WO2022018975A1 - Machine-learning device, data processing system, and machine-learning method - Google Patents

Machine-learning device, data processing system, and machine-learning method Download PDF

Info

Publication number
WO2022018975A1
WO2022018975A1 PCT/JP2021/020912 JP2021020912W WO2022018975A1 WO 2022018975 A1 WO2022018975 A1 WO 2022018975A1 JP 2021020912 W JP2021020912 W JP 2021020912W WO 2022018975 A1 WO2022018975 A1 WO 2022018975A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
liquid
image data
data
bowl
Prior art date
Application number
PCT/JP2021/020912
Other languages
French (fr)
Japanese (ja)
Inventor
路明 杉浦
徹也 荻原
Original Assignee
巴工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巴工業株式会社 filed Critical 巴工業株式会社
Publication of WO2022018975A1 publication Critical patent/WO2022018975A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/20Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles discharging solid particles from the bowl by a conveying screw coaxial with the bowl axis and rotating relatively to the bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • This disclosure relates to machine learning devices, data processing systems and machine learning methods.
  • Centrifugal separation devices that perform solid-liquid separation using centrifugal force have been conventionally used in water treatment equipment for water and sewage, industrial wastewater, or urine.
  • Various types of centrifuges are known, but a centrifuge called a decanter is widely used, especially in equipment that requires continuous processing for a long time.
  • This decanter generally has a drive motor, a bowl that is rotated by the drive motor and the liquid to be processed is charged inside, a screw conveyor that is coaxially arranged in the bowl, and the rotation speed of the bowl and the rotation of the screw conveyor. It may include a differential speed generator that generates a differential speed between the speed and the speed.
  • a differential speed generator that generates a differential speed between the speed and the speed.
  • the differential speed generated by the differential speed generator and the centrifugal force of the bowl are controlled based on the transport torque of the screw conveyor, so that the liquid to be treated is controlled. It is possible to partially realize the automatic operation of the centrifuge according to the properties of.
  • various information and parameters related to the control of the centrifuge system including such a centrifuge device other than the transfer torque of the screw conveyor, the differential speed generated by the differential speed generator, and the centrifugal force of the bowl.
  • information specifically, state variables
  • information may include information that is difficult to quantify.
  • the machine learning device 20 has centrifugal force on the liquids to be treated PL1 (not shown), PL2 (see FIG. 15 and the like), for example, as shown in FIG.
  • the centrifugal separation system 1 including a drive motor 4 for rotating the screw conveyor 3 and a differential speed generator 5 for rotating the screw conveyor 3 with a relative speed difference from the bowl 2, the discharge port 2a.
  • a plurality of sets of training data sets including input data including image data obtained by capturing the liquid-containing solid material M discharged from the above from a predetermined angle and output data including control parameters associated with the input data are stored.
  • the control parameters are the supply amount of the additive added to the liquid to be treated PL1, the centrifugal force of the bowl 2, and the difference controlled by the differential speed generator 5.
  • the training data set storage unit 22 including at least one of the speeds; a learning model for inferring the correlation between the input data and the output data by inputting a plurality of sets of the training data sets. It includes a learning unit 23 for learning; and a trained model storage unit 24 for storing the learning model learned by the learning unit 23.
  • the machine learning device 20A according to the second aspect of the present disclosure is, for example, as shown in FIG. 9, in the machine learning device according to the first aspect of the present disclosure, the learning unit is in the learning data set.
  • the first learning unit 231 that learns the first learning model that infers the feature amount of the image data by inputting the image data; and the control parameter is inferred by inputting the feature amount of the image data.
  • the learning unit when estimating the control parameters of the centrifugation system from the image data of the dehydrated solid, the learning unit is divided into two to obtain the trained model generated in each learning unit.
  • the number of required training data sets can be relatively reduced.
  • the machine learning device 20B according to the third aspect of the present disclosure is, for example, as shown in FIG. 11, in the machine learning device according to the first aspect of the present disclosure, the input data is the concentration of the separation liquid SL. Further includes at least one of the slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3.
  • the machine learning device 20C according to the fourth aspect of the present disclosure is, for example, as shown in FIG. 13, in the machine learning device according to the first aspect of the present disclosure, the input data is the concentration of the separation liquid SL.
  • the learning unit further includes at least one of the slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3, and the learning unit inputs the image data in the learning data set.
  • a first learning unit 231 that learns a first learning model for inferring a feature amount of image data; a feature amount of the image data, a concentration of the separation liquid SL, and a slurry concentration of the liquid to be treated PL1. It includes a fourth learning unit 234 that learns a fourth learning model for inferring the control parameters by inputting a torque value of the screw conveyor 3.
  • the learning unit when estimating the control parameters of the centrifugation system from the image data of the dehydrated solid, the learning unit is divided into two, and the learning data set to be learned in one of the learning units is input.
  • the number of data it is possible to relatively reduce the number of training data sets required to obtain the trained model generated in each training unit.
  • the machine learning device 120 is, for example, as shown in FIG. 15, a bowl 2 that applies centrifugal force to the liquids PL1 and PL2 to be treated to centrifuge the solid M and the separation liquid SL.
  • a screw conveyor 3 that conveys the solid material M in the bowl 2 toward the discharge port 2a, a drive motor 4 that rotates the bowl 2, and a differential speed of the screw conveyor 3 relative to the bowl 2.
  • a training data set storage unit 225 that stores a plurality of sets of training data sets including output data including control parameters associated with the control parameters, wherein the control parameters are the supply amount of the additive and the bowl 2.
  • the training data set storage unit 225 containing at least one of the centrifugal force and the differential speed controlled by the differential speed generator 5; the input by inputting a plurality of sets of the learning data set. It includes a learning unit 235 that learns a learning model that infers the correlation between the data and the output data; and a trained model storage unit 124 that stores the learning model learned by the learning unit 235.
  • the machine learning device 120A according to the sixth aspect of the present disclosure is, for example, as shown in FIG. 19, in the machine learning device according to the fifth aspect of the present disclosure, the learning unit is in the learning data set.
  • a first learning unit 231 that learns a first learning model that infers a feature amount of the first image data by inputting the first image data; and a second image in the training data set.
  • a sixth learning unit 236 that learns a sixth learning model that infers the feature amount of the second image data by inputting data; the feature amount of the first image data and the second image data.
  • the learning unit is divided into three in each learning unit.
  • the number of training data sets required to obtain the generated trained model can be relatively reduced.
  • the machine learning device 120B according to the seventh aspect of the present disclosure is, for example, as shown in FIG. 21, in the machine learning device according to the fifth aspect of the present disclosure, the input data is the concentration of the separation liquid SL. Further includes at least one of the slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3.
  • the machine learning device 120C according to the eighth aspect of the present disclosure is, for example, as shown in FIG. 23, in the machine learning device according to the fifth aspect of the present disclosure, the input data is the concentration of the separation liquid SL.
  • the learning unit further includes at least one of the slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3, and the learning unit inputs the first image data in the learning data set.
  • the first learning unit 231 learning the first learning model for inferring the feature amount of the first image data; by inputting the second image data in the learning data set, the first learning unit A sixth learning unit 236 that learns a sixth learning model that infers the feature amount of the second image data; the feature amount of the first image data, the feature amount of the second image data, and the separation.
  • a ninth learning unit 239 that learns a ninth learning model for inferring the control parameters by inputting the concentration of the liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3. And;
  • the learning unit is divided into three and one of the learning units is used when estimating the control parameters of the centrifugation system from the image data of the dehydrated solid matter and the image data of the liquid to be treated containing flocs.
  • the machine learning device is the machine learning device according to the first to eighth aspects of the present disclosure, and the control parameter further includes the supply amount of the liquid to be treated.
  • the machine learning device is the machine learning device according to the first to ninth aspects of the present disclosure, and the control parameter further includes the dam set diameter of the bowl.
  • centrifugal force is applied to the liquids PL1 and PL2 to be treated into the solid material M and the separation liquid SL.
  • the first image data acquisition unit 81 for acquiring the image data of 1; and the trained model generated by the machine learning devices 20 and 20A according to the first or second aspect, the first image data acquisition unit. It includes inference units 87, 871, 872 and; which infer the control parameters of the centrifugal separation system by inputting the data acquired by 81.
  • control parameters that can realize suitable operation control of the centrifugal separation system can be inferred based on the first image data obtained by imaging the dehydrated solid matter, so that the centrifugal separation does not depend on the judgment of the operator. It will be possible to automatically control the operation of the system.
  • centrifugal force is applied to the liquids PL1 and PL2 to be treated to form a solid M and a separation liquid SL.
  • the first image data acquisition unit 81 for acquiring the image data of 1; at least one of the concentration of the separation liquid SL, the slurry concentration of the liquid to be processed PL1, and the torque value of the screw conveyor 3.
  • the first image data acquisition unit 81 and the additional variable acquisition are added to the trained model generated by the machine learning devices 20B and 20C according to the third or fourth aspect. It includes inference units 873, 871, 874 and; which infer the control parameters of the centrifugal separation system by inputting the data acquired by the unit 89.
  • centrifugation is performed based on the concentration of the separation liquid, the slurry concentration of the liquid to be treated, at least one of the torque values of the screw conveyor, and the first image data obtained by imaging the dehydrated solid. Since the control parameters that can realize the suitable operation control of the system can be inferred, the operation control of the centrifugal separation system can be automatically performed without depending on the judgment of the operator.
  • centrifugal force is applied to the liquids PL1 and PL2 to be treated into the solid material M and the separation liquid SL.
  • the first image data acquisition unit 81 for acquiring the image data of 1; and the liquid to be treated PL2 before being supplied to the bowl 2 and after the predetermined additive is added have a predetermined angle of view.
  • the operator can infer control parameters that can realize suitable operation control of the centrifugation system based on the first and second image data obtained by imaging the dehydrated solid matter and the floc-containing liquid to be treated. It will be possible to automatically control the operation of the centrifuge system without depending on the judgment of.
  • centrifugal force is applied to the liquids PL1 and PL2 to be treated to form a solid M and a separation liquid SL.
  • the first image data acquisition unit 81 for acquiring the image data of 1; and the liquid to be treated PL2 before being supplied to the bowl 2 and after the predetermined additive is added have a predetermined angle of view.
  • An additional variable acquisition unit 89 for acquiring at least one of them; a trained model generated by the machine learning devices 120B and 120C according to the seventh or eighth aspect, and the first image data acquisition unit 81.
  • the inference units 878, 871, 876, 879 that infer the control parameters of the centrifugal separation system 1 by inputting the data acquired by the second image data acquisition unit 181 and the additional variable acquisition unit 89; It includes.
  • the concentration of the separated liquid, the slurry concentration of the liquid to be treated, at least one of the torque values of the screw conveyor, and the first and second images of the dehydrated solid and the liquid to be treated containing flocs are imaged. Since control parameters that can realize suitable operation control of the centrifugation system can be inferred based on the image data, the operation control of the centrifugation system can be automatically performed without depending on the judgment of the operator. Become.
  • the machine learning method according to the fifteenth aspect of the present disclosure is carried out by a computer, for example, as shown in FIGS. 3 and 6, and a solid substance is subjected to centrifugal force to the liquids PL1 and PL2 to be treated.
  • a bowl 2 for centrifuging the M and the separation liquid SL a screw conveyor 3 for transporting the solid material M in the bowl 2 toward the discharge port 2a, a drive motor 4 for rotating the bowl 2, and the screw.
  • the liquid-containing solid material M discharged from the discharge port 2a is for a centrifugal separation system 1 including a differential speed generator 5 for rotating the conveyor 3 with a relative speed difference from the bowl 2.
  • step S11 a plurality of sets of learning data sets including input data including image data captured from a predetermined angle of view and output data including control parameters associated with the input data are stored, and the control parameters are ,
  • the step comprising at least one of the supply of additives added to the liquid PL1 to be treated, the centrifugal force of the bowl 2, and the differential speed controlled by the differential speed generator 5. It includes a step S15 for learning a learning model for inferring the correlation between the input data and the output data by inputting a plurality of sets of data sets for use; and a step S17 for storing the learned learning model. ..
  • the machine learning method according to the 16th aspect of the present disclosure is carried out by a computer, for example, as shown in FIGS. 6 and 15, and is solidified by applying centrifugal force to the liquids PL1 and PL2 to be treated.
  • the liquid-containing solid material M discharged from the discharge port 2a is for a centrifugal separation system 1 including a differential speed generator 5 for rotating the screw conveyor 3 with a differential speed relative to the bowl 2.
  • the first image data captured from a predetermined angle of view and the second image of the liquid to be treated PL2 before being supplied to the bowl 2 and after the predetermined additive is added are imaged from a predetermined angle of view.
  • step S11 a plurality of sets of training data sets including input data including the image data of the above and output data including control parameters associated with the input data are stored, and the control parameters are the additives.
  • the control parameters are the additives.
  • An example of image data obtained by the dehydrated solid matter monitoring system according to the first embodiment of the present disclosure is shown.
  • An example of image data obtained by the dehydrated solid matter monitoring system according to the first embodiment of the present disclosure is shown.
  • An example of image data obtained by the liquid to be treated monitoring system according to the fifth embodiment of the present disclosure is shown.
  • An example of image data obtained by the liquid to be treated monitoring system according to the fifth embodiment of the present disclosure is shown.
  • It is a flowchart which shows the example of the parameter adjustment by the data processing system which concerns on 5th Embodiment of this disclosure.
  • centrifuge system Before explaining the machine learning device, the data processing system, and the machine learning method according to the first embodiment of the present disclosure, the centrifuge system to which these machine learning device, the data processing system, and the machine learning method are applied. I will explain briefly.
  • a centrifuge device including a horizontal decanter 1 As the centrifuge system according to the present embodiment, a centrifuge device including a horizontal decanter 1 is used.
  • the specific embodiment of the centrifugal separation system according to the present disclosure is not limited to those shown below, and may also be applied to a centrifugal separation system including a centrifugal separation device such as a vertical type or straight body type decanter. Applicable.
  • FIG. 1 is a schematic diagram showing a schematic structure of a decanter main body according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing a centrifugal separation system including a decanter piping structure according to the first embodiment of the present disclosure.
  • the horizontal decanter 1 shown in the present embodiment mainly includes a bowl 2, a screw conveyor 3, a drive motor 4, a differential speed generator 5, and a casing 6. be able to.
  • the bowl 2 can be made of a cylindrical member whose one end is processed into a weight shape, and can be rotatably supported around a horizontal axis. Further, one or more solid matter discharge ports 2a are provided at one end of the bowl 2 processed into a weight shape, and one or more separation liquid discharge ports 2b are formed at the other end of the dam 2c. It may be attached.
  • the solid matter component contained in the liquid to be treated to be charged into the bowl 2 is mainly discharged from the solid matter discharge port 2a, and the liquid to be treated which is also charged into the bowl 2 is discharged from the separation liquid discharge port 2b.
  • the contained liquid component is mainly discharged.
  • a pulley 4a for transmitting power from a drive motor 4, which will be described later, may be attached to one end of the bowl 2 (one end processed into a weight in FIG. 1).
  • this solid component is referred to as a liquid-containing solid (or dehydrated solid) M.
  • the screw conveyor 3 can be composed of a member that is coaxially arranged in the bowl 2 and has a spiral screw blade 3a formed around the screw conveyor 3.
  • the screw blade 3a may be a member for transporting and / or squeezing the solid matter in the bowl 2.
  • the body 3b of the screw conveyor 3 is provided with a space 3c for receiving the liquid to be treated and a discharge port 3d for charging the liquid to be treated stored in this space into the bowl 2. You may be.
  • a differential speed generator 5 which will be described later, may be connected to one end of the screw conveyor 3.
  • the drive motor 4 may be a motor for applying a rotational force to the bowl 2, and may be connected to a pulley 4a attached to one end of the bowl 2 via a belt 4b.
  • a relatively large motor is adopted in order to rotate the bowl 2 in the range of, for example, 2000 to 5000 rpm, and the rotation speed thereof can be appropriately changed by inverter control.
  • the differential speed generator 5 is a device for generating a differential speed between the rotation speed of the bowl 2 and the rotation speed of the screw conveyor 3, and the screw conveyor 3 is slightly (for example, for example) relative to the bowl 2. It may be a device capable of rotating slowly (about 1 to 3 rpm).
  • the differential speed generator 5 can include a gearbox 5a connected to the screw conveyor 3 and a differential motor (also referred to as “back drive motor”) 5b that applies a braking force to the screw conveyor 3. Since the specific operating principle of the differential speed generator 5 has been known conventionally, the description thereof will be omitted.
  • the casing 6 may be a case provided so as to cover the bowl 2 and the screw conveyor 3.
  • the casing 6 guides the liquid-containing solid (dehydrated solid) M as a solid containing a small amount of liquid discharged from the solid discharge port 2a of the bowl 2 to the solid chute 6a provided below.
  • the separation liquid SL (see FIG. 3) discharged from the separation liquid discharge port 2b of the bowl 2 may be guided to the separation liquid chute 6b provided below.
  • the bowl 2 and the screw conveyor 3 covered with the casing 6 can be integrally supported by the frame 6c.
  • the solid matter chute 6a of the casing 6 may be connected to the solid matter discharge conduit 7, and the solid matter discharged from the solid matter chute 6a may be, for example, a drying device or an incinerator (not shown) via the solid matter discharge conduit 7. Etc. can be transported to the main transport path 7a. Further, the separation liquid chute 6b of the casing 6 may be connected to the separation liquid discharge conduit 8, and the separation liquid discharged from the separation liquid chute 6b may be connected to, for example, a water purification facility (not shown) via the separation liquid discharge conduit 8. Can be carried to.
  • the decanter 1 can further include a liquid supply pipe 9 for charging the liquid to be treated into the bowl 2.
  • a liquid supply pipe 9 for charging the liquid to be treated into the bowl 2.
  • One end of the liquid supply pipe 9 communicates with the space 3c in the body 3b of the screw conveyor 3, and the other end communicates with the liquid supply source 10 to be processed and the additive supply source 11, and flows in from the other end. It is possible to form a conduit for charging the liquid to be treated or the like into the bowl 2.
  • the liquid supply pipe 9 and the liquid to be processed supply source 10 are fluidly connected by a liquid to be treated pipe 10b including a pump 10a for supplying the liquid to be treated.
  • a liquid to be treated pipe 10b including a pump 10a for supplying the liquid to be treated.
  • the pump 10a By controlling the pump 10a, it is possible to control the amount of the liquid to be supplied into the bowl.
  • the liquid to be treated supplied from the liquid to be treated source 10 is often a slurry (suspension) containing sludge as a solid substance.
  • the liquid supply pipe 9 and the additive supply source 11 include an additive added to the liquid to be treated, for example, a pump 11a for supplying a drug, and a plurality of pumps 11a for controlling the supply position and supply timing of the drug. It may be fluidly connected by an additive pipe 11c including a valve 11b.
  • the agent supplied from the additive supply source 11 may be a flocculant that changes the sludge contained in the slurry into a floc shape by administering it to the slurry, particularly a polymer flocculant or an inorganic flocculant.
  • liquid to be treated PL1 liquid to be treated PL1
  • liquid to be treated after the drug is added is referred to as “flock-containing liquid to be treated PL2” to distinguish between the two. ..
  • the additive pipe 11c is branched into two pipes at an intermediate position thereof, one at an intermediate position of the liquid pipe 10b to be treated and the other at a liquid supply pipe 9. It may be connected.
  • the liquid PL1 to be treated reacts with the chemical in the liquid pipe 10b to be treated (so-called “line chemical injection”).
  • the drug is supplied via the pipe connected to the liquid supply pipe 9, the liquid to be treated PL1 reacts with the drug mainly inside the space 3c and inside the bowl 2 (so-called “in-flight drug injection”). It will be.
  • the position and timing at which the chemical is added to the liquid to be treated PL1 can be adjusted, and thus sludge flocs (“flock”) due to the chemicals mainly affected by the state of the liquid to be treated PL1. It will be possible to optimally adjust the formation effect (also called "aggregate").
  • the connection position of the pipe shown in FIG. 2 is only an example, and the pipe structure can be appropriately changed in consideration of the state of the liquid to be treated and the like.
  • the various pipes of the decanter 1 according to the present embodiment are provided with a monitoring system for monitoring the object passing through the pipes. More specifically, this monitoring system is provided in the separation liquid monitoring system 40 provided in the separation liquid discharge conduit 8, the dehydrated solid matter monitoring system 50 provided in the solid matter discharge conduit 7, and the liquid to be treated pipe 10b.
  • the liquid to be treated monitoring system 60 can be included.
  • a screw conveyor torque monitoring system 70 that monitors the torque value of the screw conveyor 3 may be included.
  • the specific configuration of each monitoring system some examples will be described so as to correspond to each embodiment described later.
  • the monitoring system other than the dehydrated solid matter monitoring system 50 is necessary after the second embodiment. Will be explained accordingly.
  • the solid-liquid separation by the decanter 1 including the above configuration is generally performed as follows. That is, first, when the floc-containing liquid to be treated PL2 is put into the bowl 2 that rotates at a predetermined rotation speed via the liquid supply pipe 9, the floc-containing liquid to be treated is treated by the action of the centrifugal force generated by the drive motor 4.
  • the solid matter (which is floc-like due to the effect of the chemical) in the liquid PL2 settles on the inner wall surface of the bowl 2.
  • the settled solid matter is formed into a weight shape of the bowl 2 by the screw blade 3a of the screw conveyor 3 which is rotated with respect to the bowl 2 at a rotation speed slightly smaller than the rotation speed of the bowl 2 by the action of the differential speed generator 5.
  • the above-mentioned solid-liquid separation process realizes a suitable process by adjusting various control parameters of the decanter 1.
  • the control parameter referred to here may mainly consist of the centrifugal force of the bowl 2, the supply amount of the drug from the additive supply source 11, and the differential speed between the bowl 2 and the screw conveyor 3. Therefore, the machine learning device 20 according to the first embodiment of the present disclosure for learning an inference model (learned model) capable of estimating the optimum control parameters in the decanter 1 will be described below. ..
  • FIG. 3 is a schematic block diagram of the machine learning device 20 according to the first embodiment of the present disclosure.
  • the machine learning device 20 according to the present embodiment includes a learning data set acquisition unit 21, a learning data set storage unit 22, a learning unit 23, and a trained model storage unit 24.
  • the learning data set acquisition unit 21 may be an interface unit that acquires a plurality of data constituting the learning (training) data set via, for example, a wired or wireless communication line.
  • the specific contents of the plurality of data acquired here can be appropriately changed according to the trained model to be generated.
