソシエテ・アノニム Method for treating water by ballasted flocculation (aggregation) -sedimentation (precipitation), including continuous measurement of ballast, and system corresponding to the method
JP2010514554A (en) * 2006-12-29 2010-05-06 オテヴェ・ソシエテ・アノニム Method and plant for treating water by ballasted flocculation and settling
JP2012516229A (en) * 2009-01-29 2012-07-19 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Process for treating water by ballast flocculation and sedimentation, including pre-contact of water and adsorbent
JP2014050830A (en) * 2012-08-08 2014-03-20 Swing Corp Sludge treatment method and apparatus
JP2018069211A (en) * 2016-11-04 2018-05-10 オルガノ株式会社 Starting-up method of sludge blanket type flocculation and precipitation apparatus
JP2020199423A (en) * 2019-06-06 2020-12-17 オルガノ株式会社 Coagulation sensor, coagulation sensing method, water treatment device and water treatment method
CN114681965A (en) * 2020-12-31 2022-07-01 景津装备股份有限公司 System for automatically controlling thickening parameters in photoelectric monitoring thickening process and corresponding thickener

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545432A (en) * 2006-08-01 2009-12-24 オテヴェ・ソシエテ・アノニム Method for treating water by ballasted flocculation (aggregation) -sedimentation (precipitation), including continuous measurement of ballast, and system corresponding to the method
JP2010514554A (en) * 2006-12-29 2010-05-06 オテヴェ・ソシエテ・アノニム Method and plant for treating water by ballasted flocculation and settling
WO2009025141A1 (en) * 2007-08-17 2009-02-26 Hisaaki Ochiai Method of flocculating sedimentation treatment
US7820056B2 (en) 2007-08-17 2010-10-26 Hisaaki Ochiai Method of flocculating sedimentation treatment
JP2009241045A (en) * 2008-03-31 2009-10-22 Ebara Environmental Plant Co Ltd Slurry circulation type coagulation and sedimentation treatment device, and its operation method
JP2012516229A (en) * 2009-01-29 2012-07-19 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート Process for treating water by ballast flocculation and sedimentation, including pre-contact of water and adsorbent
JP2014050830A (en) * 2012-08-08 2014-03-20 Swing Corp Sludge treatment method and apparatus
JP2018069211A (en) * 2016-11-04 2018-05-10 オルガノ株式会社 Starting-up method of sludge blanket type flocculation and precipitation apparatus
JP2020199423A (en) * 2019-06-06 2020-12-17 オルガノ株式会社 Coagulation sensor, coagulation sensing method, water treatment device and water treatment method
JP7389570B2 (en) 2019-06-06 2023-11-30 オルガノ株式会社 Water treatment equipment and water treatment method
CN114681965A (en) * 2020-12-31 2022-07-01 景津装备股份有限公司 System for automatically controlling thickening parameters in photoelectric monitoring thickening process and corresponding thickener

Similar Documents

Publication Publication Date Title
CN101306857B (en) Method and apparatus for determination of coagulant injection rate in water treatment process
US8303893B2 (en) Apparatus for determining coagulant amount
JP3205450B2 (en) Automatic injection rate determination device and automatic determination method
JPS63166500A (en) Method for conditioning and dehydrating sludge
JP2004141773A (en) Flocculation and precipitation equipment
CN206051645U (en) For the purified water treatment device of flocculating agent method for implanting
CN103708590A (en) Water treatment dosing optimizing system, water treatment system, and method of water treatment dosing optimizing system
JP6730467B2 (en) Coagulation sedimentation control device, coagulation sedimentation device, coagulation sedimentation control method and computer program
JP2008055299A (en) Flocculating sedimentation treating equipment
JP2016191679A (en) Flocculation state detection method, chemical injection control method and chemical injection control device
JP3925621B2 (en) Water or sludge treatment system
KR101197392B1 (en) The phosphorus removal system regarding the automatic determination of coagulant dosing rate using artificial intelligence
CN1944278A (en) Running management method for pure water processing
JP6139314B2 (en) Aggregation control apparatus and aggregation control method
Kan et al. Coagulation monitoring in surface water treatment facilities
JP2017051906A (en) Agglomeration and precipitation controller, agglomeration and precipitation controlling method, and computer program
JP2014002050A (en) Aggregation state detection device
JP2006175357A (en) Measuring control method and device for precipitating/separating operation
JP7003165B2 (en) Coagulation treatment system, coagulation treatment method, computer program and coagulation treatment control device
KR20080057364A (en) Method and device for adding flocculant in water treatment system
JP2005241338A (en) Coagulation sensor and coagulation control device using the same
JP6173808B2 (en) Setting method of coagulant injection rate
KR100814011B1 (en) Device and methode for water purification
JP6270655B2 (en) Flock aggregation condition control method, floc aggregation condition control device, water treatment method and water treatment apparatus
JPH0614005B2 (en) Aggregation-precipitation reaction measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050524

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070409

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070803