  • the image data of the dehydrated solid M and the data in which the control parameters associated with the image data are acquired are exemplified.
  • the control parameters can include the supply amount of the drug added to the liquid to be treated PL1, the centrifugal force of the bowl 2, and the differential speed controlled by the differential speed generator 5.
  • control parameters for acquiring the above-mentioned three data are exemplified, but the control parameters constituting the learning data set include at least one of the above-mentioned three data. I just need to be there.
  • control parameters are not limited to the above three, and may include other parameters such as the supply amount of the liquid to be treated PL1 from the liquid to be treated supply source 10 and the dam set diameter of the dam 2c of the bowl 2. May include. Therefore, the number of control parameters constituting the output data may be four or more. Generally, if the number of control parameters increases, fine parameter adjustment can be realized when applied to the operation control of the decanter 1 described later.
  • control parameters As the number of control parameters increases, the number of training data sets required to obtain a trained model that can be reasoned with sufficient accuracy tends to increase. Therefore, it is preferable to determine the number of control parameters as output data in consideration of the number of training data sets that can be prepared.
  • the learning data set acquisition unit 21 is connected to the computer PC1 and acquires desired data from the computer PC1.
  • the computer PC 1 may be, for example, a computer that constitutes at least a part of the control unit 30 that controls various operations of the decanter 1 described above, or is communicably connected to the control unit 30. As a result, various control parameters of the decanter 1 can be acquired in the computer PC1.
  • the computer PC 1 is directly connected to the dehydrated solids monitoring system 50 provided in the solids discharge conduit 7 or indirectly via the control unit 30, and the dehydrated solids.
  • Image data of the dehydrated solid M can be acquired from the monitoring system 50.
  • the control unit 30 of the decanter 1 referred to here is a device for controlling the entire decanter 1, and is well known including a processor, a memory, and the like connected to various sensors and drive means included in the decanter 1. It may be composed of a computer or the like.
  • the dehydrated solid matter monitoring system 50 includes a window 52 provided at an arbitrary position of the solid matter discharge conduit 7 and a solid matter discharge system 50 installed in the window 52 at a predetermined angle of view. It is possible to adopt a camera including a dehydrated solid image capturing camera 53 capable of capturing image data of the dehydrated solid M passing through the conduit 7. Of these, a well-known camera capable of capturing a two-dimensional image can be adopted as the dehydrated solid matter imaging camera 53. Further, in the dehydrated solids monitoring system 50, the dehydrated solids M pass through the solids discharge conduit 7 so that the image data captured by the dehydrated solids imaging camera 53 can easily reflect the state of the surface of the dehydrated solids M.
  • a light source (not shown) that illuminates the dehydrated solid matter M and a polarizing filter (not shown) that can be attached to the dehydrated solid matter imaging camera 53 can be appropriately adopted.
  • the solid matter discharge conduit 7 extends substantially vertically, and the dehydrated solid matter M exemplifies a solid matter passing through the solid matter discharge conduit 7 so as to fall naturally.
  • the installation angle of the discharge conduit 7 and the like can be changed as appropriate. Further, in the present embodiment, the case where the dehydrated solid matter monitoring system 5 is installed in the solid matter discharge conduit 7 has been described, but the present disclosure is not limited to this.
  • the dehydrated solids monitoring system 5 can be installed at any other position through which the dehydrated solids M passes, such as the main transport path 7a and the solids chute 6a.
  • the configuration of the dehydrated solids monitoring system 50 is not limited to this, and various configurations can be adopted as long as the image data of the dehydrated solids M can be acquired.
  • a configuration such as the dehydrated solid matter monitoring system 50A (see FIG. 9) described later may be adopted.
  • FIG. 4 shows an example of image data obtained by the dehydrated solids imaging camera 53 of the dehydrated solids monitoring system 50 according to the first embodiment of the present disclosure.
  • the amount of liquid component contained in the dehydrated solid M discharged after the solid-liquid separation treatment by the centrifugal separation system that is, the water content is small
  • the solid-liquid separation treatment is performed. It can be a guideline that can be inferred to be well done.
  • the image data obtained by the dehydrated solids monitoring system 50 if the amount of the liquid component contained in the dehydrated solids M is large, the color tends to be deep and the brightness tends to increase.
  • the image data having a relatively high water content of the dehydrated solid M (for example, the one shown in FIG. 4B) has a color tint between pixels as compared with the image data having a relatively low water content (for example, the one shown in FIG. 4A). It can be inferred that the amount of change in is likely to increase.
  • the training data set storage unit 22 associates a plurality of data constituting the training data set acquired by the training data set acquisition unit 21 with related input data and output data (also referred to as “teacher data”). It may be a database for storing one learning data set.
  • the learning data set stored in the present embodiment uses image data obtained by capturing the dehydrated solid material M discharged from the solid material discharge port 2a from a predetermined angle as input data, and corresponds to the image data as the input data.
  • the attached control parameter can be used as output data.
  • the specific configuration of the database constituting the learning data set storage unit 22 can be appropriately adjusted. For example, in FIG. 3, for convenience of explanation, the training data set storage unit 22 and the trained model storage unit 24 described later are shown as separate storage means, but these are used as a single storage medium (database). ) Can also be configured.
  • the learning data set stored in the learning data set storage unit 22 can be composed of one image data and control parameters corresponding to the one image data.
  • the learning data set storage unit 22 in order to generate one trained model in the learning unit 23, it is usually necessary to perform training using many training data sets (for example, thousands to tens of thousands of sets). Therefore, in order to prepare a large amount of training data set in a relatively short time, it is preferable to perform data augmentation in the learning data set storage unit 22.
  • a (for example, 100) partial image data of a square smaller than the original image data is randomly extracted from the original image data of one rectangle and extracted.
  • the learning unit 23 infers the correlation between the input data and the output data in the learning data set by inputting a plurality of sets of the plurality of learning data sets stored in the learning data set storage unit 22. It may be one that learns a learning model. In this embodiment, as will be explained in detail later, supervised learning using a neural network is adopted as a specific method of machine learning. However, the specific method of machine learning is not limited to this, and other learning methods may be adopted as long as the correlation between input and output can be learned from the training data set. It is possible. For example, ensemble learning (random forest, boosting, stacking, etc.) can also be used.
  • the trained model storage unit 24 may be a database for storing the trained model generated by the training unit 23.
  • the trained model stored in the trained model storage unit 24 can be applied to a real system via a communication line including the Internet or a storage medium, if requested.
  • the specific application mode of the trained model to the actual system (data processing system 80) will be described in detail later.
  • the operator EN manually takes into consideration the image data acquired by the dehydrated solid matter monitoring system 50 and the actual control parameter at that time.
  • the method specified by can be adopted.
  • the optimum control parameters identified in this way are organized and stored in the learning data set storage unit 22 in a state associated with the above-mentioned image data as teacher data of the learning data set in the machine learning device 20.
  • the optimum control parameters specified are, as described above, at least one of the centrifugal force of the bowl 2, the supply amount of the drug from the additive supply source 11, and the difference speed between the bowl 2 and the screw conveyor 3. It may be one. It can be said that these control parameters are considered to be the control parameters having the greatest influence on the solid-liquid separation process by the decanter 1. Therefore, it is preferable that the control parameters specified here are all three control parameters described above as exemplified in the present embodiment. Of course, only one or only two of these three control parameters may be adopted as output data, and parameters other than these three control parameters (for example, drug supply position, etc.) may be used as output data. It is also possible to add more.
  • the centrifugal force of the bowl 2 among the above three control parameters can be adjusted mainly by controlling the rotation speed of the bowl 2 by the drive motor 4, but the control for changing the rotation speed is other. It is characterized by low responsiveness compared to the two controls (control of drug supply amount and differential speed). Therefore, when only two of the above three control parameters are adopted for the output data, the supply amount of the drug from the additive supply source 11 and the differential speed between the bowl 2 and the screw conveyor 3 are adopted. good.
  • FIG. 5 is a diagram showing an example of a neural network model for supervised learning implemented in the machine learning device according to the first embodiment of the present disclosure.
  • the neural network in the neural network model shown in FIG. 5 includes l neurons (x1 to xl) in the input layer, m neurons (y11 to y1m) in the first intermediate layer, and n neurons in the second intermediate layer. It is composed of neurons (y21 to y2n) and o neurons (z1 to zo) in the output layer.
  • the first intermediate layer and the second intermediate layer are also called hidden layers, and the neural network may have a plurality of hidden layers in addition to the first intermediate layer and the second intermediate layer. Or, only the first intermediate layer may be used as a hidden layer.
  • nodes connecting the neurons between the layers are stretched between the input layer and the first intermediate layer, between the first intermediate layer and the second intermediate layer, and between the second intermediate layer and the output layer.
  • Each node is associated with a weight wi (i is a natural number).
  • the neural network in the neural network model learns the correlation between the input data and the output data of the training data set by using the training data set.
  • the image data of the dehydrated solid M as a state variable constituting the input data is associated with the neurons in the input layer, and the values of the neurons in the output layer are calculated as the output values of a general neural network. That is, the value of the neuron on the output side is multiplied by the value of the neuron on the input side connected to the neuron and the weight wi associated with the node connecting the neuron on the output side and the neuron on the input side. It is calculated as the sum of a number of values by using a method performed for all neurons other than the neurons in the input layer.
  • the format of the information acquired as the state variables may be appropriately set in consideration of the accuracy of the generated trained model. can.
  • the teacher data t1 to to are compared with each other to obtain an error, and the weight wi associated with each node is adjusted (backpropagation) so that the obtained error becomes small.
  • the learning is terminated and the neural network model (node of the node) is satisfied. All the weights wi) associated with each are stored in the trained model storage unit 24 as a trained model.
  • FIG. 6 is a flowchart showing an example of the machine learning method according to the first embodiment of the present disclosure.
  • the machine learning method shown below will be described based on the machine learning device 20 described above, but the premise configuration is not limited to the machine learning device 20 described above.
  • this machine learning method is realized by using a computer, various computers can be applied, for example, a computer constituting the control unit 30 and a server device arranged on a network. , Or the computer PC1 shown in FIG. 3 and the like.
  • an arithmetic unit composed of at least a CPU, a GPU, etc.
  • a storage device composed of a volatile or non-volatile memory represented by RAM or ROM, a network, or other devices. It is possible to adopt a device including a communication device for communicating with the device and a bus connecting each of these devices.
  • this machine learning method is provided in the form of a program containing one or more instructions for performing a predetermined operation on a computer, or in the form of a non-temporary computer-readable medium containing the program. You may.
  • supervised learning as a machine learning method according to the present embodiment, as a preliminary preparation for starting machine learning, a desired number of learning data sets are first prepared, and a plurality of prepared learning data sets are prepared. It is stored in the learning data set storage unit 22 (step S11).
  • the number of training data sets prepared here may be set in consideration of the inference accuracy required for the finally obtained trained model. Further, since an example of the method of preparing the training data set has already been illustrated above, the description thereof will be omitted here.
  • a neural network model before learning is prepared in order to start machine learning in the learning unit 23 (step S12).
  • the pre-learning neural network model prepared here for example, a neural network model having the structure shown in FIG. 4 and having the weight of each node set to the initial value can be adopted.
  • one learning data set is randomly selected from the plurality of learning data sets stored in the learning data set storage unit 22 (step S13), and the input data in the one learning data set is selected. Is input to the input layer (see FIG. 4) of the prepared neural network model before learning (step S14).
  • various methods can be adopted.
  • a method of inputting a luminance value and / or a color value (for example, an RGB value) for each pixel of image data into a neuron of each input layer can be adopted. Further, before inputting image data as input data to the input layer, predetermined preprocessing such as dimension reduction processing and noise removal for adjusting the number of data may be executed.
  • step S14 machine learning is performed using the output data as teacher data in one learning data set acquired in step S13, that is, the control parameters and the control parameters of the output layer generated in step S13. It is carried out (step S15).
  • the machine learning performed here is, for example, to compare the control parameters constituting the teacher data and the control parameters constituting the output layer, detect an error between them, and obtain an output layer in which this error becomes small. , It may be a process (backpropagation) for adjusting the weight associated with each node in the neural network model before learning.
  • control parameter output to the output layer of the neural network model before training are the same number and format as the teacher data in the training data set as the training target. Therefore, for example, when the control parameter as the teacher data in the training data set is composed of the data corresponding to the two control parameters, the control parameter output to the output layer by the neural network model is also the two control parameters. It should be the corresponding data.
  • step S15 When machine learning is performed in step S15, whether or not it is necessary to continue machine learning is determined based on, for example, the remaining number of unlearned learning data sets stored in the learning data set storage unit 22. (Step S16). Then, when the machine learning is continued (No in step S16), the process returns to step S13, and when the machine learning is finished (Yes in step S16), the process proceeds to step S17.
  • the steps S13 to S15 are performed a plurality of times on the neural network model being trained by using the unlearned learning data set. The accuracy of the finally generated trained model generally tends to increase in proportion to this number of times.
  • step S16 When machine learning is terminated (Yes in step S16), the neural network generated by adjusting the weights associated with each node by a series of steps is stored in the trained model storage unit 24 as a trained model. (Step S17), a series of learning processes is completed.
  • the trained model stored here can be applied to various data processing systems and used, and specific examples of the data processing systems will be described later.
  • one machine learning process is repeatedly executed for one (pre-learning) neural network model.
  • the present disclosure is not limited to this acquisition method, although the method of improving the inference accuracy and obtaining a trained model sufficient for application to a data processing system is explained in the above.
  • a plurality of trained models that have undergone machine learning a predetermined number of times are stored as one candidate in a plurality of trained model storage units 24, and a common data set for determining validity is stored in the plurality of trained model groups.
  • One of the best trained models to apply to a data processing system by inputting the input data of to generate an output layer (value of neurons) and comparing the accuracy of the control parameters identified in this output layer. You may choose.
  • the validity determination data set may be any data set that is the same as the learning data set used for learning and is not used for learning.
  • a pre-generated trained model for arbitrary image recognition may be used instead of the pre-learning neural network model in which the node weight prepared in step S12 is set to the initial value.
  • a pre-generated trained model for arbitrary image recognition may be used.
  • a desired trained model is generated by so-called fine tuning or transfer learning. Therefore, a highly accurate trained model can be generated with a smaller number of training data sets as compared with the above-mentioned normal machine learning process.
  • FIG. 7 is a schematic block diagram showing a data processing system 80 according to the first embodiment of the present disclosure.
  • the data processing system 80 according to the present embodiment the one applied in the control unit 30 of the horizontal decanter 1 described above is exemplified.
  • the data processing system 80 mainly includes a first image data acquisition unit 81, a parameter adjustment unit 82, an arithmetic unit 83, a database (DB) 84, a user interface 85, and the like. It may include an internal bus 86 for interconnecting. Note that, in FIG. 7, only the components related to the data processing system 80 are shown, and the description of other components not directly related to the data processing system 80 according to the present embodiment of the control unit 30 is omitted. ing.
  • the first image data acquisition unit 81 may be for acquiring image data, specifically, image data of the dehydrated solid M. Specifically, it can be connected to the above-mentioned dehydrated solids monitoring system 50 and acquire image data captured by the dehydrated solids imaging camera 53 of the dehydrated solids monitoring system 50.
  • the parameter adjustment unit 82 may be for adjusting various control units adjusted by the control unit 30 to realize optimum operation control based on the inference result of the inference unit 87 described later.
  • the parameter adjusting unit 82 controls a drive motor control unit 31 which is connected to the drive motor 4 and can control the rotation speed thereof, and a pump 11a provided in the additive pipe 11c to change the supply amount of the drug.
  • a pump control unit 32 capable of controlling the pump control unit 32, and a differential motor control unit 33 connected to the differential motor 5b and capable of controlling the rotation speed thereof to control the rotation speed of the screw conveyor 3 (relative to the bowl 2). It should be connected to.
  • the parameter adjustment unit 82 according to the present embodiment exemplifies those connected to the above-mentioned three control units, but the connection destinations are set according to the number and types of control parameters output by the inference unit 87. It can be adjusted as appropriate.
  • the arithmetic unit 83 may constitute a processor for realizing various processes in the data processing system 80, and may include at least an inference unit 87. Further, the arithmetic unit 83 may be connected to the trained model storage unit 88 that stores the trained model used in the inference unit 87.
  • the inference unit 87 uses the parameter adjustment unit 82 to obtain image data as a state variable acquired by the first image data acquisition unit 81 by referring to one trained model stored in the trained model storage unit 88. It may infer the control parameters to be adjusted.
  • a plurality of trained models stored in the trained model storage unit 88 are stored according to the intended use and various conditions (for example, environmental conditions such as season, weather and temperature / humidity, type of liquid to be treated, etc.). It is preferable to have it. In relation to this, the work of selecting an appropriate trained model from a plurality of trained models may be automatically selected using various sensors or the like, or may be manually selected by an operator EN or the like. You may be able to select it.
  • the database 84 is made of a well-known recording medium, and temporarily or continuously stores various data handled by the data processing system 80, such as image data acquired by the first image data acquisition unit 81 and calculation results by the calculation unit 83. It may be for the purpose of doing.
  • the user interface 85 is composed of, for example, a GUI (graphical user interface), and may be for receiving a status display of the decanter 1, an input operation from an operator EN, or the like.
  • FIG. 8 is a flowchart showing an example of parameter adjustment by the data processing system 80 according to the first embodiment of the present disclosure.
  • the data processing system 80 first determines whether or not it is the timing of parameter adjustment (step S21).
  • the timing for adjusting the control parameters can be automatically specified or manually adjusted.
  • the adjustment may be performed periodically at predetermined time intervals while the decanter 1 is operating. For example, when the operation of the decanter 1 is started, the type of the liquid to be treated by the decanter 1 may be changed.
  • the change is predetermined.
  • the adjustment may be made only at a specific timing such as when the threshold value of is exceeded.
  • step S21 When it is detected that it is the timing of parameter adjustment (Yes in step S21), the dehydrated solid imaging camera 53 in the dehydrated solid monitoring system 50 is operated to detect the dehydrated solid M passing through the solid discharge conduit 7. Image is taken (step S22). The image data captured here is acquired by the first image data acquisition unit 81 in the data processing system 80 (step S23).
  • the image data acquired by the first image data acquisition unit 81 is sent to the inference unit 87 via the internal bus 86, and in the inference unit 87, this image data is stored in the trained model previously specified in the inference unit 87.
  • the control parameters are inferred by being input to the input layer of one trained model in the unit 88 (step S24).
  • the parameter adjustment unit 82 adjusts each control unit using the value of the control parameter inferred here (step S25). After that, the process returns to step S21 to enter the standby state.
  • the preferable control parameters of the decanter 1 can be estimated based on the relatively easy-to-acquire information such as the image data of the dehydrated solid matter. Therefore, the data processing system 80. Can be applied to Decanter 1 relatively easily. Then, the adjustment of the control parameter can be easily performed without depending on the judgment of the operator EN or the like.
  • the processing system 80 is not limited to this. Specifically, for example, the accuracy may be further improved by further applying online learning to the trained model generated through the above-mentioned learning by batch learning.
  • the image data as a state variable acquired by the first image data acquisition unit 81 and the control parameters inferred by the inference unit 87, particularly the adjustment in the parameter adjustment unit 82.
  • control parameters when the solid-liquid separation processing result is improved are temporarily stored in the database 84 as a set of online learning data sets. Then, machine learning (specifically, fine tuning) similar to that shown in FIG. 6 may be executed using the online learning data set accumulated in the database 84 at an arbitrary timing.
  • the above-mentioned data processing system 80 is applied in the control unit 30 of the horizontal decanter 1, but instead of this, for example, a computer communicably connected to the control unit 30 of the decanter 1 or a decanter 1 can be used. It can also be applied to a server device or the like connected to the control unit 30 via a network or the like.
  • the centrifugal separation system mainly assumed for sludge treatment in this embodiment is based on the treatment content (type of liquid to be treated, treatment amount per unit time, etc.) and surrounding environment (climate, etc.). It is usually the case that it varies greatly from one to another.
  • machine learning device the machine learning method, and the data processing system according to the second embodiment shown below are the same as those according to the first embodiment, and the centrifugal separation system shown in FIGS. 1 and 2 is used.
  • the explanation is given by taking the case of application as an example. Furthermore, all the modifications described in each of the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
  • FIG. 9 is a schematic block diagram of the machine learning device 20A according to the second embodiment of the present disclosure.
  • the machine learning device 20A according to the present embodiment has, as its components, a first learning data set storage unit 221 and a second learning data as a learning data set storage unit. It may be the same as the machine learning device 20 according to the first embodiment except that the set storage unit 222 is included and the learning unit includes the first learning unit 231 and the second learning unit 232. Further, in connection with this, the plurality of data acquired by the learning data set acquisition unit 21 may also be different from those of the first embodiment.
  • a plurality of data acquired by the learning data set acquisition unit 21 according to the present embodiment can be acquired from a computer PC 1 or the like, and the plurality of data include image data of the dehydrated solid M and control parameters.
  • the feature amount of the image data of the dehydrated solid matter M (hereinafter, also referred to as “characteristic amount of the dehydrated solid matter M”) may be included.
  • the feature amount of the dehydrated solid M various information specified based on the imaged dehydrated solid M can be adopted. Specifically, for example, one or a plurality of water content, color value, density and the like of the dehydrated solid M can be included. This feature amount can be specified, for example, by actually sampling the dehydrated solid M and measuring and analyzing it using various measuring instruments or the like, or by visually determining by the operator EN.
  • the dehydrated solid M monitoring system 50A adopts a configuration capable of sampling and extracting the dehydrated solid M.
  • the dehydrated solids monitoring system 50A has a tray 54 including a predetermined depth in which the dehydrated solids M can be filled, and the tray 54 can be placed inside. It can include a photographing box 55 having a light source inside, and a camera 53 for capturing a dehydrated solid that can image the surface of the dehydrated solid M filled in the tray 54 from a predetermined angle of view.
  • the dehydrated solid M filled in the tray 54 is extracted at a predetermined timing using a sampling unit (not shown) provided at an appropriate position in the dehydrated solid M transport path such as the solid discharge conduit 7 or the main transport path 7a. It may be the one that was done. Then, image data is generated by imaging the dehydrated solid M extracted in the tray 54 with the dehydrated solid imaging camera 53, and a desired control parameter corresponding to the image data is specified by the operator EN or the like. .. Further, by measuring and analyzing the dehydrated solid M sampled in the tray 54, the characteristic amount of the dehydrated solid M can be specified. As a matter of course, also in the present embodiment, the dehydrated solid matter monitoring system 50 described in the above-described first embodiment can be adopted as an alternative.
  • the plurality of data acquired in the learning data set acquisition unit 21 are the first learning data set storage unit 221 and the second learning data set as two learning data sets while considering their respective correspondences. It may be stored separately in the storage unit 222.
  • the first learning data set stored in the first learning data set storage unit 221 is the image data of the dehydrated solid M obtained by imaging the dehydrated solid M discharged from the discharge port 2a from a predetermined angle. It may be included as the input data of No. 1 and may include the feature amount of the dehydrated solid M associated with the first input data as the first output data.
  • the second learning data set stored in the second learning data set storage unit 222 includes the feature amount of the dehydrated solid M as the second input data and is associated with the second input data.
  • the control parameter may be included as the second output data.
  • the control parameters are divided into a set of the image data of the dehydrated solid M and the feature amount of the dehydrated solid M and a set of the feature amount of the dehydrated solid M and the control parameter, and each of them is the first and the first. It may be the training data set of 2.
  • the first and second learning data sets after the division are referred to in different learning units described later, they are not stored in a format that maintains the relationship. You can do it.
  • the first and second learning data sets stored in the first learning data set storage unit 221 and the second learning data set storage unit 222, respectively, are referred only to different learning units. It may be there.
  • the first learning unit 231 learns a learning model that infers the correlation between the first input data and the first output data by inputting a plurality of sets of the first learning data sets. good.
  • the first learning unit 231 inputs the image data of the dehydrated solid M in the first learning data set, so that the feature amount of the dehydrated solid M in the image data, that is, the image data It may be the one that learns the first learning model that infers the feature quantity of.
  • the second learning unit 232 learns a learning model that infers the correlation between the second input data and the second output data by inputting a plurality of sets of the second learning data sets. It may be there. In other words, the second learning unit 232 may learn the second learning model for inferring the control parameter by inputting the feature amount of the image data in the second learning data set. ..
  • the specific machine learning methods in the first and second learning units 231 and 232 are the same as the supervised learning process shown in FIG. 6, although the learning data set used for learning is different. be able to. Then, the first and second trained models obtained through a series of machine learning steps may be stored in the trained model storage unit 24, respectively.
  • FIG. 10 is a schematic block diagram showing a data processing system 80A according to the second embodiment of the present disclosure.
  • the data processing system 80A according to the present embodiment has the above-mentioned first inference unit except that the inference unit 83 includes the first inference unit 871 and the second inference unit 872. It may include the same components as the data processing system 80 according to the first embodiment.
  • the first inference unit 871 may execute inference using the first trained model generated by the machine learning device 20A described above and stored in the trained model storage unit 88. Therefore, when the image data of the dehydrated solid M acquired by the first image data acquisition unit 81 is input, the first inference unit 871 can output the feature amount of the image data to the output layer. can. Further, the second inference unit 872 may execute inference using the second trained model generated by the machine learning device 20A described above and stored in the trained model storage unit 88. Therefore, the second inference unit 872 can output the control parameter to the output layer when the feature amount of the image data inferred by the first inference unit 871 is input.
  • the same processing as that shown in FIG. 8 may be performed. ..
  • the control parameter in step S24 when inferring the control parameter in step S24, first, the image data of the dehydrated solid M is input to the first inference unit 871, and the feature amount of the output image data is determined. It will be input to the inference unit 872 of 2.
  • the feature amount of the image data having a large degree of correlation with the image data of the dehydrated solid matter M as compared with the control parameters can be obtained.
  • the control parameters are inferred using the feature amount of the image data having a larger degree of correlation with the control parameters than the image data of the dehydrated solid M, and each learning capable of inferring with sufficient accuracy is possible. It can be expected that the number of training data sets required to generate a completed model will be relatively reduced.
  • ⁇ Third embodiment> In the machine learning device and the machine learning method according to the first and second embodiments, the one in which only the image data of the dehydrated solid M is adopted as the input data of the learning data set has been described. However, if only the image data of the dehydrated solid M is used as the input data, the number of training data sets required to generate a trained model capable of inferring with sufficient accuracy tends to increase. Therefore, as one aspect for generating a trained model capable of inferring with sufficient accuracy with a smaller number of training data sets, the input data of the training data set shown in the first embodiment described above is used. The case where the number is increased will be described below as a third embodiment of the present disclosure.
  • the components of the machine learning device 20B and the data processing system 80B according to the third embodiment shown below the components of the machine learning device 20 and the data processing system 80 according to the first embodiment.
  • the same reference numerals are given to those common to the above, and the description thereof will be omitted.
  • the machine learning device, the machine learning method, and the data processing system according to the third embodiment shown below are the same as those according to the first and second embodiments, and the centrifuge shown in FIGS. 1 and 2.
  • the explanation is given by taking the case of applying to a separation system as an example. Further, all the modifications described in the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
  • FIG. 11 is a schematic block diagram of the machine learning device 20B according to the third embodiment of the present disclosure.
  • the machine learning device 20B according to the present embodiment includes a third learning data set storage unit 223 as a learning data set storage unit for each component, and a third learning unit as a learning unit. It may be the same as the machine learning apparatus 20 according to the first embodiment described above except that the learning unit 233 is included. Further, the plurality of data acquired by the learning data set acquisition unit 21 may also be different from those according to the first embodiment.
  • the learning data set acquisition unit 21 according to the present embodiment may be connected to the computer PC1 and can acquire desired data from the computer PC1.
  • the computer PC 1 is connected to the control unit 30 and the dehydrated solid matter monitoring system 50 as in the computer PC 1 according to the first embodiment, but in addition to these, the separation liquid monitoring system 40 and the object to be processed. It may be connected to the liquid monitoring system 60 and the screw conveyor torque monitoring system 70.
  • the separation liquid monitoring system 40 is provided in, for example, the separation liquid discharge conduit 8 and monitors the solid content concentration of the separation liquid SL passing through the separation liquid discharge conduit 8. Is preferable.
  • the concentration value of the separated liquid SL may be directly detected using a well-known laser type, optical type, or ultrasonic type concentration sensor.
  • the liquid to be monitored system 60 is arranged, for example, in the liquid pipe 10b to be treated, and monitors the slurry concentration of the liquid to be treated PL1 supplied from the liquid supply source 10 to be treated. It may be there.
  • a specific method for monitoring the slurry concentration for example, a well-known laser-type, optical-type, or ultrasonic-type concentration sensor may be used to directly detect the concentration value of the liquid to be treated.
  • the liquid to be treated monitoring system 60 is provided at a position where it merges with the liquid to be treated pipe 10b, particularly the additive pipe 11c. Instead of this, for example, the liquid to be treated monitoring system 60 is used.
  • the liquid pipe 10b to be treated may be provided at a position before merging with the additive pipe 11c, in the liquid supply pipe 9, or in the space 3c. Further, it is also possible to measure the slurry concentration not with the liquid to be treated PL1 before the chemical is added, but with the floc-containing liquid to be treated PL2 after the chemical is added to the liquid PL1 to be treated.
  • the screw conveyor torque monitoring system 70 can be attached to, for example, the rotating shaft of the screw conveyor 3, and by detecting the reaction force acting on the screw conveyor 3, the screw conveyor 3 can be attached to the screw conveyor 3. The torque value can be monitored.
  • the slurry concentration and the torque value of the screw conveyor 3 can be sent to the computer PC 1 directly or via the control unit 30. Then, it can be sent from the computer PC 1 to the learning data set acquisition unit 21 together with the corresponding desired control parameters.
  • the plurality of data constituting the learning data set acquired by the learning data set acquisition unit 21 are the image data of the dehydrated solid M, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3.
  • the third training data set storage unit 223 Is stored in the third training data set storage unit 223 in the form of a third training data set in which is used as the third input data and the control parameters associated with these data are used as the third output data. It's okay.
  • machine learning is performed by the same method as the machine learning method of the first embodiment described above using the third learning data set, and the obtained third learning unit is obtained.
  • the trained model may be stored in the trained model storage unit 24.
  • the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3 are data of one value.
  • the image data of the dehydrated solid M is the brightness and / or the color value of all the pixels constituting the image data, the total number of data differs greatly. Therefore, if these input data are directly associated with the input layer, the obtained inference result will be relatively greatly affected by the image data of the dehydrated solid M. Therefore, in the present embodiment, in order to adjust the number of data before associating the third input data with the input layer so that the degree of influence of the input data other than the image data of the dehydrated solid M is not too small. It is particularly preferable to perform preprocessing of the data in. Further, the preprocessing can be similarly performed at the time of inference by storing it in the trained model storage unit 24 together with the neural network model obtained as a part of the trained model.
  • FIG. 12 is a schematic block diagram showing a data processing system 80B according to a third embodiment of the present disclosure.
  • the data processing system 80B according to the present embodiment has the first embodiment described above except that the inference unit includes the third inference unit 873 and the additional variable acquisition unit 89. It may include the same components as the data processing system 80 according to the form.
  • the additional variable acquisition unit 89 is connected to the separation liquid monitoring system 40, the liquid to be processed monitoring system 60, and the screw conveyor torque monitoring system 70, and the concentration of the separation liquid SL and the subject to be covered from these monitoring systems.
  • the slurry concentration of the processing liquid PL1 and the torque value of the screw conveyor 3 may be acquired.
  • the concentration of the separation liquid SL acquired by the additional variable acquisition unit 89, the slurry concentration of the liquid to be processed PL1 and the torque value of the screw conveyor 3 are acquired by the first image data acquisition unit 81 from the dehydrated solid matter monitoring system 50. It is preferable that the data is acquired at the same time as the image data is captured.
  • the additional variable acquisition unit 89 acquires the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3 at the same time as or at a predetermined timing before and after step S23. do. Then, these three values are associated with the input layer of the trained model in the third inference unit 873 together with the image data of the dehydrated solid M.
  • the computer PC 1 in addition to the control unit 30 and the dehydrated solid matter monitoring system 50, the computer PC 1 includes a separation liquid monitoring system 40, a liquid to be processed monitoring system 60, and a screw conveyor torque.
  • a separation liquid monitoring system 40 for example, a liquid to be processed monitoring system 60, and a screw conveyor torque.
  • three values are connected to the monitoring system 70 and the three values obtained from these are used as input data of a training data set together with image data, but the present disclosure is limited to this. Not done. Specifically, if at least one of the values acquired by the separation liquid monitoring system 40, the liquid to be processed monitoring system 60, and the screw conveyor torque monitoring system 70 is used as input data of the learning data set. good. The same applies to the number of information acquired by the additional variable acquisition unit 89.
  • the concentration of the separation liquid SL and the liquid to be treated PL1 in addition to the image data of the dehydrated solid M as input data, the concentration of the separation liquid SL and the liquid to be treated PL1 By adopting the slurry concentration and the torque value of the screw conveyor 3, it becomes easy to identify the correlation between the input data and the output data in the learning stage of the neural network model. This can be expected to reduce the number of training data sets required to generate each trained model that can be reasoned with sufficient accuracy.
  • the number of training data sets required to generate a trained model capable of inferring with sufficient accuracy is determined by the first embodiment. It is an example showing an embodiment that can be less than the number in the thing. And both embodiments can be combined. Therefore, the case where the technical ideas shown in the second embodiment and the third embodiment described above are combined will be described below as the fourth embodiment of the present disclosure.
  • the machine learning devices 20, 20A and 20B according to the first to third embodiments are the same reference numerals are given to those common to the respective components of the data processing systems 80, 80A and 80B, and the description thereof will be omitted.
  • the machine learning device, the machine learning method, and the data processing system according to the third embodiment shown below are the same as those according to the first to third embodiments, and the centrifuge shown in FIGS. 1 and 2. The explanation is given by taking the case of applying to a separation system as an example. Further, all the modifications described in the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
  • FIG. 13 is a schematic block diagram of the machine learning device 20C according to the fourth embodiment of the present disclosure.
  • the machine learning device 20C according to the present embodiment has, as its components, a first learning data set storage unit 221 and a fourth learning data as a learning data set storage unit. It may be the same as the machine learning device 20 according to the first embodiment except that the set storage unit 224 is included and the learning unit includes the first learning unit 231 and the fourth learning unit 234. Further, in connection with this, the plurality of data acquired by the learning data set acquisition unit 21 may also be different from the first embodiment.
  • the learning data set acquisition unit 21 may be connected to the computer PC1 and can acquire desired data from the computer PC1.
  • the computer PC1 is connected to the control unit 30 and the dehydrated solid matter monitoring system 50A as in the computer PC1 according to the second embodiment, but in addition to these, the separation liquid monitoring system 40 and the liquid to be treated It may also be connected to at least one of the monitoring system 60 and the screw conveyor torque monitoring system 70.
  • the specific configurations of the control unit 30, the dehydrated solid matter monitoring system 50A, the separated liquid monitoring system 40, the processed liquid monitoring system 60, and the screw conveyor torque monitoring system 70 connected to the computer PC 1 are the other implementations already described above. It may be the same as that exemplified in the form of.
  • the plurality of data acquired by the learning data set acquisition unit 21 in the present embodiment include the image data of the dehydrated solid M and the control parameters, the concentration of the separation liquid SL, and the slurry of the liquid to be treated PL1. At least one of the concentration and the torque value of the screw conveyor 3 and the characteristic amount of the dehydrated solid M can be included.
  • the computer PC 1 is connected to all of the separation liquid monitoring system 40, the liquid to be processed monitoring system 60, and the screw conveyor torque monitoring system 70 for learning. It is exemplified that the plurality of data acquired by the data set acquisition unit 21 include all of the concentration of the separation liquid SL, the slurry concentration of the liquid to be processed PL1, and the torque value of the screw conveyor 3.
  • the plurality of data acquired in the learning data set acquisition unit 21 are the first learning data set storage unit 221 and the fourth learning data set as two learning data sets while considering their respective correspondences. It may be stored separately in the storage unit 224.
  • the first learning data set stored in the first learning data set storage unit 221 is the image data of the dehydrated solid M obtained by imaging the dehydrated solid M discharged from the discharge port 2a from a predetermined angle. It may be included as the input data of No. 1 and may include the feature amount of the dehydrated solid M associated with the first input data as the first output data.
  • the fourth learning data set stored in the fourth learning data set storage unit 224 includes the feature amount of the dehydrated solid M, the concentration of the separation liquid SL, and the slurry concentration of the liquid to be treated PL1.
  • the torque value of the screw conveyor 3 may be included as the fourth input data, and the control parameter associated with the fourth input data may be included as the fourth output data.
  • the image data of the dehydrated solid M associated with the same dehydrated solid M, the concentration of the separation liquid SL, and the object to be processed The slurry concentration of the liquid PL1, the torque value of the screw conveyor 3, the feature amount and the control parameter of the dehydrated solid M, the set of the image data of the dehydrated solid M and the feature amount of the dehydrated solid M, and the concentration of the separated liquid SL.
  • the slurry concentration of the liquid to be treated PL1, the torque value of the screw conveyor 3, the feature amount of the separation liquid SL, and the control parameters are divided into sets, which are used as one first and fourth learning data sets. Just do it.
  • the first and fourth learning data sets stored in the first learning data set storage unit 221 and the fourth learning data set storage unit 224, respectively, are referred only to different learning units. It may be there.
  • the first learning unit 231 learns a learning model for inferring the correlation between the first input data and the first output data by inputting a plurality of sets of the first learning data sets. good. In other words, the first learning unit 231 learns the first learning model for inferring the feature amount of the image data by inputting the image data of the dehydrated solid M in the first learning data set. It may be something to do.
  • the fourth learning unit 234 learns a learning model that infers the correlation between the fourth input data and the fourth output data by inputting a plurality of sets of the fourth learning data sets.
  • the fourth learning unit 234 has the feature amount of the image data in the fourth learning data set, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3. By inputting and, the fourth learning model for inferring the control parameter may be learned.
  • the specific machine learning methods in the first and fourth learning units 231 and 234 are the same as the supervised learning process shown in FIG. 6, although the learning data set used for learning is different. You can do it. Then, the first and fourth trained models obtained through a series of machine learning steps can be stored in the trained model storage unit 24, respectively.
  • FIG. 14 is a schematic block diagram showing a data processing system 80C according to a fourth embodiment of the present disclosure.
  • the data processing system 80C according to the present embodiment includes a first inference unit 871 and a fourth inference unit 874 as inference units in the arithmetic unit 83, and is an additional variable acquisition unit.
  • the point including 89 it may include the same components as the data processing system 80 according to the first embodiment described above.
  • the additional variable acquisition unit 89 can be connected to the separation liquid monitoring system 40, the processing liquid monitoring system 60, and the screw conveyor torque monitoring system 70, and from these monitoring systems, the concentration of the separation liquid SL and the subject.
  • the slurry concentration of the processing liquid PL1 and the torque value of the screw conveyor 3 may be acquired.
  • the first inference unit 871 may execute inference using the first trained model generated by the machine learning device 20C described above and stored in the trained model storage unit 88. Therefore, when the image data of the dehydrated solid M acquired by the first image data acquisition unit 81 is input, the first inference unit 871 can output the feature amount of the image data to the output layer. can.
  • the fourth inference unit 874 may execute inference using the fourth trained model generated by the machine learning device 20C described above and stored in the trained model storage unit 88. Therefore, the fourth inference unit 874 has the feature amount of the image data inferred by the first inference unit 871, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3. When is input, the control parameters can be output to the output layer.
  • control parameters are adjusted in the decanter 1 to which the data processing system 80C including the additional variable acquisition unit 89 described above and the first and fourth inference units 871 and 874 are applied, the control parameters are adjusted as shown in FIG.
  • the same processing may be performed.
  • the additional variable acquisition unit 89 acquires the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3 at the same time as or at a predetermined timing before and after step S23. Further includes steps to be performed.
  • step S24 when inferring the control parameters in step S24, first, the image data of the dehydrated solid M is input to the first inference unit 871, and the feature amount of the output image data is acquired by the additional variable acquisition unit 89. It is input to the fourth inference unit 874 together with the two values.
  • the training data set required to generate each trained model capable of inferring with sufficient accuracy. It can be expected that the number will be further suppressed as compared with the second and third embodiments described above.
  • the image data included in the input data in the first to fourth embodiments described above is only the image data of the dehydrated solid M.
  • the image data that can be adopted as the input data exists in addition to the image data of the dehydrated solid matter M. Therefore, as the fifth embodiment, the image data included in the input data including the image data of the floc-containing liquid to be treated PL2 in addition to the image data of the dehydrated solid M will be described below.
  • the machine learning devices 20, 20A to 20C, and the machine learning devices 20, 20A to 20C according to the first to fourth embodiments are the components of the machine learning device 120 and the data processing system 180 according to the fifth embodiment shown below.
  • FIG. 15 is a schematic block diagram of the machine learning device 120 according to the fifth embodiment of the present disclosure. As shown in FIG. 15, the machine learning device 120 according to the present embodiment has learned the learning data set acquisition unit 121, the fifth learning data set storage unit 225, and the fifth learning unit 235. It may include a model storage unit 124.
  • the learning data set acquisition unit 121 is the same as the learning data set acquisition unit 21 shown in the first embodiment, and a plurality of learning data sets constituting the learning data set via a wired or wireless communication line. It may be an interface unit that acquires the data of.
  • this learning data set acquisition unit 121 as a plurality of data, the first image data in which the dehydrated solid M is imaged, the second image data in which the floc-containing liquid to be treated PL2 is imaged, and these image data are used.
  • the associated control parameters can be acquired. Further, as the control parameters according to the present embodiment, those including the supply amount of the chemicals added to the liquid to be treated PL1, the centrifugal force of the bowl 2, and the differential speed controlled by the differential speed generator 5 are exemplified.
  • the learning data set acquisition unit 121 can acquire desired data from the computer PC1 by being connected to the computer PC1.
  • the computer PC 1 is directly or indirectly connected to the liquid to be monitored system 60 installed in the liquid to be treated pipe 10b in addition to the control unit 30 and the dehydrated solid matter monitoring system 50, either directly or via the control unit 30. It is good to be there.
  • each control parameter can be acquired from the control unit 30, the first image data can be acquired from the dehydrated solid matter monitoring system 50, and the second image data can be acquired from the liquid to be processed monitoring system 60.
  • the liquid to be monitored system 60 is connected to an arbitrary position downstream of the connection position of the liquid to be treated 10b with at least the additive pipe 11c.
  • a camera 63 for capturing the floc-containing liquid to be processed which is installed at a predetermined angle on the sight glass 61 and the window 62 provided in the sight glass 61 and can capture the image data of the floc-containing liquid to be treated PL2 flowing in the sight glass 61.
  • a well-known camera capable of capturing a two-dimensional image can be adopted as the flock-containing liquid to be image-imaging camera 63.
  • the flock-containing subject in the sight glass 61 is easily reflected in the image data captured by the camera 63 for capturing the flock-containing liquid to be treated.
  • a light source (not shown) that illuminates the treatment liquid PL2 and a polarization filter (not shown) that can be attached to the flock-containing liquid to be processed image capturing camera 63 can be appropriately adopted.
  • the configuration of the liquid to be treated monitoring system 60 is not limited to this, and various configurations can be adopted as long as the image data of the liquid to be treated PL2 containing flocs can be acquired.
  • the flock-containing liquid to be imaged camera 63 images the inside of the space 3c inside the screw conveyor 3.
  • a configuration arranged at a possible position may be adopted, or a configuration such as the liquid to be monitored system 60A shown in FIG. 19 described later may be adopted.
  • FIG. 16 shows an example of image data obtained by the flock-containing liquid to be image imaging camera 63 of the liquid to be treated monitoring system 60 according to the fifth embodiment of the present disclosure.
  • the reaction is satisfactorily advanced due to, for example, insufficient drug supply. It can be inferred that the amount of change in color between pixels tends to increase as compared with the image data that does not exist (for example, the one shown in FIG. 16B).
  • the fifth learning data set storage unit 225 associates a plurality of data constituting the learning data set acquired by the learning data set acquisition unit 121 with related input data and output data to form one learning data. It may be a database for storing as a set.
  • the fifth learning data set stored in the fifth learning data set storage unit 225 in the present embodiment the first image of the dehydrated solid material M discharged from the discharge port 2a is taken from a predetermined angle.
  • the second image data obtained by capturing the floc-containing liquid to be treated PL2 from a predetermined angle of view before being supplied to the bowl 2 and after the drug is added, as the fifth input data.
  • the control parameter associated with the image data as the fifth input data can be the fifth output data.
  • the control parameters include at least one of the centrifugal force of the bowl 2, the supply amount of the drug from the additive supply source 11, and the difference speed between the bowl 2 and the screw conveyor 3, as in the first embodiment described above. It may include one.
  • the fifth learning unit 235 can input the fifth input data and the fifth output data by inputting a plurality of sets of the fifth learning data set stored in the fifth learning data set storage unit 225. It may be one that learns a learning model that infers the correlation between them. Also in this embodiment, as in the first embodiment described above, supervised learning using a neural network is adopted as a specific method of machine learning. The specific machine learning method in the fifth learning unit 235 is the same as the machine learning method according to the first embodiment shown in FIG. 6, although the learning data set used for learning is different. You can do it. Further, the trained model storage unit 124 may be a database for storing the trained model generated by the fifth learning unit 235.
  • FIG. 17 is a schematic block diagram showing a data processing system 180 according to the fifth embodiment of the present disclosure.
  • the data processing system 180 mainly includes a first image data acquisition unit 81, a second image data acquisition unit 181, a parameter adjustment unit 82, and an arithmetic unit 183. , A database 84, a user interface 85, and an internal bus 86.
  • the first image data acquisition unit 81, the parameter adjustment unit 82, the database 84, the user interface 85, and the internal bus 86 are the data processing system 80 according to the first embodiment described above. The same thing as the one can be adopted. Therefore, these components are designated by the same reference numerals as those of the first embodiment, and the description thereof will be omitted.
  • the second image data acquisition unit 181 may be for acquiring the second image data. Specifically, it is connected to the liquid to be processed monitoring system 60 and acquires the second image data which is the image data of the liquid to be treated PL2 containing flock imaged by the camera 63 for capturing the liquid to be treated containing flock. It may be there.
  • the arithmetic unit 183 may constitute a processor for realizing various processes in the data processing system 180, and may include at least a fifth inference unit 875. Further, the arithmetic unit 183 is connected to a trained model storage unit 188 that stores a trained model used in the fifth inference unit 875, that is, a fifth trained model learned in the fifth learning unit 235. ing.
  • the fifth inference unit 875 is the second as a state variable acquired by the first and second image data acquisition units 81 and 181 by taking into consideration one trained model stored in the trained model storage unit 188.
  • the control parameters to be adjusted by the parameter adjustment unit 82 may be inferred from the first and second image data.
  • FIG. 18 is a flowchart showing an example of parameter adjustment by the data processing system according to the fifth embodiment of the present disclosure.
  • the data processing system 180 first determines whether or not it is the timing of parameter adjustment (step S21).
  • the dehydrated solid image imaging camera 53 in the dehydrated solid monitoring system 50 and the floc-containing processed liquid imaging camera in the processed liquid monitoring system 60 are detected.
  • 63 is operated to image the dehydrated solid M passing through the solid discharge conduit 7 and the floc-containing liquid to be treated PL2 flowing in the liquid pipe 10b to be treated (step S221).
  • the first and second image data captured here are acquired in the data processing system 180 by the first and second image data acquisition units 81 and 181 (step S231).
  • the first and second image data acquired by the first and second image data acquisition units 81 and 181 are sent to the fifth inference unit 875 via the internal bus 86, and these image data are sent to the fifth inference unit 875.
  • the control parameter is inferred by being input to the input layer of one trained model in the trained model storage unit 188 previously specified in the inference unit 875 of the fifth (step S24).
  • the parameter adjustment unit 82 adjusts each control unit using the value of the control parameter inferred here (step S25). After that, the process returns to step S21 to enter the standby state.
  • the machine learning device 120 and the machine learning method according to the present embodiment by adopting two image data as input data, the input data can be compared with the case of only one image data. It is expected that the correlation with the output data will be easy to learn, and it will be possible to generate each trained model that can be inferred with sufficient accuracy with a relatively small number of training data sets.
  • preferable control parameters of the decanter 1 can be estimated from only two image data, that is, the image data of the dehydrated solid M and the image data of the floc-containing liquid to be treated PL2. Therefore, this data processing system 180 can be applied to the decanter 1 relatively easily. Then, the adjustment of the control parameter can be easily performed without depending on the judgment of the operator EN.
  • the machine learning device, the machine learning method, and the data processing system according to the fifth embodiment the one inferring the control parameters from the first and second image data using one trained model will be described. rice field.
  • the sixth embodiment of the present disclosure is a case where a plurality of trained models are used to infer control parameters from the first and second image data. The form of the above will be described below.
  • each component of the machine learning device 120 and the data processing system 180 according to the fifth embodiment are given to those common to the above, and the description thereof will be omitted.
  • machine learning device the machine learning method, and the data processing system according to the sixth embodiment shown below are the same as those according to the first to fifth embodiments, and the centrifuge shown in FIGS. 1 and 2.
  • the explanation is given by taking the case of applying to a separation system as an example.
  • all the modifications described in each of the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
  • FIG. 19 is a schematic block diagram of the machine learning device 120A according to the sixth embodiment of the present disclosure.
  • the machine learning device 120A according to the present embodiment has, as its components, a first learning data set storage unit 221 and a sixth learning data as a learning data set storage unit.
  • a fifth except that it includes a set storage unit 226 and a seventh learning data set storage unit 227, and includes a first learning unit 231 and a sixth learning unit 236 and a seventh learning unit 237 as learning units. It may be the same as the machine learning device 120 according to the embodiment. Further, in connection with this, the plurality of data acquired by the learning data set acquisition unit 121 may also be different from those of the fifth embodiment.
  • the first learning data set storage unit 221 and the first learning unit 231 can be the same as those described in the machine learning device 20A according to the second embodiment described above. , The same reference numerals as those of the second embodiment are designated, and the description thereof will be omitted.
  • the plurality of data acquired by the learning data set acquisition unit 121 includes the first and second image data, the control parameters, the feature amount of the dehydrated solid M, and the flocs.
  • the feature amount of the second image data obtained by imaging the liquid to be treated PL2 (hereinafter, also referred to as "feature amount of the floc-containing liquid to be treated PL2") may be included.
  • feature amount of the flock-containing liquid to be treated PL2 various information specified based on the imaged flock-containing liquid to be treated PL2 can be adopted. Specifically, for example, the size, color value, density, etc. of floc aggregates can be included one or more. This feature amount can be specified, for example, by actually sampling the floc-containing liquid to be treated PL2 and measuring and analyzing it using various measuring instruments or the like, or by visually determining by the operator EN.
  • the liquid to be treated monitoring system 60A can acquire the second image data after sampling and extracting the floc-containing liquid to be treated PL2. It is preferable to adopt.
  • the branch pipe 64 provided in the liquid to be treated pipe 10b, the valve 65 provided in the branch pipe 64, and the end of the branch pipe 64 are arranged.
  • a transparent container 66 and a flock-containing liquid to be image-imaging camera 63 installed on the side surface of the transparent container 66 can be adopted.
  • the arrangement of the flock-containing liquid to be processed image imaging camera 63 is not limited to this, and for example, the container 66 may be installed at a position where imaging can be performed from above.
  • the valve 65 is opened at an arbitrary timing to sample and extract the floc-containing liquid to be treated PL2 flowing in the liquid to be treated pipe 10b into a transparent container 66.
  • the image data of the flock-containing liquid to be treated PL2 can be generated by imaging the flock-containing liquid to be treated PL2 in the container 66 with the flock-containing liquid to be image-imaging camera 63, and the corresponding desired control parameter is the operator EN. Can be identified by. Further, by measuring and analyzing the floc-containing liquid to be treated PL2 sampled in the container 66, the characteristic amount of the floc-containing liquid to be treated PL2 can be specified.
  • the plurality of data acquired in the learning data set acquisition unit 121 are the first learning data set storage unit 221 and the sixth learning data set as three learning data sets while considering their respective correspondences. It may be stored separately in the storage unit 226 and the seventh learning data set storage unit 227.
  • the first learning data set stored in the first learning data set storage unit 221 captures the first image data obtained by capturing the dehydrated solid M discharged from the discharge port 2a from a predetermined angle. It may be included as input data and may include the feature amount of the dehydrated solid M associated with the first input data as the first output data.
  • the sixth learning data set stored in the sixth learning data set storage unit 226 contains the floc-containing liquid to be treated PL2 before being supplied to the bowl 2 and after the drug is added.
  • the second image data captured from a predetermined angle is included as the sixth input data, and the feature amount of the floc-containing liquid to be treated PL2 associated with the sixth input data is included as the sixth output data. It's okay.
  • the feature amount of the dehydrated solid M and the feature amount of the floc-containing liquid to be treated PL2 are used as the seventh input data. It may include and include the control parameter associated with the seventh input data as the seventh output data.
  • the first learning unit 231 learns a learning model that infers the correlation between the first input data and the first output data by inputting a plurality of sets of the first learning data sets. good. In other words, the first learning unit 231 learns the first learning model that infers the feature amount of the first image data by inputting the first image data in the first learning data set. It may be something to do.
  • the sixth learning unit 236 learns a learning model for inferring the correlation between the sixth input data and the sixth output data by inputting a plurality of sets of the sixth learning data sets. It may be there. In other words, the sixth learning unit 236 learns a sixth learning model that infers the feature amount of the second image data by inputting the second image data in the sixth learning data set. It may be something to do. Further, the seventh learning unit 237 learns a learning model for inferring the correlation between the seventh input data and the seventh output data by inputting a plurality of sets of the seventh learning data sets. It may be there. In other words, the seventh learning unit 237 learns the seventh learning model that infers the control parameters by inputting the features of the first and second image data in the seventh learning data set. It may be something to do.
  • the process is different from the supervised learning process shown in FIG. Both may be the same. Then, the first, sixth, and seventh trained models obtained through a series of machine learning steps can be stored in the trained model storage unit 124, respectively.
  • FIG. 20 is a schematic block diagram showing a data processing system 180A according to the sixth embodiment of the present disclosure.
  • the data processing system 180A according to the present embodiment includes a first inference unit 871, a sixth inference unit 876, and a seventh inference unit 877 as inference units in the arithmetic unit 183.
  • it may include the same components as the data processing system 180 according to the fifth embodiment described above.
  • the first inference unit 871 may execute inference using the first trained model generated by the machine learning device 120A described above and stored in the trained model storage unit 188. Therefore, when the first image data acquired by the first image data acquisition unit 81 is input, the first inference unit 871 can output the feature amount of the first image data to the output layer. can. Further, the sixth inference unit 876 may execute inference using the sixth trained model generated by the machine learning device 120A described above and stored in the trained model storage unit 188. Therefore, when the second image data acquired by the second image data acquisition unit 181 is input, the sixth inference unit 876 can output the feature amount of the second image data to the output layer. can.
  • the seventh inference unit 877 may execute inference using the seventh inference model generated by the machine learning device 120A described above and stored in the trained model storage unit 188. Therefore, the seventh inference unit 877 outputs a control parameter when the feature amounts of the first and second image data inferred by the first inference unit 871 and the sixth inference unit 876 are input. Can be output to.
  • the same as that shown in FIG. 18 described above is used. All you have to do is process it. However, in the process shown in FIG. 18, when the control parameter is inferred in step S24, the first and second image data are first input to the first inference unit 871 and the sixth inference unit 876 and output. The feature quantities of the first and second image data may be input to the seventh inference unit 877.
  • the machine learning device As described above, according to the machine learning device, the machine learning method, and the data processing system according to the present embodiment, by obtaining the inference results of the control parameters using a plurality of trained models, it is possible to infer with sufficient accuracy. It can be expected that the number of training data sets required to generate each possible trained model will be relatively small.
  • machine learning device the machine learning method, and the data processing system according to the seventh embodiment shown below are the same as those according to the first to sixth embodiments, and the centrifuge shown in FIGS. 1 and 2.
  • the explanation is given by taking the case of applying to a separation system as an example.
  • all the modifications described in each of the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
  • FIG. 21 is a schematic block diagram of the machine learning device 120B according to the seventh embodiment of the present disclosure.
  • the machine learning device 120B according to the present embodiment includes an eighth learning data set storage unit 228 as a learning data set storage unit for each component, and an eighth learning data set storage unit 228 as a learning unit. It may be the same as the machine learning device 120 according to the fifth embodiment described above except that the learning unit 238 is included. Further, the plurality of data acquired by the learning data set acquisition unit 121 may also be different from those of the fifth embodiment. As shown in FIG. 21, the learning data set acquisition unit 121 according to the present embodiment can acquire desired data from the computer PC1 by being connected to the computer PC1.
  • the computer PC 1 is connected to the control unit 30, the dehydrated solid matter monitoring system 50, and the liquid to be treated monitoring system 60, similarly to the computer PC 1 according to the fifth embodiment.
  • the separation liquid is connected. It may also be connected to at least one of the monitoring system 40, the liquid concentration sensor 67 to be processed and the screw conveyor torque monitoring system 70.
  • the liquid to be treated concentration sensor 67 is arranged at a predetermined position, for example, before merging with the additive pipe 11c of the liquid to be treated 10b, and is a slurry of the liquid to be treated PL1 supplied from the liquid supply source 10 to be treated. The concentration may be measured directly.
  • the liquid to be treated concentration sensor 67 for example, a well-known laser type, optical type, or ultrasonic type concentration sensor can be used.
  • the computer PC 1 is connected to all of the separation liquid monitoring system 40, the liquid to be processed concentration sensor 67, and the screw conveyor torque monitoring system 70, and a plurality of data set acquisition units 121 for learning acquire.
  • the data includes the slurry concentration of the liquid to be treated PL1, the concentration of the separation liquid SL, and the torque value of the screw conveyor 3 to be exemplified.
  • the separation liquid monitoring system 40 and the screw conveyor torque monitoring system 70 may be the same as those exemplified in the above-mentioned third embodiment, and detailed description thereof will be omitted here.
  • the liquid to be treated concentration sensor 67 is not shown in FIG. 2.
  • the first and second image data, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3 are directly or controlled. It is sent to the computer PC1 via the unit 30. Then, it is sent from the computer PC 1 to the learning data set acquisition unit 121 together with the corresponding desired control parameters.
  • the plurality of data constituting the learning data set acquired by the learning data set acquisition unit 121 include the first and second image data, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the screw conveyor.
  • Eighth training data set storage in the form of an eighth training data set in which the torque value of 3 is used as the eighth input data and the control parameters associated with these data are used as the eighth output data. It may be stored in unit 228. Then, in the eighth learning unit 238, machine learning is performed by the same method as the machine learning method of the fifth embodiment described above using the eighth learning data set, and the obtained eighth learning unit is obtained.
  • the trained model is stored in the trained model storage unit 124.
  • FIG. 22 is a schematic block diagram showing a data processing system 180B according to the seventh embodiment of the present disclosure.
  • the data processing system 180B according to the present embodiment has the fifth embodiment described above except that the inference unit includes the eighth inference unit 878 and the additional variable acquisition unit 89. It may include the same components as the data processing system 180 according to the form.
  • the additional variable acquisition unit 89 is connected to the separation liquid monitoring system 40, the liquid to be processed concentration sensor 67, and the screw conveyor torque monitoring system 70, as shown in FIG. 22, from which the concentration of the separation liquid SL and the subject are to be covered.
  • the slurry concentration of the treatment liquid PL1 and the torque value of the screw conveyor 3 may be acquired.
  • the additional variable acquisition unit 89 acquires the concentration of the separation liquid SL, the slurry concentration of the liquid to be processed PL1, and the torque value of the screw conveyor 3 at the same time as or at a predetermined timing before and after step S231. do. Then, these values are associated with the input layer of the trained model in the eighth inference unit 878 together with the first and second image data.
  • the machine learning device As described above, according to the machine learning device, the machine learning method, and the data processing system according to the present embodiment, as input data, in addition to the first and second image data, the concentration of the separation liquid SL and the data to be processed.
  • the concentration of the separation liquid SL and the data to be processed By adopting the slurry concentration of the liquid PL1 and the torque value of the screw conveyor 3, it becomes easy to identify the correlation between the input data and the output data in the learning stage of the neural network model. This can be expected to reduce the number of training data sets required to generate each trained model that can be reasoned with sufficient accuracy.
  • FIG. 23 is a schematic block diagram of the machine learning device 120C according to the eighth embodiment of the present disclosure.
  • the machine learning device 120C according to the present embodiment has, as its components, a first learning data set storage unit 221 and a sixth learning data as a learning data set storage unit. No. 1 except that the set storage unit 226 and the ninth learning data set storage unit 229 are included, and the learning units include the first learning unit 231 and the sixth learning unit 236 and the ninth learning unit 239. It may be the same as the machine learning device 120 according to the embodiment of 5. Further, in connection with this, the plurality of data acquired by the learning data set acquisition unit 121 may also be different from the fifth embodiment.
  • the learning data set acquisition unit 121 can acquire desired data from the computer PC1 by being connected to the computer PC1.
  • the computer PC1 is connected to the control unit 30, the dehydrated solid matter monitoring system 50A, and the liquid to be treated monitoring system 60A, similarly to the computer PC1 according to the fifth embodiment.
  • the separation liquid is connected. It may also be connected to at least one of the monitoring system 40, the liquid concentration sensor 67 to be processed and the screw conveyor torque monitoring system 70.
  • Specific configurations of the control unit 30, the dehydrated solid matter monitoring system 50A, the processed liquid monitoring system 60A, the separated liquid monitoring system 40, the processed liquid concentration sensor 67, and the screw conveyor torque monitoring system 70 connected to the computer PC1 are.
  • the plurality of data acquired by the learning data set acquisition unit 121 in the present embodiment include the first and second image data, the control parameters, the concentration of the separation liquid SL, and the liquid to be processed PL1. It may contain at least one of the slurry concentration and the torque value of the screw conveyor 3, the characteristic amount of the dehydrated solid M, and the characteristic amount of the floc-containing liquid to be treated PL2.
  • the computer PC 1 is connected to all of the separation liquid monitoring system 40, the liquid to be processed concentration sensor 67, and the screw conveyor torque monitoring system 70 for learning.
  • Examples of the plurality of data acquired by the data set acquisition unit 121 include the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3.
  • the plurality of data acquired in the learning data set acquisition unit 121 are the first learning data set storage unit 221 and the sixth learning data set as three learning data sets while considering their respective correspondences. It may be stored separately in the storage unit 226 and the ninth learning data set storage unit 229.
  • the first learning data set stored in the first learning data set storage unit 221 captures the first image data obtained by capturing the dehydrated solid M discharged from the discharge port 2a from a predetermined angle.
  • the feature amount of the first image data associated with the first input data may be included as the first output data.
  • the sixth learning data set stored in the sixth learning data set storage unit 226 contains a floc-containing liquid to be treated PL2 before being supplied to the bowl 2 and to which a chemical is added.
  • the second image data captured from the corner may be included as the sixth input data, and the feature amount of the second image data associated with the sixth input data may be included as the sixth output data.
  • the ninth learning data set stored in the ninth learning data set storage unit 229 includes the feature amount of the first image data, the feature amount of the second image data, and the concentration of the separation liquid SL.
  • the slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3 are included as the ninth input data, and the control parameter associated with the ninth input data is included as the ninth output data. It's okay.
  • the first learning unit 231 learns a learning model that infers the correlation between the first input data and the first output data by inputting a plurality of sets of the first learning data sets. good. In other words, the first learning unit 231 learns the first learning model that infers the feature amount of the first image data by inputting the first image data in the first learning data set. It may be something to do.
  • the sixth learning unit 236 learns a learning model for inferring the correlation between the sixth input data and the sixth output data by inputting a plurality of sets of the sixth learning data sets. It may be there.
  • the sixth learning unit 236 learns a sixth learning model that infers the feature amount of the second image data by inputting the second image data in the sixth learning data set. It may be something to do.
  • the ninth learning unit 239 learns a learning model that infers the correlation between the ninth input data and the ninth output data by inputting a plurality of sets of the ninth learning data sets. It may be there.
  • the ninth learning unit 239 has the feature amounts of the first and second image data in the ninth learning data set, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the screw.
  • the ninth learning model for inferring the control parameter may be learned.
  • the specific machine learning methods in the first, sixth and ninth learning units 231 and 236 and 239 differ from the supervised learning process shown in FIG. 6, although the learning data set used for learning is different. Both may be the same. Then, the first, sixth, and ninth trained models obtained through a series of machine learning steps can be stored in the trained model storage unit 124, respectively.
  • FIG. 24 is a schematic block diagram showing a data processing system 180C according to the eighth embodiment of the present disclosure.
  • the data processing system 180C according to the present embodiment includes a first inference unit 871, a sixth inference unit 876, and a ninth inference unit 879 as inference units in the arithmetic unit 183. It may include the same components as the data processing system 180 according to the fifth embodiment described above, except that it includes the additional variable acquisition unit 89. Of these, as the additional variable acquisition unit 89, the same one as described in the seventh embodiment can be adopted.
  • the first inference unit 871 may execute inference using the first trained model generated by the machine learning device 120C described above and stored in the trained model storage unit 188. Therefore, when the first image data acquired by the first image data acquisition unit 81 is input, the first inference unit 871 can output the feature amount of the first image data to the output layer. can. Further, the sixth inference unit 876 may execute inference using the sixth trained model generated by the machine learning device 120C described above and stored in the trained model storage unit 188. Therefore, when the second image data acquired by the second image data acquisition unit 181 is input, the sixth inference unit 876 can output the feature amount of the second image data to the output layer. can.
  • the ninth inference unit 879 may execute inference using the ninth trained model generated by the machine learning device 120C described above and stored in the trained model storage unit 188. Therefore, the ninth inference unit 879 includes the feature amount of the first image data inferred by the first inference unit 871 and the feature amount of the second image data inferred by the sixth inference unit 876.
  • the control parameters can be output to the output layer.
  • the additional variable acquisition unit 89 acquires the concentration of the separation liquid SL, the slurry concentration of the liquid to be processed PL1, and the torque value of the screw conveyor 3 at the same time as or at a predetermined timing before and after step S231.
  • the steps to be performed can be further included.
  • the first and second image data are input to the first inference unit 871 and the sixth inference unit 876, respectively, and the first and second image data are output.
  • the feature amount of the image data is input to the ninth inference unit 879 together with the three values acquired in the additional variable acquisition unit 89.
  • the training data set required to generate each trained model capable of inferring with sufficient accuracy. It can be expected that the number will be further suppressed as compared with the sixth and seventh embodiments described above.

Abstract

A machine-learning device according to the present disclosure is for a centrifugal separation system, the machine-learning device comprising: a learning data set storage unit that stores a plurality of packs of learning data sets including input data including image data obtained by capturing, from a prescribed view angle, a liquid-containing solid substance discharged from a bowl and output data which is associated with the input data and includes control parameters including at least one among supply amounts of additives added to a liquid to be treated and a differential speed controlled by a centrifugal force of the bowl and a differential speed generation device; a training unit that trains a learning model that infers a correlation between the input data and the output data by inputting the plurality of packs of the learning data sets; and a trained model storage unit that stores the trained model for which the training has been completed.

Description

機械学習装置、データ処理システム及び機械学習方法Machine learning equipment, data processing systems and machine learning methods
 本開示は機械学習装置、データ処理システム及び機械学習方法に関する。 This disclosure relates to machine learning devices, data processing systems and machine learning methods.
 上下水、産業排水、又はし尿等の水処理設備において、遠心力を利用して固液分離を行う遠心分離装置が従来から用いられている。この遠心分離装置としては種々のタイプのものが知られているが、特に長時間連続した処理が必要な設備にあっては、デカンタと称される遠心分離装置が広く用いられている。 Centrifugal separation devices that perform solid-liquid separation using centrifugal force have been conventionally used in water treatment equipment for water and sewage, industrial wastewater, or urine. Various types of centrifuges are known, but a centrifuge called a decanter is widely used, especially in equipment that requires continuous processing for a long time.
 このデカンタは、一般に、駆動モータと、駆動モータにより回転され内部に被処理液が投入されるボウルと、このボウル内に同軸状に配置されるスクリューコンベアと、ボウルの回転速度とスクリューコンベアの回転速度との間に差速を発生させる差速発生装置と、を含み得る。そして、このようなデカンタにおいては、ボウル内に投入された被処理液中の固形物成分はボウルの一端部側から、被処理液中の液体成分はボウルの他端部側からそれぞれ排出されることで、固液分離を実現している。そして、このデカンタにおける好適な動作制御の手法が種々検討されている。(例えば、日本国特許第5442099号明細書照。) This decanter generally has a drive motor, a bowl that is rotated by the drive motor and the liquid to be processed is charged inside, a screw conveyor that is coaxially arranged in the bowl, and the rotation speed of the bowl and the rotation of the screw conveyor. It may include a differential speed generator that generates a differential speed between the speed and the speed. In such a decanter, the solid component in the liquid to be treated charged into the bowl is discharged from one end side of the bowl, and the liquid component in the liquid to be treated is discharged from the other end side of the bowl. As a result, solid-liquid separation is realized. Then, various suitable motion control methods for this decanter have been studied. (For example, refer to Japanese Patent No. 5442099.)
 日本国特許第5442099号明細書に記載された方法によれば、スクリューコンベアの搬送トルクに基づいて、差速発生装置で発生させる差速やボウルの遠心力を制御しているため、被処理液の性状に合わせた遠心分離装置の自動操業を部分的に実現できる。しかし、このような遠心分離装置を含む遠心分離システムの制御に関連する情報やパラメータは、スクリューコンベアの搬送トルク、差速発生装置で発生させる差速及びボウルの遠心力以外にも種々存在する。特に、当該制御対象の制御に影響する情報(具体的には状態変数)は多岐にわたり、且つこのような情報には数値化し難い情報も含まれ得る。そして、これらの状態変数を効果的且つ機械的に参酌する手法は現時点において確立されておらず、結果、このような状態変数は技術者(オペレータ)の経験や暗黙知に基づく判断により、遠心分離システムの動作制御に反映されているのが実情である。 According to the method described in Japanese Patent No. 5442099, the differential speed generated by the differential speed generator and the centrifugal force of the bowl are controlled based on the transport torque of the screw conveyor, so that the liquid to be treated is controlled. It is possible to partially realize the automatic operation of the centrifuge according to the properties of. However, there are various information and parameters related to the control of the centrifuge system including such a centrifuge device other than the transfer torque of the screw conveyor, the differential speed generated by the differential speed generator, and the centrifugal force of the bowl. In particular, there are a wide variety of information (specifically, state variables) that affect the control of the controlled object, and such information may include information that is difficult to quantify. A method for effectively and mechanically considering these state variables has not been established at this time, and as a result, such state variables are centrifuged based on the experience and tacit knowledge of an engineer (operator). The reality is that it is reflected in the operation control of the system.
 本開示は上述の点に鑑み、オペレータの判断に依存することなく遠心分離システムの好適な動作制御を実現するための、機械学習装置、データ処理システム及び機械学習方法を提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a machine learning device, a data processing system and a machine learning method for realizing suitable operation control of a centrifugal separation system without depending on the judgment of an operator. ..
 上記目的を達成するために、本開示の第1の態様に係る機械学習装置20は、例えば図3に示すように、被処理液PL1(図示省略)、PL2(図15等参照)に遠心力を付与して固形物Mと分離液SL(図示省略)とに遠心分離するボウル2と、前記ボウル2内の前記固形物Mを排出口2aに向けて搬送するスクリューコンベア3と、前記ボウル2を回転させる駆動モータ4と、前記スクリューコンベア3を前記ボウル2と相対的な差速をもって回転させる差速発生装置5と、を含む遠心分離システム1のためのものであって、前記排出口2aから排出された液体含有固形物Mを所定画角から撮像した画像データを含む入力データと、前記入力データに対応付けられた制御パラメータを含む出力データとを含む学習用データセットを複数組記憶する学習用データセット記憶ユニット22であって、前記制御パラメータは、前記被処理液PL1に添加される添加物の供給量、前記ボウル2の遠心力、及び前記差速発生装置5により制御される差速のうちの少なくとも1つを含む、前記学習用データセット記憶ユニット22と;前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習する学習ユニット23と;前記学習ユニット23によって学習された前記学習モデルを記憶する学習済モデル記憶ユニット24と;を含むものである。 In order to achieve the above object, the machine learning device 20 according to the first aspect of the present disclosure has centrifugal force on the liquids to be treated PL1 (not shown), PL2 (see FIG. 15 and the like), for example, as shown in FIG. A bowl 2 for centrifuging the solid matter M and the separation liquid SL (not shown), a screw conveyor 3 for transporting the solid matter M in the bowl 2 toward the discharge port 2a, and the bowl 2 For the centrifugal separation system 1 including a drive motor 4 for rotating the screw conveyor 3 and a differential speed generator 5 for rotating the screw conveyor 3 with a relative speed difference from the bowl 2, the discharge port 2a. A plurality of sets of training data sets including input data including image data obtained by capturing the liquid-containing solid material M discharged from the above from a predetermined angle and output data including control parameters associated with the input data are stored. In the learning data set storage unit 22, the control parameters are the supply amount of the additive added to the liquid to be treated PL1, the centrifugal force of the bowl 2, and the difference controlled by the differential speed generator 5. With the training data set storage unit 22 including at least one of the speeds; a learning model for inferring the correlation between the input data and the output data by inputting a plurality of sets of the training data sets. It includes a learning unit 23 for learning; and a trained model storage unit 24 for storing the learning model learned by the learning unit 23.
 このように構成すると、分離液の画像データから遠心分離システムの制御パラメータを推論可能な学習済モデルを提供することができる。 With this configuration, it is possible to provide a trained model that can infer the control parameters of the centrifugal separation system from the image data of the separation solution.
 本開示の第2の態様に係る機械学習装置20Aは、例えば図9に示すように、上記本開示の第1の態様に係る機械学習装置において、前記学習ユニットは、前記学習用データセット内の画像データを入力することで、前記画像データの特徴量を推論する第1の学習モデルを学習する第1の学習ユニット231と;前記画像データの特徴量を入力することで、前記制御パラメータを推論する第2の学習モデルを学習する第2の学習ユニット232と;を含むものである。 The machine learning device 20A according to the second aspect of the present disclosure is, for example, as shown in FIG. 9, in the machine learning device according to the first aspect of the present disclosure, the learning unit is in the learning data set. The first learning unit 231 that learns the first learning model that infers the feature amount of the image data by inputting the image data; and the control parameter is inferred by inputting the feature amount of the image data. Includes a second learning unit 232 and; to learn the second learning model.
 このように構成すると、脱水固形物の画像データから遠心分離システムの制御パラメータを推測するに際し、学習ユニットを2つに分割することで、それぞれの学習ユニットにおいて生成される学習済モデルを得るために必要な学習用データセットの数を相対的に抑えることができる。 With this configuration, when estimating the control parameters of the centrifugation system from the image data of the dehydrated solid, the learning unit is divided into two to obtain the trained model generated in each learning unit. The number of required training data sets can be relatively reduced.
 本開示の第3の態様に係る機械学習装置20Bは、例えば図11に示すように、上記本開示の第1の態様に係る機械学習装置において、前記入力データは、前記分離液SLの濃度と、前記被処理液PL1のスラリー濃度と、前記スクリューコンベア3のトルク値とのうちの少なくとも1つを更に含む。 The machine learning device 20B according to the third aspect of the present disclosure is, for example, as shown in FIG. 11, in the machine learning device according to the first aspect of the present disclosure, the input data is the concentration of the separation liquid SL. Further includes at least one of the slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3.
 このように構成すると、入力データの数が増えることで、学習ユニットにおいて生成される学習済モデルを得るために必要な学習用データセットの数を相対的に抑えることができる。 With this configuration, the number of input data increases, and the number of training data sets required to obtain the trained model generated in the training unit can be relatively suppressed.
 本開示の第4の態様に係る機械学習装置20Cは、例えば図13に示すように、上記本開示の第1の態様に係る機械学習装置において、前記入力データは、前記分離液SLの濃度と、前記被処理液PL1のスラリー濃度と、前記スクリューコンベア3のトルク値とのうちの少なくとも1つを更に含み、前記学習ユニットは、前記学習用データセット内の画像データを入力することで、前記画像データの特徴量を推論する第1の学習モデルを学習する第1の学習ユニット231と;前記画像データの特徴量と、前記分離液SLの濃度と、前記被処理液PL1のスラリー濃度と、前記スクリューコンベア3のトルク値とを入力することで、前記制御パラメータを推論する第4の学習モデルを学習する第4の学習ユニット234と;を含むものである。 The machine learning device 20C according to the fourth aspect of the present disclosure is, for example, as shown in FIG. 13, in the machine learning device according to the first aspect of the present disclosure, the input data is the concentration of the separation liquid SL. The learning unit further includes at least one of the slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3, and the learning unit inputs the image data in the learning data set. A first learning unit 231 that learns a first learning model for inferring a feature amount of image data; a feature amount of the image data, a concentration of the separation liquid SL, and a slurry concentration of the liquid to be treated PL1. It includes a fourth learning unit 234 that learns a fourth learning model for inferring the control parameters by inputting a torque value of the screw conveyor 3.
 このように構成すると、脱水固形物の画像データから遠心分離システムの制御パラメータを推測するに際し、学習ユニットを2つに分割し、且つそのうちの一方の学習ユニットにおいて学習される学習用データセットの入力データの数が増えることで、それぞれの学習ユニットにおいて生成される学習済モデルを得るために必要な学習用データセットの数を相対的に抑えることができる。 With this configuration, when estimating the control parameters of the centrifugation system from the image data of the dehydrated solid, the learning unit is divided into two, and the learning data set to be learned in one of the learning units is input. By increasing the number of data, it is possible to relatively reduce the number of training data sets required to obtain the trained model generated in each training unit.
 本開示の第5の態様に係る機械学習装置120は、例えば図15に示すように、被処理液PL1、PL2に遠心力を付与して固形物Mと分離液SLとに遠心分離するボウル2と、前記ボウル2内の前記固形物Mを排出口2aに向けて搬送するスクリューコンベア3と、前記ボウル2を回転させる駆動モータ4と、前記スクリューコンベア3を前記ボウル2と相対的な差速をもって回転させる差速発生装置5と、を含む遠心分離システム1のためのものであって、前記排出口2aから排出された液体含有固形物Mを所定画角から撮像した第1の画像データと、前記ボウル2に供給される前であって且つ所定の添加物が添加された後の前記被処理液PL2を所定画角から撮像した第2の画像データとを含む入力データと、前記入力データに対応付けられた制御パラメータを含む出力データとを含む学習用データセットを複数組記憶する学習用データセット記憶ユニット225であって、前記制御パラメータは、前記添加物の供給量、前記ボウル2の遠心力、及び前記差速発生装置5により制御される差速のうちの少なくとも1つを含む、前記学習用データセット記憶ユニット225と;前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習する学習ユニット235と;前記学習ユニット235によって学習された前記学習モデルを記憶する学習済モデル記憶ユニット124と;を含むものである。 The machine learning device 120 according to the fifth aspect of the present disclosure is, for example, as shown in FIG. 15, a bowl 2 that applies centrifugal force to the liquids PL1 and PL2 to be treated to centrifuge the solid M and the separation liquid SL. A screw conveyor 3 that conveys the solid material M in the bowl 2 toward the discharge port 2a, a drive motor 4 that rotates the bowl 2, and a differential speed of the screw conveyor 3 relative to the bowl 2. The first image data obtained by capturing the liquid-containing solid material M discharged from the discharge port 2a from a predetermined angle, which is for the centrifugal separation system 1 including the differential speed generator 5 to be rotated by The input data including the second image data obtained by capturing the liquid to be treated PL2 from a predetermined angle of view before being supplied to the bowl 2 and after the predetermined additive is added, and the input data. A training data set storage unit 225 that stores a plurality of sets of training data sets including output data including control parameters associated with the control parameters, wherein the control parameters are the supply amount of the additive and the bowl 2. With the training data set storage unit 225 containing at least one of the centrifugal force and the differential speed controlled by the differential speed generator 5; the input by inputting a plurality of sets of the learning data set. It includes a learning unit 235 that learns a learning model that infers the correlation between the data and the output data; and a trained model storage unit 124 that stores the learning model learned by the learning unit 235.
 このように構成すると、脱水固形物の画像データとフロック含有被処理液の画像データとから遠心分離システムの制御パラメータを推論可能な学習済モデルを提供することができる。 With this configuration, it is possible to provide a trained model that can infer the control parameters of the centrifugation system from the image data of the dehydrated solid matter and the image data of the liquid to be treated containing flocs.
 本開示の第6の態様に係る機械学習装置120Aは、例えば図19に示すように、上記本開示の第5の態様に係る機械学習装置において、前記学習ユニットは、前記学習用データセット内の第1の画像データを入力することで、前記第1の画像データの特徴量を推論する第1の学習モデルを学習する第1の学習ユニット231と;前記学習用データセット内の第2の画像データを入力することで、前記第2の画像データの特徴量を推論する第6の学習モデルを学習する第6の学習ユニット236と;前記第1の画像データの特徴量と、前記第2の画像データの特徴量とを入力することで、前記制御パラメータを推論する第7の学習モデルを学習する第7の学習ユニット237と;を含むものである。 The machine learning device 120A according to the sixth aspect of the present disclosure is, for example, as shown in FIG. 19, in the machine learning device according to the fifth aspect of the present disclosure, the learning unit is in the learning data set. A first learning unit 231 that learns a first learning model that infers a feature amount of the first image data by inputting the first image data; and a second image in the training data set. A sixth learning unit 236 that learns a sixth learning model that infers the feature amount of the second image data by inputting data; the feature amount of the first image data and the second image data. It includes a seventh learning unit 237 that learns a seventh learning model that infers the control parameter by inputting a feature amount of image data.
 このように構成すると、脱水固形物の画像データとフロック含有被処理液の画像データとから遠心分離システムの制御パラメータを推測するに際し、学習ユニットを3つに分割することで、それぞれの学習ユニットにおいて生成される学習済モデルを得るために必要な学習用データセットの数を相対的に抑えることができる。 With this configuration, when the control parameters of the centrifugation system are estimated from the image data of the dehydrated solid matter and the image data of the liquid to be treated containing flocs, the learning unit is divided into three in each learning unit. The number of training data sets required to obtain the generated trained model can be relatively reduced.
 本開示の第7の態様に係る機械学習装置120Bは、例えば図21に示すように、上記本開示の第5の態様に係る機械学習装置において、前記入力データは、前記分離液SLの濃度と、前記被処理液PL1のスラリー濃度と、前記スクリューコンベア3のトルク値とのうちの少なくとも1つを更に含む。 The machine learning device 120B according to the seventh aspect of the present disclosure is, for example, as shown in FIG. 21, in the machine learning device according to the fifth aspect of the present disclosure, the input data is the concentration of the separation liquid SL. Further includes at least one of the slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3.
 このように構成すると、入力データの数が増えることで、学習ユニットにおいて生成される学習済モデルを得るために必要な学習用データセットの数を相対的に抑えることができる。 With this configuration, the number of input data increases, and the number of training data sets required to obtain the trained model generated in the training unit can be relatively suppressed.
 本開示の第8の態様に係る機械学習装置120Cは、例えば図23に示すように、上記本開示の第5の態様に係る機械学習装置において、前記入力データは、前記分離液SLの濃度と、前記被処理液PL1のスラリー濃度と、前記スクリューコンベア3のトルク値とのうちの少なくとも1つを更に含み、前記学習ユニットは、前記学習用データセット内の第1の画像データを入力することで、前記第1の画像データの特徴量を推論する第1の学習モデルを学習する第1の学習ユニット231と;前記学習用データセット内の第2の画像データを入力することで、前記第2の画像データの特徴量を推論する第6の学習モデルを学習する第6の学習ユニット236と;前記第1の画像データの特徴量と、前記第2の画像データの特徴量と、前記分離液SLの濃度と、前記被処理液PL1のスラリー濃度と、前記スクリューコンベア3のトルク値とを入力することで、前記制御パラメータを推論する第9の学習モデルを学習する第9の学習ユニット239と;を含むものである。 The machine learning device 120C according to the eighth aspect of the present disclosure is, for example, as shown in FIG. 23, in the machine learning device according to the fifth aspect of the present disclosure, the input data is the concentration of the separation liquid SL. The learning unit further includes at least one of the slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3, and the learning unit inputs the first image data in the learning data set. With the first learning unit 231 learning the first learning model for inferring the feature amount of the first image data; by inputting the second image data in the learning data set, the first learning unit A sixth learning unit 236 that learns a sixth learning model that infers the feature amount of the second image data; the feature amount of the first image data, the feature amount of the second image data, and the separation. A ninth learning unit 239 that learns a ninth learning model for inferring the control parameters by inputting the concentration of the liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3. And;
 このように構成すると、脱水固形物の画像データとフロック含有被処理液の画像データとから遠心分離システムの制御パラメータを推測するに際し、学習ユニットを3つに分割し、且つそのうちの一の学習ユニットにおいて学習される学習用データセットの入力データの数が増えることで、それぞれの学習ユニットにおいて生成される学習済モデルを得るために必要な学習用データセットの数を相対的に抑えることができる。 With this configuration, the learning unit is divided into three and one of the learning units is used when estimating the control parameters of the centrifugation system from the image data of the dehydrated solid matter and the image data of the liquid to be treated containing flocs. By increasing the number of input data of the training data set trained in, the number of training data sets required to obtain the trained model generated in each training unit can be relatively suppressed.
 本開示の第9の態様に係る機械学習装置は、上記本開示の第1乃至8の態様に係る機械学習装置において、前記制御パラメータは、前記被処理液の供給量を更に含むものである。 The machine learning device according to the ninth aspect of the present disclosure is the machine learning device according to the first to eighth aspects of the present disclosure, and the control parameter further includes the supply amount of the liquid to be treated.
 このように構成すると、学習済モデルが出力する制御パラメータの数が増えることでより細かなパラメータ調整を実現できる。 With this configuration, finer parameter adjustment can be realized by increasing the number of control parameters output by the trained model.
 本開示の第10の態様に係る機械学習装置は、上記本開示の第1乃至9の態様に係る機械学習装置において、前記制御パラメータは、前記ボウルのダムセット径を更に含むものである。 The machine learning device according to the tenth aspect of the present disclosure is the machine learning device according to the first to ninth aspects of the present disclosure, and the control parameter further includes the dam set diameter of the bowl.
 このように構成すると、学習済モデルが出力する制御パラメータの数が増えることでより細かなパラメータ調整を実現できる。 With this configuration, finer parameter adjustment can be realized by increasing the number of control parameters output by the trained model.
 本開示の第11の態様に係るデータ処理システム80、80Aは、例えば図7及び図10に示すように、被処理液PL1、PL2に遠心力を付与して固形物Mと分離液SLとに遠心分離するボウル2と、前記ボウル2内の前記固形物Mを排出口2aに向けて搬送するスクリューコンベア3と、前記ボウル2を回転させる駆動モータ4と、前記スクリューコンベア3を前記ボウル2と相対的な差速をもって回転させる差速発生装置5と、を含む遠心分離システム1に用いられるものであって、前記排出口2aから排出された液体含有固形物Mを所定画角から撮像した第1の画像データを取得するための第1の画像データ取得ユニット81と;第1又は2の態様に係る機械学習装置20、20Aによって生成された学習済モデルに、前記第1の画像データ取得ユニット81が取得したデータを入力することで、前記遠心分離システムの制御パラメータを推論する推論ユニット87、871、872と;を含むものである。 In the data processing systems 80 and 80A according to the eleventh aspect of the present disclosure, for example, as shown in FIGS. 7 and 10, centrifugal force is applied to the liquids PL1 and PL2 to be treated into the solid material M and the separation liquid SL. The bowl 2 for centrifugal separation, the screw conveyor 3 for transporting the solid matter M in the bowl 2 toward the discharge port 2a, the drive motor 4 for rotating the bowl 2, and the screw conveyor 3 for the bowl 2. A first image of a liquid-containing solid material M discharged from a discharge port 2a, which is used in a centrifugal separation system 1 including a differential speed generator 5 that rotates with a relative difference speed, from a predetermined angle. The first image data acquisition unit 81 for acquiring the image data of 1; and the trained model generated by the machine learning devices 20 and 20A according to the first or second aspect, the first image data acquisition unit. It includes inference units 87, 871, 872 and; which infer the control parameters of the centrifugal separation system by inputting the data acquired by 81.
 このように構成すると、脱水固形物を撮像した第1の画像データに基づいて、遠心分離システムの好適な動作制御を実現可能な制御パラメータが推論できるため、オペレータの判断に依存することなく遠心分離システムの動作制御を自動的に行うことができるようになる。 With this configuration, control parameters that can realize suitable operation control of the centrifugal separation system can be inferred based on the first image data obtained by imaging the dehydrated solid matter, so that the centrifugal separation does not depend on the judgment of the operator. It will be possible to automatically control the operation of the system.
 本開示の第12の態様に係るデータ処理システム80B、80Cは、例えば図12及び図14に示すように、被処理液PL1、PL2に遠心力を付与して固形物Mと分離液SLとに遠心分離するボウル2と、前記ボウル2内の前記固形物Mを排出口2aに向けて搬送するスクリューコンベア3と、前記ボウル2を回転させる駆動モータ4と、前記スクリューコンベア3を前記ボウル2と相対的な差速をもって回転させる差速発生装置5と、を含む遠心分離システム1に用いられるものであって、前記排出口2aから排出された液体含有固形物Mを所定画角から撮像した第1の画像データを取得するための第1の画像データ取得ユニット81と;前記分離液SLの濃度と、前記被処理液PL1のスラリー濃度と、前記スクリューコンベア3のトルク値とのうちの少なくとも1つを取得するための付加変数取得ユニット89と;第3又は4の態様に係る機械学習装置20B、20Cによって生成された学習済モデルに、前記第1の画像データ取得ユニット81と前記付加変数取得ユニット89とが取得したデータを入力することで、前記遠心分離システムの制御パラメータを推論する推論ユニット873、871、874と;を含むものである。 In the data processing systems 80B and 80C according to the twelfth aspect of the present disclosure, for example, as shown in FIGS. 12 and 14, centrifugal force is applied to the liquids PL1 and PL2 to be treated to form a solid M and a separation liquid SL. The bowl 2 for centrifugal separation, the screw conveyor 3 for transporting the solid matter M in the bowl 2 toward the discharge port 2a, the drive motor 4 for rotating the bowl 2, and the screw conveyor 3 for the bowl 2. A first image of a liquid-containing solid material M discharged from a discharge port 2a, which is used in a centrifugal separation system 1 including a differential speed generator 5 that rotates with a relative difference speed, from a predetermined angle. The first image data acquisition unit 81 for acquiring the image data of 1; at least one of the concentration of the separation liquid SL, the slurry concentration of the liquid to be processed PL1, and the torque value of the screw conveyor 3. The first image data acquisition unit 81 and the additional variable acquisition are added to the trained model generated by the machine learning devices 20B and 20C according to the third or fourth aspect. It includes inference units 873, 871, 874 and; which infer the control parameters of the centrifugal separation system by inputting the data acquired by the unit 89.
 このように構成すると、分離液の濃度と、被処理液のスラリー濃度と、スクリューコンベアのトルク値のうちの少なくとも1つと、脱水固形物を撮像した第1の画像データとに基づいて、遠心分離システムの好適な動作制御を実現可能な制御パラメータが推論できるため、オペレータの判断に依存することなく遠心分離システムの動作制御を自動的に行うことができるようになる。 With this configuration, centrifugation is performed based on the concentration of the separation liquid, the slurry concentration of the liquid to be treated, at least one of the torque values of the screw conveyor, and the first image data obtained by imaging the dehydrated solid. Since the control parameters that can realize the suitable operation control of the system can be inferred, the operation control of the centrifugal separation system can be automatically performed without depending on the judgment of the operator.
 本開示の第13の態様に係るデータ処理システム180、180Aは、例えば図17及び図20に示すように、被処理液PL1、PL2に遠心力を付与して固形物Mと分離液SLとに遠心分離するボウル2と、前記ボウル2内の前記固形物Mを排出口2aに向けて搬送するスクリューコンベア3と、前記ボウル2を回転させる駆動モータ4と、前記スクリューコンベア3を前記ボウル2と相対的な差速をもって回転させる差速発生装置5と、を含む遠心分離システム1に用いられるものであって、前記排出口2aから排出された液体含有固形物Mを所定画角から撮像した第1の画像データを取得するための第1の画像データ取得ユニット81と;前記ボウル2に供給される前であって且つ所定の添加物が添加された後の前記被処理液PL2を所定画角から撮像した第2の画像データを取得するための第2の画像データ取得ユニット181と;第5又は6の態様に係る機械学習装置120、120Aによって生成された学習済モデルに、前記第1の画像データ取得ユニット81と前記第2の画像データ取得ユニット181とが取得したデータを入力することで、前記遠心分離システム1の制御パラメータを推論する推論ユニット875、871、876、877と;を含むものである。 In the data processing systems 180 and 180A according to the thirteenth aspect of the present disclosure, for example, as shown in FIGS. 17 and 20, centrifugal force is applied to the liquids PL1 and PL2 to be treated into the solid material M and the separation liquid SL. The bowl 2 for centrifugation, the screw conveyor 3 for transporting the solid material M in the bowl 2 toward the discharge port 2a, the drive motor 4 for rotating the bowl 2, and the screw conveyor 3 for the bowl 2. A first image of a liquid-containing solid material M discharged from the discharge port 2a, which is used in a centrifugal separation system 1 including a differential speed generator 5 that rotates with a relative differential speed, from a predetermined angle. The first image data acquisition unit 81 for acquiring the image data of 1; and the liquid to be treated PL2 before being supplied to the bowl 2 and after the predetermined additive is added have a predetermined angle of view. The first image data acquisition unit 181 for acquiring the second image data imaged from the above; and the trained model generated by the machine learning devices 120, 120A according to the fifth or sixth aspect. Including inference units 875, 871, 876, 877 that infer the control parameters of the centrifugal separation system 1 by inputting the data acquired by the image data acquisition unit 81 and the second image data acquisition unit 181; It's a waste.
 このように構成すると、脱水固形物及びフロック含有被処理液を撮像した第1及び第2の画像データに基づいて、遠心分離システムの好適な動作制御を実現可能な制御パラメータが推論できるため、オペレータの判断に依存することなく遠心分離システムの動作制御を自動的に行うことができるようになる。 With this configuration, the operator can infer control parameters that can realize suitable operation control of the centrifugation system based on the first and second image data obtained by imaging the dehydrated solid matter and the floc-containing liquid to be treated. It will be possible to automatically control the operation of the centrifuge system without depending on the judgment of.
 本開示の第14の態様に係るデータ処理システム180B、180Cは、例えば図22及び図24に示すように、被処理液PL1、PL2に遠心力を付与して固形物Mと分離液SLとに遠心分離するボウル2と、前記ボウル2内の前記固形物Mを排出口2aに向けて搬送するスクリューコンベア3と、前記ボウル2を回転させる駆動モータ4と、前記スクリューコンベア3を前記ボウル2と相対的な差速をもって回転させる差速発生装置5と、を含む遠心分離システム1に用いられるものであって、前記排出口2aから排出された液体含有固形物Mを所定画角から撮像した第1の画像データを取得するための第1の画像データ取得ユニット81と;前記ボウル2に供給される前であって且つ所定の添加物が添加された後の前記被処理液PL2を所定画角から撮像した第2の画像データを取得するための第2の画像データ取得ユニット181と;前記分離液SLの濃度と、前記被処理液PL1のスラリー濃度と、前記スクリューコンベア3のトルク値とのうちの少なくとも1つを取得するための付加変数取得ユニット89と;第7又は8の態様に係る機械学習装置120B、120Cによって生成された学習済モデルに、前記第1の画像データ取得ユニット81と前記第2の画像データ取得ユニット181と前記付加変数取得ユニット89とが取得したデータを入力することで、前記遠心分離システム1の制御パラメータを推論する推論ユニット878、871、876、879と;を含むものである。 In the data processing systems 180B and 180C according to the 14th aspect of the present disclosure, for example, as shown in FIGS. 22 and 24, centrifugal force is applied to the liquids PL1 and PL2 to be treated to form a solid M and a separation liquid SL. The bowl 2 for centrifugation, the screw conveyor 3 for transporting the solid material M in the bowl 2 toward the discharge port 2a, the drive motor 4 for rotating the bowl 2, and the screw conveyor 3 for the bowl 2. A first image of a liquid-containing solid material M discharged from the discharge port 2a, which is used in a centrifugal separation system 1 including a differential speed generator 5 that rotates with a relative differential speed, from a predetermined angle. The first image data acquisition unit 81 for acquiring the image data of 1; and the liquid to be treated PL2 before being supplied to the bowl 2 and after the predetermined additive is added have a predetermined angle of view. With the second image data acquisition unit 181 for acquiring the second image data imaged from the above; the concentration of the separation liquid SL, the slurry concentration of the liquid to be processed PL1, and the torque value of the screw conveyor 3. An additional variable acquisition unit 89 for acquiring at least one of them; a trained model generated by the machine learning devices 120B and 120C according to the seventh or eighth aspect, and the first image data acquisition unit 81. The inference units 878, 871, 876, 879 that infer the control parameters of the centrifugal separation system 1 by inputting the data acquired by the second image data acquisition unit 181 and the additional variable acquisition unit 89; It includes.
 このように構成すると、分離液の濃度と、被処理液のスラリー濃度と、スクリューコンベアのトルク値のうちの少なくとも1つと、脱水固形物及びフロック含有被処理液を撮像した第1及び第2の画像データとに基づいて、遠心分離システムの好適な動作制御を実現可能な制御パラメータが推論できるため、オペレータの判断に依存することなく遠心分離システムの動作制御を自動的に行うことができるようになる。 With this configuration, the concentration of the separated liquid, the slurry concentration of the liquid to be treated, at least one of the torque values of the screw conveyor, and the first and second images of the dehydrated solid and the liquid to be treated containing flocs are imaged. Since control parameters that can realize suitable operation control of the centrifugation system can be inferred based on the image data, the operation control of the centrifugation system can be automatically performed without depending on the judgment of the operator. Become.
 本開示の第15の態様に係る機械学習方法は、例えば図3及び図6に示すように、コンピュータにより実施されるものであって、被処理液PL1、PL2に遠心力を付与して固形物Mと分離液SLとに遠心分離するボウル2と、前記ボウル2内の前記固形物Mを排出口2aに向けて搬送するスクリューコンベア3と、前記ボウル2を回転させる駆動モータ4と、前記スクリューコンベア3を前記ボウル2と相対的な差速をもって回転させる差速発生装置5と、を含む遠心分離システム1のためのものであって、前記排出口2aから排出された液体含有固形物Mを所定画角から撮像した画像データを含む入力データと、前記入力データに対応付けられた制御パラメータを含む出力データとを含む学習用データセットを複数組記憶するステップS11であって、前記制御パラメータは、前記被処理液PL1に添加される添加物の供給量、前記ボウル2の遠心力、及び前記差速発生装置5により制御される差速のうちの少なくとも1つを含む、ステップと;前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習するステップS15と;学習された前記学習モデルを記憶するステップS17と;を含むものである。 The machine learning method according to the fifteenth aspect of the present disclosure is carried out by a computer, for example, as shown in FIGS. 3 and 6, and a solid substance is subjected to centrifugal force to the liquids PL1 and PL2 to be treated. A bowl 2 for centrifuging the M and the separation liquid SL, a screw conveyor 3 for transporting the solid material M in the bowl 2 toward the discharge port 2a, a drive motor 4 for rotating the bowl 2, and the screw. The liquid-containing solid material M discharged from the discharge port 2a is for a centrifugal separation system 1 including a differential speed generator 5 for rotating the conveyor 3 with a relative speed difference from the bowl 2. In step S11, a plurality of sets of learning data sets including input data including image data captured from a predetermined angle of view and output data including control parameters associated with the input data are stored, and the control parameters are , The step comprising at least one of the supply of additives added to the liquid PL1 to be treated, the centrifugal force of the bowl 2, and the differential speed controlled by the differential speed generator 5. It includes a step S15 for learning a learning model for inferring the correlation between the input data and the output data by inputting a plurality of sets of data sets for use; and a step S17 for storing the learned learning model. ..
 このように構成すると、脱水固形物の画像データから遠心分離システムの制御パラメータを推論可能な学習済モデルを提供することができる。 With this configuration, it is possible to provide a trained model that can infer the control parameters of the centrifugation system from the image data of the dehydrated solid matter.
 本開示の第16の態様に係る機械学習方法は、例えば図6及び図15に示すように、コンピュータにより実施されるものであって、且つ被処理液PL1、PL2に遠心力を付与して固形物Mと分離液SLとに遠心分離するボウル2と、前記ボウル2内の前記固形物Mを排出口2aに向けて搬送するスクリューコンベア3と、前記ボウル2を回転させる駆動モータ4と、前記スクリューコンベア3を前記ボウル2と相対的な差速をもって回転させる差速発生装置5と、を含む遠心分離システム1のためのものであって、前記排出口2aから排出された液体含有固形物Mを所定画角から撮像した第1の画像データと、前記ボウル2に供給される前であって且つ所定の添加物が添加された後の前記被処理液PL2を所定画角から撮像した第2の画像データとを含む入力データと、前記入力データに対応付けられた制御パラメータを含む出力データとを含む学習用データセットを複数組記憶するステップS11であって、前記制御パラメータは、前記添加物の供給量、前記ボウル2の遠心力、及び前記差速発生装置5により制御される差速のうちの少なくとも1つを含む、ステップと;前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習するステップS15と;学習された前記学習モデルを記憶するステップS17と;を含むものである。 The machine learning method according to the 16th aspect of the present disclosure is carried out by a computer, for example, as shown in FIGS. 6 and 15, and is solidified by applying centrifugal force to the liquids PL1 and PL2 to be treated. A bowl 2 for centrifuging the object M and the separation liquid SL, a screw conveyor 3 for transporting the solid substance M in the bowl 2 toward the discharge port 2a, a drive motor 4 for rotating the bowl 2, and the above. The liquid-containing solid material M discharged from the discharge port 2a is for a centrifugal separation system 1 including a differential speed generator 5 for rotating the screw conveyor 3 with a differential speed relative to the bowl 2. The first image data captured from a predetermined angle of view and the second image of the liquid to be treated PL2 before being supplied to the bowl 2 and after the predetermined additive is added are imaged from a predetermined angle of view. In step S11, a plurality of sets of training data sets including input data including the image data of the above and output data including control parameters associated with the input data are stored, and the control parameters are the additives. By inputting a plurality of sets of the training data set with the step including at least one of the supply amount of the bowl 2, the centrifugal force of the bowl 2, and the differential speed controlled by the differential speed generator 5. It includes a step S15 for learning a learning model for inferring the correlation between the input data and the output data; and a step S17 for storing the learned learning model.
 このように構成すると、脱水固形物の画像データとフロック含有被処理液の画像データとから遠心分離システムの制御パラメータを推論可能な学習済モデルを提供することができる。 With this configuration, it is possible to provide a trained model that can infer the control parameters of the centrifugation system from the image data of the dehydrated solid matter and the image data of the liquid to be treated containing flocs.
 本開示によれば、オペレータの判断に依存することなく、機械的に遠心分離システムの好適な動作制御を実現可能な制御パラメータを取得できるようになる。 According to the present disclosure, it becomes possible to mechanically acquire control parameters that can realize suitable operation control of the centrifugal separation system without depending on the judgment of the operator.
本開示の第1の実施の形態に係るデカンタ本体の概略構造の一例を示す模式図である。It is a schematic diagram which shows an example of the schematic structure of the decanter main body which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施の形態に係るデカンタの配管構造を含む遠心分離システムの一例を示す模式図である。It is a schematic diagram which shows an example of the centrifugal separation system including the piping structure of the decanter which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施の形態に係る機械学習装置の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the machine learning apparatus which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施の形態に係る脱水固形物監視システムにより得られた画像データの例を示したものである。An example of image data obtained by the dehydrated solid matter monitoring system according to the first embodiment of the present disclosure is shown. 本開示の第1の実施の形態に係る脱水固形物監視システムにより得られた画像データの例を示したものである。An example of image data obtained by the dehydrated solid matter monitoring system according to the first embodiment of the present disclosure is shown. 本開示の第1の実施の形態に係る機械学習装置において実施される教師あり学習のためのニューラルネットワークモデルの例を示す図である。It is a figure which shows the example of the neural network model for supervised learning carried out in the machine learning apparatus which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施の形態に係る機械学習方法の例を示すフローチャートである。It is a flowchart which shows the example of the machine learning method which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施の形態に係るデータ処理システムの一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the data processing system which concerns on 1st Embodiment of this disclosure. 本開示の第1の実施の形態に係るデータ処理システムによるパラメータ調整の例を示すフローチャートである。It is a flowchart which shows the example of the parameter adjustment by the data processing system which concerns on 1st Embodiment of this disclosure. 本開示の第2の実施の形態に係る機械学習装置の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the machine learning apparatus which concerns on the 2nd Embodiment of this disclosure. 本開示の第2の実施の形態に係るデータ処理システムの一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the data processing system which concerns on the 2nd Embodiment of this disclosure. 本開示の第3の実施の形態に係る機械学習装置の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the machine learning apparatus which concerns on 3rd Embodiment of this disclosure. 本開示の第3の実施の形態に係るデータ処理システムの一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the data processing system which concerns on 3rd Embodiment of this disclosure. 本開示の第4の実施の形態に係る機械学習装置の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the machine learning apparatus which concerns on 4th Embodiment of this disclosure. 本開示の第4の実施の形態に係るデータ処理システムの一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the data processing system which concerns on 4th Embodiment of this disclosure. 本開示の第5の実施の形態に係る機械学習装置の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the machine learning apparatus which concerns on 5th Embodiment of this disclosure. 本開示の第5の実施の形態に係る被処理液監視システムにより得られた画像データの例を示したものである。An example of image data obtained by the liquid to be treated monitoring system according to the fifth embodiment of the present disclosure is shown. 本開示の第5の実施の形態に係る被処理液監視システムにより得られた画像データの例を示したものである。An example of image data obtained by the liquid to be treated monitoring system according to the fifth embodiment of the present disclosure is shown. 本開示の第5の実施の形態に係るデータ処理システムの一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the data processing system which concerns on 5th Embodiment of this disclosure. 本開示の第5の実施の形態に係るデータ処理システムによるパラメータ調整の例を示すフローチャートである。It is a flowchart which shows the example of the parameter adjustment by the data processing system which concerns on 5th Embodiment of this disclosure. 本開示の第6の実施の形態に係る機械学習装置の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the machine learning apparatus which concerns on 6th Embodiment of this disclosure. 本開示の第6の実施の形態に係るデータ処理システムの一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the data processing system which concerns on 6th Embodiment of this disclosure. 本開示の第7の実施の形態に係る機械学習装置の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the machine learning apparatus which concerns on 7th Embodiment of this disclosure. 本開示の第7の実施の形態に係るデータ処理システムの一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the data processing system which concerns on 7th Embodiment of this disclosure. 本開示の第8の実施の形態に係る機械学習装置の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the machine learning apparatus which concerns on 8th Embodiment of this disclosure. 本開示の第8の実施の形態に係るデータ処理システムの一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of the data processing system which concerns on 8th Embodiment of this disclosure.
 この出願は、日本国で2020年7月21日に出願された特願2020-124727号に基づいており、その内容は本出願の内容としてその一部を形成する。
 また、本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本願のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明及び特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。
 出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
This application is based on Japanese Patent Application No. 2020-124727 filed on July 21, 2020 in Japan, the contents of which form part of the content of this application.
Also, the present invention will be more fully understood by the following detailed description. Further scope of application of the present application will be clarified by the following detailed description. However, detailed description and specific examples are preferred embodiments of the present invention and are provided only for purposes of explanation. From this detailed description, various changes and modifications will be apparent to those skilled in the art within the spirit and scope of the present invention.
The applicant has no intention of presenting any of the described embodiments to the public, and is equivalent to any disclosed modifications or alternatives that may not be literally included in the claims. It is a part of the invention under the argument.
 以下、図面を参照して本開示を実施するための各実施の形態について説明する。なお、以下では本開示の目的を達成するための説明に必要な範囲を模式的に示し、本開示の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。 Hereinafter, each embodiment for carrying out the present disclosure will be described with reference to the drawings. In the following, the scope necessary for the explanation to achieve the object of the present disclosure will be schematically shown, and the scope necessary for the explanation of the relevant part of the present disclosure will be mainly explained. It shall be based on known technology.
<第1の実施の形態>
 本開示の第1の実施の形態に係る機械学習装置、データ処理システム及び機械学習方法の説明を行う前に、これら、機械学習装置、データ処理システム及び機械学習方法が適用される遠心分離システムについて簡単に説明を行う。本実施の形態に係る遠心分離システムとしては、遠心分離装置として横型のデカンタ1を含むものを用いる。なお、本開示に係る遠心分離システムの具体的な態様は以下に示すものに限定されるものではなく、例えば縦型や直胴型のデカンタ等の遠心分離装置を含む遠心分離システムに対しても適用可能である。
<First Embodiment>
Before explaining the machine learning device, the data processing system, and the machine learning method according to the first embodiment of the present disclosure, the centrifuge system to which these machine learning device, the data processing system, and the machine learning method are applied. I will explain briefly. As the centrifuge system according to the present embodiment, a centrifuge device including a horizontal decanter 1 is used. The specific embodiment of the centrifugal separation system according to the present disclosure is not limited to those shown below, and may also be applied to a centrifugal separation system including a centrifugal separation device such as a vertical type or straight body type decanter. Applicable.
 図1は、本開示の第1の実施の形態に係る、デカンタ本体の概略構造を示す模式図である。また、図2は、本開示の第1の実施の形態に係るデカンタの配管構造を含む遠心分離システムを示す模式図である。本実施の形態において示す横型のデカンタ1は、図1及び図2に示すように、主にボウル2と、スクリューコンベア3と、駆動モータ4と、差速発生装置5と、ケーシング6とを含むことができる。 FIG. 1 is a schematic diagram showing a schematic structure of a decanter main body according to the first embodiment of the present disclosure. Further, FIG. 2 is a schematic diagram showing a centrifugal separation system including a decanter piping structure according to the first embodiment of the present disclosure. As shown in FIGS. 1 and 2, the horizontal decanter 1 shown in the present embodiment mainly includes a bowl 2, a screw conveyor 3, a drive motor 4, a differential speed generator 5, and a casing 6. be able to.
 ボウル2は、一端部が錘状に加工された筒状の部材で構成することができ、水平軸周りに回転可能に支持され得る。また、このボウル2の錘状に加工された一端部には1乃至複数の固形物排出口2aが設けられ、他端部には1乃至複数の分離液排出口2bが形成されたダム2cが取り付けられていてよい。固形物排出口2aからは、ボウル2内に投入される被処理液に含まれる固形物成分が主に排出され、分離液排出口2bからは、同じくボウル2内に投入される被処理液に含まれる液体成分が主に排出される。また、このボウル2の一方の端部(図1においては錘状に加工された一端部)には、更に後述する駆動モータ4からの動力を伝達するプーリー4aが取り付けられていてよい。なお、固形物排出口2aから排出される固形物成分は、被処理液内の大部分の液体成分が脱水除去され、液体(分離液)成分を相対的に少ない所定量含んだ状態で排出されるため、以下ではこの固形物成分を液体含有固形物(あるいは脱水固形物)Mという。 The bowl 2 can be made of a cylindrical member whose one end is processed into a weight shape, and can be rotatably supported around a horizontal axis. Further, one or more solid matter discharge ports 2a are provided at one end of the bowl 2 processed into a weight shape, and one or more separation liquid discharge ports 2b are formed at the other end of the dam 2c. It may be attached. The solid matter component contained in the liquid to be treated to be charged into the bowl 2 is mainly discharged from the solid matter discharge port 2a, and the liquid to be treated which is also charged into the bowl 2 is discharged from the separation liquid discharge port 2b. The contained liquid component is mainly discharged. Further, a pulley 4a for transmitting power from a drive motor 4, which will be described later, may be attached to one end of the bowl 2 (one end processed into a weight in FIG. 1). In the solid matter component discharged from the solid matter discharge port 2a, most of the liquid component in the liquid to be treated is dehydrated and removed, and the liquid component is discharged in a state of containing a relatively small predetermined amount of the liquid (separation liquid) component. Therefore, in the following, this solid component is referred to as a liquid-containing solid (or dehydrated solid) M.
 スクリューコンベア3は、ボウル2内に同軸状に配置され、その周囲に螺旋状のスクリュー羽根3aが形成された部材で構成することができる。スクリュー羽根3aはボウル2内の固形物を搬送及び/又は圧搾するための部材であってよい。このスクリューコンベア3の胴部3bには、その内部に被処理液を受けるための空間3cと、この空間に貯留された被処理液をボウル2内に投入するための吐出口3dとが設けられていてよい。また、このスクリューコンベア3の一端部には、後述する差速発生装置5が連結され得る。 The screw conveyor 3 can be composed of a member that is coaxially arranged in the bowl 2 and has a spiral screw blade 3a formed around the screw conveyor 3. The screw blade 3a may be a member for transporting and / or squeezing the solid matter in the bowl 2. The body 3b of the screw conveyor 3 is provided with a space 3c for receiving the liquid to be treated and a discharge port 3d for charging the liquid to be treated stored in this space into the bowl 2. You may be. Further, a differential speed generator 5, which will be described later, may be connected to one end of the screw conveyor 3.
 駆動モータ4は、ボウル2に回転力を付与するためのモータであってよく、ボウル2の一方の端部に取り付けられたプーリー4aにベルト4bを介して接続され得る。この駆動モータ4には、ボウル2を例えば2000~5000rpmの範囲で回転させるために、比較的大型のモータが採用され、且つその回転速度はインバーター制御によって適宜変更可能となっていることが好ましい。また、差速発生装置5は、ボウル2の回転速度とスクリューコンベア3の回転速度との間に差速を発生させるための装置であって、スクリューコンベア3をボウル2に対して僅かに(例えば1~3rpm程度)遅く回転させることが可能な装置であってよい。この差速発生装置5は、スクリューコンベア3に接続されたギヤボックス5aと、スクリューコンベア3にブレーキ力を付加する差動モータ(「バックドライブモーター」ともいう)5bとを含むことができる。差速発生装置5の具体的な動作原理については従来から知られているものであるから、その説明は省略する。 The drive motor 4 may be a motor for applying a rotational force to the bowl 2, and may be connected to a pulley 4a attached to one end of the bowl 2 via a belt 4b. For the drive motor 4, it is preferable that a relatively large motor is adopted in order to rotate the bowl 2 in the range of, for example, 2000 to 5000 rpm, and the rotation speed thereof can be appropriately changed by inverter control. Further, the differential speed generator 5 is a device for generating a differential speed between the rotation speed of the bowl 2 and the rotation speed of the screw conveyor 3, and the screw conveyor 3 is slightly (for example, for example) relative to the bowl 2. It may be a device capable of rotating slowly (about 1 to 3 rpm). The differential speed generator 5 can include a gearbox 5a connected to the screw conveyor 3 and a differential motor (also referred to as “back drive motor”) 5b that applies a braking force to the screw conveyor 3. Since the specific operating principle of the differential speed generator 5 has been known conventionally, the description thereof will be omitted.
 ケーシング6は、ボウル2及びスクリューコンベア3を覆うように設けられたケースであってよい。このケーシング6は、ボウル2の固形物排出口2aから排出された、僅かに液体を含んだ固形物としての液体含有固形物(脱水固形物)Mを下方に設けられた固形物シュート6aに導き、同じくボウル2の分離液排出口2bから排出された分離液SL(図3参照。)を下方に設けられた分離液シュート6bに導くものであってよい。また、ケーシング6に覆われたボウル2及びスクリューコンベア3は、フレーム6cによって一体に支持され得る。 The casing 6 may be a case provided so as to cover the bowl 2 and the screw conveyor 3. The casing 6 guides the liquid-containing solid (dehydrated solid) M as a solid containing a small amount of liquid discharged from the solid discharge port 2a of the bowl 2 to the solid chute 6a provided below. Similarly, the separation liquid SL (see FIG. 3) discharged from the separation liquid discharge port 2b of the bowl 2 may be guided to the separation liquid chute 6b provided below. Further, the bowl 2 and the screw conveyor 3 covered with the casing 6 can be integrally supported by the frame 6c.
 ケーシング6の固形物シュート6aは、固形物排出導管7に連結されていてよく、固形物シュート6aから排出された固形物は、例えばこの固形物排出導管7を介して図示しない乾燥装置や焼却設備等への主搬送路7aへ運ばれ得る。また、ケーシング6の分離液シュート6bは、分離液排出導管8に連結されていてよく、分離液シュート6bから排出された分離液は、例えばこの分離液排出導管8を介して図示しない浄水設備等へ運ばれ得る。 The solid matter chute 6a of the casing 6 may be connected to the solid matter discharge conduit 7, and the solid matter discharged from the solid matter chute 6a may be, for example, a drying device or an incinerator (not shown) via the solid matter discharge conduit 7. Etc. can be transported to the main transport path 7a. Further, the separation liquid chute 6b of the casing 6 may be connected to the separation liquid discharge conduit 8, and the separation liquid discharged from the separation liquid chute 6b may be connected to, for example, a water purification facility (not shown) via the separation liquid discharge conduit 8. Can be carried to.
 このデカンタ1は、ボウル2内に被処理液を投入するための給液管9を更に含むことができる。この給液管9は、その一端はスクリューコンベア3の胴部3b内の空間3cに連通し、他端は被処理液供給源10及び添加物供給源11が連通しており、他端から流入した被処理液等をボウル2内に投入するための導管を構成することができる。 The decanter 1 can further include a liquid supply pipe 9 for charging the liquid to be treated into the bowl 2. One end of the liquid supply pipe 9 communicates with the space 3c in the body 3b of the screw conveyor 3, and the other end communicates with the liquid supply source 10 to be processed and the additive supply source 11, and flows in from the other end. It is possible to form a conduit for charging the liquid to be treated or the like into the bowl 2.
 給液管9と被処理液供給源10とは、被処理液を供給するためのポンプ10aを含む被処理液配管10bによって流体的に接続されているとよい。このポンプ10aを制御することにより、被処理液のボウル内への供給量を制御することができる。ここで、被処理液供給源10から供給される被処理液は、多くの場合固形物としての汚泥を含むスラリー(懸濁液)である。 It is preferable that the liquid supply pipe 9 and the liquid to be processed supply source 10 are fluidly connected by a liquid to be treated pipe 10b including a pump 10a for supplying the liquid to be treated. By controlling the pump 10a, it is possible to control the amount of the liquid to be supplied into the bowl. Here, the liquid to be treated supplied from the liquid to be treated source 10 is often a slurry (suspension) containing sludge as a solid substance.
 また、給液管9と添加物供給源11とは、被処理液に添加される添加物、例えば薬剤を供給するためのポンプ11aと薬剤の供給位置や供給タイミングを制御するための複数個の弁11bとを含む添加物配管11cによって、流体的に接続されているとよい。ここで、添加物供給源11から供給される薬剤は、スラリーに投与することでスラリー中に含まれる汚泥をフロック状に変化させる凝集剤、特に高分子凝集剤又は無機凝集剤であってよい。以下においては、薬剤が添加される前の被処理液を「被処理液PL1」とし、薬剤が添加された後の被処理液を「フロック含有被処理液PL2」として両者を区別することとする。 Further, the liquid supply pipe 9 and the additive supply source 11 include an additive added to the liquid to be treated, for example, a pump 11a for supplying a drug, and a plurality of pumps 11a for controlling the supply position and supply timing of the drug. It may be fluidly connected by an additive pipe 11c including a valve 11b. Here, the agent supplied from the additive supply source 11 may be a flocculant that changes the sludge contained in the slurry into a floc shape by administering it to the slurry, particularly a polymer flocculant or an inorganic flocculant. In the following, the liquid to be treated before the drug is added is referred to as “liquid to be treated PL1”, and the liquid to be treated after the drug is added is referred to as “flock-containing liquid to be treated PL2” to distinguish between the two. ..
 本実施の形態に係る添加物配管11cは、図2に示すように、その中途位置で2つの管に分岐され、一方は被処理液配管10bの中間位置に、他方は給液管9にそれぞれ接続されているものであってよい。被処理液配管10bの中間位置に接続された配管を経由して薬剤を供給した場合には、被処理液配管10b内で被処理液PL1と薬剤とが反応し(いわゆる「ライン薬注」)、給液管9に接続された配管を経由して薬剤を供給した場合には、主に空間3c内部及びボウル2内部で被処理液PL1と薬剤とが反応する(いわゆる「機内薬注」)こととなるであろう。このような配管構造を採用すると、被処理液PL1に薬剤を添加する位置及びタイミングを調整することができ、以って主に被処理液PL1の状態に影響される薬剤による汚泥フロック(「フロック凝集体」ともいう)生成効果を最適に調整することができるようになる。なお、図2に示す配管の接続位置は一例にすぎず、被処理液の状態等を考慮して当該配管構造は適宜変更することが可能である。 As shown in FIG. 2, the additive pipe 11c according to the present embodiment is branched into two pipes at an intermediate position thereof, one at an intermediate position of the liquid pipe 10b to be treated and the other at a liquid supply pipe 9. It may be connected. When the chemical is supplied via the pipe connected to the intermediate position of the liquid pipe 10b to be treated, the liquid PL1 to be treated reacts with the chemical in the liquid pipe 10b to be treated (so-called “line chemical injection”). When the drug is supplied via the pipe connected to the liquid supply pipe 9, the liquid to be treated PL1 reacts with the drug mainly inside the space 3c and inside the bowl 2 (so-called “in-flight drug injection”). It will be. By adopting such a piping structure, the position and timing at which the chemical is added to the liquid to be treated PL1 can be adjusted, and thus sludge flocs (“flock”) due to the chemicals mainly affected by the state of the liquid to be treated PL1. It will be possible to optimally adjust the formation effect (also called "aggregate"). The connection position of the pipe shown in FIG. 2 is only an example, and the pipe structure can be appropriately changed in consideration of the state of the liquid to be treated and the like.
 また、本実施の形態に係るデカンタ1の各種配管には、配管内を通過する対象物を監視するための監視システムが設置されていると好ましい。この監視システムは、詳しくは、分離液排出導管8に設けられた分離液監視システム40と、固形物排出導管7に設けられた脱水固形物監視システム50と、被処理液配管10bに設けられた被処理液監視システム60とを含むことができる。更に、これらの監視システムに加えて、スクリューコンベア3のトルク値を監視するスクリューコンベアトルク監視システム70を含んでいてもよい。各監視システムの具体的な構成については後述の各実施の形態に対応するようにいくつかの例を説明する。なお、第1の実施の形態においては、脱水固形物監視システム50以外の監視システムは使用していないため、脱水固形物監視システム50以外の監視システムについては、第2の実施の形態以降で必要に応じて説明される。 Further, it is preferable that the various pipes of the decanter 1 according to the present embodiment are provided with a monitoring system for monitoring the object passing through the pipes. More specifically, this monitoring system is provided in the separation liquid monitoring system 40 provided in the separation liquid discharge conduit 8, the dehydrated solid matter monitoring system 50 provided in the solid matter discharge conduit 7, and the liquid to be treated pipe 10b. The liquid to be treated monitoring system 60 can be included. Further, in addition to these monitoring systems, a screw conveyor torque monitoring system 70 that monitors the torque value of the screw conveyor 3 may be included. As for the specific configuration of each monitoring system, some examples will be described so as to correspond to each embodiment described later. In addition, since the monitoring system other than the dehydrated solid matter monitoring system 50 is not used in the first embodiment, the monitoring system other than the dehydrated solid matter monitoring system 50 is necessary after the second embodiment. Will be explained accordingly.
 以上の構成を含むデカンタ1による固液分離は、概ね以下のように行われる。すなわち、先ず、所定の回転数で回転するボウル2内に給液管9を介してフロック含有被処理液PL2が投入されると、駆動モータ4により発生された遠心力の作用によってフロック含有被処理液PL2内の(薬剤の効果によりフロック状となっている)固形物がボウル2の内壁面に沈降する。沈降した固形物は、差速発生装置5の作用によりボウル2の回転数よりも僅かに小さな回転数でボウル2に対して連れ周りするスクリューコンベア3のスクリュー羽根3aによって、ボウル2の錘状に加工された一端側に向かって圧搾されつつ搬送され、所定量の流体成分と共に固形物排出口2aより固形物シュート6aへ排出される。また、上記のように固形物が沈降除去された後のボウル2内の残留物は、分離液SLとしてボウル2内に一定期間滞留した後、分離液排出口2bからオーバーフローするようにして分離液シュート6bへ排出される。 The solid-liquid separation by the decanter 1 including the above configuration is generally performed as follows. That is, first, when the floc-containing liquid to be treated PL2 is put into the bowl 2 that rotates at a predetermined rotation speed via the liquid supply pipe 9, the floc-containing liquid to be treated is treated by the action of the centrifugal force generated by the drive motor 4. The solid matter (which is floc-like due to the effect of the chemical) in the liquid PL2 settles on the inner wall surface of the bowl 2. The settled solid matter is formed into a weight shape of the bowl 2 by the screw blade 3a of the screw conveyor 3 which is rotated with respect to the bowl 2 at a rotation speed slightly smaller than the rotation speed of the bowl 2 by the action of the differential speed generator 5. It is conveyed while being squeezed toward the processed one end side, and is discharged from the solid matter discharge port 2a to the solid matter chute 6a together with a predetermined amount of fluid components. Further, the residue in the bowl 2 after the solid matter has been settled and removed as described above stays in the bowl 2 as the separation liquid SL for a certain period of time, and then overflows from the separation liquid discharge port 2b. It is discharged to the chute 6b.
<機械学習装置>
 上述の固液分離処理は、デカンタ1の各種制御パラメータを調整することで、好適な処理を実現している。ここでいう制御パラメータとは、主にボウル2の遠心力、添加物供給源11からの薬剤の供給量、及びボウル2とスクリューコンベア3との差速から構成されていてよい。そこで、以下には、デカンタ1における最適な制御パラメータを推定することが可能な推論モデル(学習済モデル)を学習する本開示の第1の実施の形態に係る機械学習装置20について、説明を行う。
<Machine learning device>
The above-mentioned solid-liquid separation process realizes a suitable process by adjusting various control parameters of the decanter 1. The control parameter referred to here may mainly consist of the centrifugal force of the bowl 2, the supply amount of the drug from the additive supply source 11, and the differential speed between the bowl 2 and the screw conveyor 3. Therefore, the machine learning device 20 according to the first embodiment of the present disclosure for learning an inference model (learned model) capable of estimating the optimum control parameters in the decanter 1 will be described below. ..
 図3は、本開示の第1の実施の形態に係る機械学習装置20の概略ブロック図である。本実施の形態に係る機械学習装置20は、図3に示すように、学習用データセット取得ユニット21と、学習用データセット記憶ユニット22と、学習ユニット23と、学習済モデル記憶ユニット24とを含むことができる。 FIG. 3 is a schematic block diagram of the machine learning device 20 according to the first embodiment of the present disclosure. As shown in FIG. 3, the machine learning device 20 according to the present embodiment includes a learning data set acquisition unit 21, a learning data set storage unit 22, a learning unit 23, and a trained model storage unit 24. Can include.
 学習用データセット取得ユニット21は、例えば有線又は無線の通信回線を介して学習(トレーニング)用データセットを構成する複数のデータを取得するインタフェースユニットであってよい。ここで取得される複数のデータの具体的な内容については、生成したい学習済モデルに合わせて適宜変更等をすることが可能である。本実施の形態においては、複数のデータとして、脱水固形物Mの画像データと、この画像データに対応付けられる制御パラメータを取得しているものを例示している。また、この制御パラメータとしては、被処理液PL1へ添加される薬剤の供給量、ボウル2の遠心力、及び差速発生装置5により制御される差速を含むことができる。なお、本実施の形態においては制御パラメータとして上述した3つのデータを取得するものについて例示するが、学習用データセットを構成する制御パラメータとしては、上述した3つのデータのうち少なくとも1つを含んでいればよい。また、制御パラメータは上述した3つに限定されるものではなく、例えば被処理液供給源10からの被処理液PL1の供給量や、ボウル2のダム2cのダムセット径といった他のパラメータをも含んでいてよい。したがって、出力データを構成する制御パラメータを4つ以上としてもよい。一般に、制御パラメータの数が増えれば、後述するデカンタ1の動作制御に適用した際、細やかなパラメータ調整が実現できる。しかし制御パラメータの数が多くなると十分な精度の推論が可能な学習済モデルを得るために必要な学習用データセットの数は増加する傾向がある。したがって、出力データとしての制御パラメータの数は準備可能な学習用データセットの数等を考慮して決定することが好ましい。 The learning data set acquisition unit 21 may be an interface unit that acquires a plurality of data constituting the learning (training) data set via, for example, a wired or wireless communication line. The specific contents of the plurality of data acquired here can be appropriately changed according to the trained model to be generated. In the present embodiment, as a plurality of data, the image data of the dehydrated solid M and the data in which the control parameters associated with the image data are acquired are exemplified. Further, the control parameters can include the supply amount of the drug added to the liquid to be treated PL1, the centrifugal force of the bowl 2, and the differential speed controlled by the differential speed generator 5. In this embodiment, the control parameters for acquiring the above-mentioned three data are exemplified, but the control parameters constituting the learning data set include at least one of the above-mentioned three data. I just need to be there. Further, the control parameters are not limited to the above three, and may include other parameters such as the supply amount of the liquid to be treated PL1 from the liquid to be treated supply source 10 and the dam set diameter of the dam 2c of the bowl 2. May include. Therefore, the number of control parameters constituting the output data may be four or more. Generally, if the number of control parameters increases, fine parameter adjustment can be realized when applied to the operation control of the decanter 1 described later. However, as the number of control parameters increases, the number of training data sets required to obtain a trained model that can be reasoned with sufficient accuracy tends to increase. Therefore, it is preferable to determine the number of control parameters as output data in consideration of the number of training data sets that can be prepared.
 この学習用データセット取得ユニット21において取得される複数のデータの取得方法の一例を説明する。学習用データセット取得ユニット21は、図3に示すように、コンピュータPC1に接続され、このコンピュータPC1から所望のデータを取得する。このコンピュータPC1は、例えば上述したデカンタ1の各種動作制御を行うコントロールユニット30の少なくとも一部を構成する、あるいはこのコントロールユニット30に通信可能に接続されたコンピュータであってよい。これにより、コンピュータPC1においてデカンタ1の各種制御パラメータが取得可能となっている。加えて、このコンピュータPC1は、図2に示すように、固形物排出導管7に設けられた脱水固形物監視システム50に直接又はコントロールユニット30を介して間接的に接続されており、脱水固形物監視システム50より脱水固形物Mの画像データを取得することができる。なお、ここでいうデカンタ1のコントロールユニット30とは、デカンタ1全体の制御を行うための装置であって、デカンタ1が含む各種センサや駆動手段に接続された、プロセッサ及びメモリ等を含む周知のコンピュータ等から構成されるものであってよい。 An example of an acquisition method of a plurality of data acquired by the learning data set acquisition unit 21 will be described. As shown in FIG. 3, the learning data set acquisition unit 21 is connected to the computer PC1 and acquires desired data from the computer PC1. The computer PC 1 may be, for example, a computer that constitutes at least a part of the control unit 30 that controls various operations of the decanter 1 described above, or is communicably connected to the control unit 30. As a result, various control parameters of the decanter 1 can be acquired in the computer PC1. In addition, as shown in FIG. 2, the computer PC 1 is directly connected to the dehydrated solids monitoring system 50 provided in the solids discharge conduit 7 or indirectly via the control unit 30, and the dehydrated solids. Image data of the dehydrated solid M can be acquired from the monitoring system 50. The control unit 30 of the decanter 1 referred to here is a device for controlling the entire decanter 1, and is well known including a processor, a memory, and the like connected to various sensors and drive means included in the decanter 1. It may be composed of a computer or the like.
 本実施の形態に係る脱水固形物監視システム50としては、図3に示すように、固形物排出導管7の任意箇所に設けられた窓52と、窓52に所定画角で設置され固形物排出導管7内を通過する脱水固形物Mの画像データを撮像可能な脱水固形物撮像用カメラ53とを含むものを採用することができる。このうち、脱水固形物撮像用カメラ53には、二次元画像を撮像可能な周知のカメラを採用することができる。また、この脱水固形物監視システム50においては、脱水固形物撮像用カメラ53により撮像される画像データに脱水固形物Mの特に表面の状態が反映されやすいよう、固形物排出導管7内を通過する脱水固形物Mを照らす図示しない光源や、脱水固形物撮像用カメラ53に取り付け可能な図示しない偏光フィルタを適宜採用することができる。また、図2においては、固形物排出導管7が略垂直に延在し、脱水固形物Mはこの固形物排出導管7内を自然落下するように通過するものを例示しているが、固形物排出導管7の設置角度等は適宜変更することができる。さらに、本実施の形態においては脱水固形物監視システム5を固形物排出導管7に設置した場合について説示したが本開示はこれに限定されない。すなわち、この脱水固形物監視システム5は、主搬送路7aや固形物シュート6aといった脱水固形物Mが通過する他の任意の位置に設置することができるものである。なお、脱水固形物監視システム50の構成はこれに限定されるものではなく、脱水固形物Mの画像データを取得可能な構成であれば種々の構成を採用することができる。具体例としては、例えば後述する脱水固形物監視システム50A(図9参照)のような構成を採用してもよい。 As shown in FIG. 3, the dehydrated solid matter monitoring system 50 according to the present embodiment includes a window 52 provided at an arbitrary position of the solid matter discharge conduit 7 and a solid matter discharge system 50 installed in the window 52 at a predetermined angle of view. It is possible to adopt a camera including a dehydrated solid image capturing camera 53 capable of capturing image data of the dehydrated solid M passing through the conduit 7. Of these, a well-known camera capable of capturing a two-dimensional image can be adopted as the dehydrated solid matter imaging camera 53. Further, in the dehydrated solids monitoring system 50, the dehydrated solids M pass through the solids discharge conduit 7 so that the image data captured by the dehydrated solids imaging camera 53 can easily reflect the state of the surface of the dehydrated solids M. A light source (not shown) that illuminates the dehydrated solid matter M and a polarizing filter (not shown) that can be attached to the dehydrated solid matter imaging camera 53 can be appropriately adopted. Further, in FIG. 2, the solid matter discharge conduit 7 extends substantially vertically, and the dehydrated solid matter M exemplifies a solid matter passing through the solid matter discharge conduit 7 so as to fall naturally. The installation angle of the discharge conduit 7 and the like can be changed as appropriate. Further, in the present embodiment, the case where the dehydrated solid matter monitoring system 5 is installed in the solid matter discharge conduit 7 has been described, but the present disclosure is not limited to this. That is, the dehydrated solids monitoring system 5 can be installed at any other position through which the dehydrated solids M passes, such as the main transport path 7a and the solids chute 6a. The configuration of the dehydrated solids monitoring system 50 is not limited to this, and various configurations can be adopted as long as the image data of the dehydrated solids M can be acquired. As a specific example, for example, a configuration such as the dehydrated solid matter monitoring system 50A (see FIG. 9) described later may be adopted.
 図4は、本開示の第1の実施の形態に係る脱水固形物監視システム50の脱水固形物撮像用カメラ53により得られた画像データの例を示したものである。ところで、水処理設備の技術分野において、遠心分離システムにより固液分離処理を行った後に排出される脱水固形物Mに含まれる液体成分の量、すなわち含水率が小さいことは、固液分離処理が良好に行われていると推測できる指針となり得る。また、脱水固形物監視システム50によって得られる画像データにおいて、脱水固形物Mに含まれる液体成分の量が多いと、色味が濃くなったり、輝度が上昇したりする傾向がある。したがって、脱水固形物Mの含水率が比較的高い画像データ(例えば図4Bに示すもの)は、含水率が比較的低い画像データ(例えば図4Aに示すもの)に比べて、ピクセル間の色味の変化量が増加する傾向があると推測できるであろう。 FIG. 4 shows an example of image data obtained by the dehydrated solids imaging camera 53 of the dehydrated solids monitoring system 50 according to the first embodiment of the present disclosure. By the way, in the technical field of water treatment equipment, the amount of liquid component contained in the dehydrated solid M discharged after the solid-liquid separation treatment by the centrifugal separation system, that is, the water content is small, the solid-liquid separation treatment is performed. It can be a guideline that can be inferred to be well done. Further, in the image data obtained by the dehydrated solids monitoring system 50, if the amount of the liquid component contained in the dehydrated solids M is large, the color tends to be deep and the brightness tends to increase. Therefore, the image data having a relatively high water content of the dehydrated solid M (for example, the one shown in FIG. 4B) has a color tint between pixels as compared with the image data having a relatively low water content (for example, the one shown in FIG. 4A). It can be inferred that the amount of change in is likely to increase.
 学習用データセット記憶ユニット22は、学習用データセット取得ユニット21で取得した学習用データセットを構成する複数のデータを、関連する入力データと出力データ(「教師データ」ともいう)とを関連付けて1つの学習用データセットとし、格納するためのデータベースであってよい。本実施の形態において格納される学習用データセットは、固形物排出口2aから排出された脱水固形物Mを所定画角から撮像した画像データを入力データとし、この入力データとしての画像データに対応付けられた制御パラメータを出力データとしたものとすることができる。また、学習用データセット記憶ユニット22を構成するデータベースの具体的な構成については適宜調整することができる。例えば、図3においては、説明の都合上、この学習用データセット記憶ユニット22と後述する学習済モデル記憶ユニット24とを別々の記憶手段として示しているが、これらは単一の記憶媒体(データベース)によって構成することもできる。 The training data set storage unit 22 associates a plurality of data constituting the training data set acquired by the training data set acquisition unit 21 with related input data and output data (also referred to as “teacher data”). It may be a database for storing one learning data set. The learning data set stored in the present embodiment uses image data obtained by capturing the dehydrated solid material M discharged from the solid material discharge port 2a from a predetermined angle as input data, and corresponds to the image data as the input data. The attached control parameter can be used as output data. Further, the specific configuration of the database constituting the learning data set storage unit 22 can be appropriately adjusted. For example, in FIG. 3, for convenience of explanation, the training data set storage unit 22 and the trained model storage unit 24 described later are shown as separate storage means, but these are used as a single storage medium (database). ) Can also be configured.
 ところで、学習用データセット記憶ユニット22で格納される学習用データセットは、上述したように、1つの画像データと、この1つの画像データに対応する制御パラメータとで構成され得る。他方、学習ユニット23において1つの学習済モデルを生成するためには、多くの学習用データセット(例えば数千~数万セット)を用いて学習を行う必要があるのが通常である。そこで、多量の学習用データセットを比較的短時間で準備するために、この学習用データセット記憶ユニット22において、データオーギュメンテーション(data augmentation)を実施することが好ましい。このデータオーギュメンテーションの具体的な方法としては、例えば、1つの矩形の原画像データから、当該原画像データよりも小さな正方形の部分画像データをランダムにa個(例えば100個)抽出し、抽出されたa個の部分画像データそれぞれと原画像データに対応付けられた制御パラメータとを関連付けることで、a個の学習用データセットを取得する方法を採用することができる。 By the way, as described above, the learning data set stored in the learning data set storage unit 22 can be composed of one image data and control parameters corresponding to the one image data. On the other hand, in order to generate one trained model in the learning unit 23, it is usually necessary to perform training using many training data sets (for example, thousands to tens of thousands of sets). Therefore, in order to prepare a large amount of training data set in a relatively short time, it is preferable to perform data augmentation in the learning data set storage unit 22. As a specific method of this data augmentation, for example, a (for example, 100) partial image data of a square smaller than the original image data is randomly extracted from the original image data of one rectangle and extracted. By associating each of the a partial image data with the control parameter associated with the original image data, it is possible to adopt a method of acquiring a learning data set.
 学習ユニット23は、学習用データセット記憶ユニット22に記憶された複数の学習用データセットを複数組入力することで、学習用データセット内の入力データと出力データとの間の相関関係を推論する学習モデルを学習するものであってよい。本実施の形態においては、後に詳しく説示するように、機械学習の具体的な手法としてニューラルネットワークを用いた教師あり学習を採用している。ただし、機械学習の具体的な手法については、これに限定されるものではなく、入出力の相関関係を学習用データセットから学習することができるものであれば他の学習手法を採用することも可能である。例えば、アンサンブル学習(ランダムフォレスト、ブースティング、スタッキング等)を用いることもできる。 The learning unit 23 infers the correlation between the input data and the output data in the learning data set by inputting a plurality of sets of the plurality of learning data sets stored in the learning data set storage unit 22. It may be one that learns a learning model. In this embodiment, as will be explained in detail later, supervised learning using a neural network is adopted as a specific method of machine learning. However, the specific method of machine learning is not limited to this, and other learning methods may be adopted as long as the correlation between input and output can be learned from the training data set. It is possible. For example, ensemble learning (random forest, boosting, stacking, etc.) can also be used.
 学習済モデル記憶ユニット24は、学習ユニット23で生成された学習済モデルを記憶するためのデータベースであってよい。この学習済モデル記憶ユニット24に記憶された学習済モデルは、要求に応じて、インターネットを含む通信回線や記憶媒体を介して実システムへ適用され得る。実システム(データ処理システム80)に対する学習済モデルの具体的な適用態様については、後に詳述する。 The trained model storage unit 24 may be a database for storing the trained model generated by the training unit 23. The trained model stored in the trained model storage unit 24 can be applied to a real system via a communication line including the Internet or a storage medium, if requested. The specific application mode of the trained model to the actual system (data processing system 80) will be described in detail later.
 ところで、本実施の形態に係るデカンタ1において学習用データセットを準備する際には、教師データとなる最適な制御パラメータを特定しておくとよい。この最適な制御パラメータを特定する方法としては、種々の手法を採用できるが、例えば脱水固形物監視システム50により取得された画像データとそのときの実際の制御パラメータとを参酌し、オペレータENが手動で特定する方法を採用することができる。この場合、教師データとなる最適な制御パラメータを特定するオペレータENには熟練の技術者、あるいは複数の技術者を割り当てると好ましい。このように特定された最適な制御パラメータは、機械学習装置20において、学習用データセットの教師データとして、上述した画像データに対応付けられた状態で学習用データセット記憶ユニット22に整理・格納される。 By the way, when preparing the learning data set in the decanter 1 according to the present embodiment, it is advisable to specify the optimum control parameters to be the teacher data. Various methods can be adopted as a method for specifying the optimum control parameter. For example, the operator EN manually takes into consideration the image data acquired by the dehydrated solid matter monitoring system 50 and the actual control parameter at that time. The method specified by can be adopted. In this case, it is preferable to assign a skilled engineer or a plurality of engineers to the operator EN that specifies the optimum control parameter to be the teacher data. The optimum control parameters identified in this way are organized and stored in the learning data set storage unit 22 in a state associated with the above-mentioned image data as teacher data of the learning data set in the machine learning device 20. To.
 ここで、特定される最適な制御パラメータとしては、上述したように、ボウル2の遠心力、添加物供給源11からの薬剤の供給量、及びボウル2とスクリューコンベア3との差速の少なくとも1つであってよい。これらの制御パラメータは、デカンタ1による固液分離処理に最も影響のある制御パラメータと考えられるものといえる。したがって、ここで特定される制御パラメータは、本実施の形態において例示するように上述した3つの制御パラメータ全てとすると好ましい。なお、当然ながらこれら3つの制御パラメータのうち1つのみ、あるいは2つのみを出力データとして採用してもよく、またこれら3つの制御パラメータ以外のパラメータ(例えば薬剤の供給位置等)を出力データに更に追加することも可能である。ちなみに、上記3つの制御パラメータのうちのボウル2の遠心力は、主に駆動モータ4によるボウル2の回転数を制御することで調整が可能であるが、この回転数を変更する制御は他の2つの制御(薬剤供給量及び差速の制御)に比して応答性が低いという特徴がある。そこで、上記3つの制御パラメータのうち2つのみを出力データに採用する場合には、添加物供給源11からの薬剤の供給量とボウル2とスクリューコンベア3との差速の2つを採用するとよい。 Here, the optimum control parameters specified are, as described above, at least one of the centrifugal force of the bowl 2, the supply amount of the drug from the additive supply source 11, and the difference speed between the bowl 2 and the screw conveyor 3. It may be one. It can be said that these control parameters are considered to be the control parameters having the greatest influence on the solid-liquid separation process by the decanter 1. Therefore, it is preferable that the control parameters specified here are all three control parameters described above as exemplified in the present embodiment. Of course, only one or only two of these three control parameters may be adopted as output data, and parameters other than these three control parameters (for example, drug supply position, etc.) may be used as output data. It is also possible to add more. By the way, the centrifugal force of the bowl 2 among the above three control parameters can be adjusted mainly by controlling the rotation speed of the bowl 2 by the drive motor 4, but the control for changing the rotation speed is other. It is characterized by low responsiveness compared to the two controls (control of drug supply amount and differential speed). Therefore, when only two of the above three control parameters are adopted for the output data, the supply amount of the drug from the additive supply source 11 and the differential speed between the bowl 2 and the screw conveyor 3 are adopted. good.
 次に、上述のようにして得られた複数の学習用データセットを用いた、学習ユニット23における学習手法について、その一例を簡単に説明する。図5は、本開示の第1の実施の形態に係る機械学習装置において実施される教師あり学習のためのニューラルネットワークモデルの例を示す図である。図5に示すニューラルネットワークモデルにおけるニューラルネットワークは、入力層にあるl個のニューロン(x1~xl)、第1中間層にあるm個のニューロン(y11~y1m)、第2中間層にあるn個のニューロン(y21~y2n)、及び出力層にあるo個のニューロン(z1~zo)から構成されている。第1中間層及び第2中間層は、隠れ層とも呼ばれており、ニューラルネットワークとしては、第1中間層及び第2中間層の他に、さらに複数の隠れ層を有するものであってもよく、あるいは第1中間層のみを隠れ層とするものであってもよい。 Next, an example of the learning method in the learning unit 23 using the plurality of learning data sets obtained as described above will be briefly described. FIG. 5 is a diagram showing an example of a neural network model for supervised learning implemented in the machine learning device according to the first embodiment of the present disclosure. The neural network in the neural network model shown in FIG. 5 includes l neurons (x1 to xl) in the input layer, m neurons (y11 to y1m) in the first intermediate layer, and n neurons in the second intermediate layer. It is composed of neurons (y21 to y2n) and o neurons (z1 to zo) in the output layer. The first intermediate layer and the second intermediate layer are also called hidden layers, and the neural network may have a plurality of hidden layers in addition to the first intermediate layer and the second intermediate layer. Or, only the first intermediate layer may be used as a hidden layer.
 また、入力層と第1中間層との間、第1中間層と第2中間層との間、第2中間層と出力層との間には、層間のニューロンを接続するノードが張られており、それぞれのノードには、重みwi(iは自然数)が対応づけられている。 In addition, nodes connecting the neurons between the layers are stretched between the input layer and the first intermediate layer, between the first intermediate layer and the second intermediate layer, and between the second intermediate layer and the output layer. Each node is associated with a weight wi (i is a natural number).
 本実施の形態に係るニューラルネットワークモデルにおけるニューラルネットワークは、学習用データセットを用いて、学習用データセットの入力データと出力データとの相関関係を学習する。具体的には、入力データを構成する状態変数としての脱水固形物Mの画像データを入力層のニューロンに対応づけ、出力層にあるニューロンの値を、一般的なニューラルネットワークの出力値の算出方法で、つまり、出力側のニューロンの値を、当該ニューロンに接続される入力側のニューロンの値と、出力側のニューロンと入力側のニューロンとを接続するノードに対応づけられた重みwiとの乗算値の数列の和として算出することを、入力層にあるニューロン以外の全てのニューロンに対して行う方法を用いることで、算出する。なお、上記状態変数を入力層のニューロンに入力するに際し、状態変数として取得した情報をどのような形式として入力するかは、生成される学習済モデルの精度等を考慮して適宜設定することができる。 The neural network in the neural network model according to the present embodiment learns the correlation between the input data and the output data of the training data set by using the training data set. Specifically, the image data of the dehydrated solid M as a state variable constituting the input data is associated with the neurons in the input layer, and the values of the neurons in the output layer are calculated as the output values of a general neural network. That is, the value of the neuron on the output side is multiplied by the value of the neuron on the input side connected to the neuron and the weight wi associated with the node connecting the neuron on the output side and the neuron on the input side. It is calculated as the sum of a number of values by using a method performed for all neurons other than the neurons in the input layer. When inputting the above state variables to the neurons of the input layer, the format of the information acquired as the state variables may be appropriately set in consideration of the accuracy of the generated trained model. can.
 そして、算出された出力層にあるo個のニューロンz1~zoの値、すなわち本実施の形態においては制御パラメータに対応する値と、学習用データセットの一部を構成する、同じく制御パラメータからなる教師データt1~toとを、それぞれ比較して誤差を求め、求められた誤差が小さくなるように、各ノードに対応づけられた重みwiを調整する(バックプロパゲーション)ことを反復する。 Then, it is composed of the values of o neurons z1 to zo in the calculated output layer, that is, the values corresponding to the control parameters in the present embodiment, and the control parameters that form a part of the learning data set. The teacher data t1 to to are compared with each other to obtain an error, and the weight wi associated with each node is adjusted (backpropagation) so that the obtained error becomes small.
 上述した一連の工程を所定回数反復実施すること、あるいは前記誤差が許容値より小さくなること等の所定の条件が満たされた場合には、学習を終了して、そのニューラルネットワークモデル(のノードのそれぞれに対応づけられた全ての重みwi)を学習済モデルとして学習済モデル記憶ユニット24に記憶する。 When a predetermined condition such as repeating the above-mentioned series of steps a predetermined number of times or the error becoming smaller than the allowable value is satisfied, the learning is terminated and the neural network model (node of the node) is satisfied. All the weights wi) associated with each are stored in the trained model storage unit 24 as a trained model.
<機械学習方法>
 上記に関連して、本開示は機械学習方法を提供する。図6は、本開示の第1の実施の形態に係る機械学習方法の例を示すフローチャートである。以下に示す機械学習方法においては、上述した機械学習装置20に基づいて説明を行うが、前提となる構成については、上述した機械学習装置20に限定されない。また、この機械学習方法はコンピュータを用いることで実現されるものであるが、このコンピュータとしては種々のものが適用可能であり、例えばコントロールユニット30を構成するコンピュータ、ネットワーク上に配されたサーバ装置、あるいは図3に示すコンピュータPC1等を挙げることができる。また、このコンピュータの具体的構成については、例えば、少なくともCPUやGPU等からなる演算装置と、RAMやROMに代表される揮発性又は不揮発性メモリ等で構成される記憶装置と、ネットワークや他の機器に通信するための通信装置と、これら各装置を接続するバスとを含むものを採用することができる。更にまた、この機械学習方法は、コンピュータに所定の操作を実行するための1乃至複数の命令を含むプログラムの形式で、あるいは当該プログラムを格納した非一時的なコンピュータ読取可能媒体の形式で提供されてもよい。
<Machine learning method>
In connection with the above, the present disclosure provides a machine learning method. FIG. 6 is a flowchart showing an example of the machine learning method according to the first embodiment of the present disclosure. The machine learning method shown below will be described based on the machine learning device 20 described above, but the premise configuration is not limited to the machine learning device 20 described above. Further, although this machine learning method is realized by using a computer, various computers can be applied, for example, a computer constituting the control unit 30 and a server device arranged on a network. , Or the computer PC1 shown in FIG. 3 and the like. Regarding the specific configuration of this computer, for example, an arithmetic unit composed of at least a CPU, a GPU, etc., a storage device composed of a volatile or non-volatile memory represented by RAM or ROM, a network, or other devices. It is possible to adopt a device including a communication device for communicating with the device and a bus connecting each of these devices. Furthermore, this machine learning method is provided in the form of a program containing one or more instructions for performing a predetermined operation on a computer, or in the form of a non-temporary computer-readable medium containing the program. You may.
 本実施の形態に係る機械学習方法としての教師あり学習は、機械学習を開始するための事前準備として、先ず所望の数の学習用データセットを準備し、準備した複数個の学習用データセットを学習用データセット記憶ユニット22に記憶する(ステップS11)。ここで準備する学習用データセットの数については、最終的に得られる学習済みモデルに求められる推論精度を考慮して設定するとよい。また、学習用データセットを準備する方法については、その一例を既に上で例示しているため、ここでは説明を省略する。 In supervised learning as a machine learning method according to the present embodiment, as a preliminary preparation for starting machine learning, a desired number of learning data sets are first prepared, and a plurality of prepared learning data sets are prepared. It is stored in the learning data set storage unit 22 (step S11). The number of training data sets prepared here may be set in consideration of the inference accuracy required for the finally obtained trained model. Further, since an example of the method of preparing the training data set has already been illustrated above, the description thereof will be omitted here.
 ステップS11が完了すると、次いで学習ユニット23における機械学習を開始すべく、学習前のニューラルネットワークモデルを準備する(ステップS12)。ここで準備される学習前のニューラルネットワークモデルとしては、例えば上記図4で示した構造を有し、各ノードの重みが初期値に設定されたものを採用することができる。そして、学習用データセット記憶ユニット22に記憶された複数個の学習用データセットから、例えばランダムに一の学習用データセットを選択し(ステップS13)、当該一の学習用データセット内の入力データを、準備された学習前のニューラルネットワークモデルの入力層(図4参照)に入力する(ステップS14)。なお、学習用データセット内の入力データを学習前のニューラルネットワークモデルの入力層に入力する手法としては、種々のものを採用することができる。具体例としては、画像データのピクセルごとの輝度値及び/又は色値(例えばRGB値)を各入力層のニューロンに入力する方法を採用することができる。また、入力データとしての画像データを入力層に入力する前段階で、データの数を調整するための次元削減処理やノイズ除去等の所定の前処理を実行してもよい。 When step S11 is completed, a neural network model before learning is prepared in order to start machine learning in the learning unit 23 (step S12). As the pre-learning neural network model prepared here, for example, a neural network model having the structure shown in FIG. 4 and having the weight of each node set to the initial value can be adopted. Then, for example, one learning data set is randomly selected from the plurality of learning data sets stored in the learning data set storage unit 22 (step S13), and the input data in the one learning data set is selected. Is input to the input layer (see FIG. 4) of the prepared neural network model before learning (step S14). As a method of inputting the input data in the training data set to the input layer of the neural network model before training, various methods can be adopted. As a specific example, a method of inputting a luminance value and / or a color value (for example, an RGB value) for each pixel of image data into a neuron of each input layer can be adopted. Further, before inputting image data as input data to the input layer, predetermined preprocessing such as dimension reduction processing and noise removal for adjusting the number of data may be executed.
 ここで、上記ステップS14の結果として生成された出力層(図4参照)の制御パラメータは、学習前のニューラルネットワークモデルによって生成されたものであるため、ほとんどの場合望ましい結果とは異なる値である。そこで、次に、ステップS13において取得された一の学習用データセット内の教師データとしての出力データ、すなわち制御パラメータと、ステップS13において生成された出力層の制御パラメータとを用いて、機械学習を実施する(ステップS15)。ここで行う機械学習とは、例えば、教師データを構成する制御パラメータと出力層を構成する制御パラメータとを比較し、両者の誤差を検出し、この誤差が小さくなるような出力層が得られるよう、学習前のニューラルネットワークモデル内の各ノードに対応付けられた重みを調整する処理(バックプロパゲーション)であってよい。また、学習前のニューラルネットワークモデルの出力層に出力される制御パラメータの数及び形式は、学習対象としての学習用データセット内の教師データと同様の数及び形式である。したがって、例えば学習用データセット内の教師データとしての制御パラメータが2つの制御パラメータに対応するデータで構成されている場合には、ニューラルネットワークモデルが出力層に出力する制御パラメータも2つの制御パラメータに対応するデータであるとよい。 Here, since the control parameters of the output layer (see FIG. 4) generated as a result of step S14 are generated by the neural network model before training, they are different from the desired results in most cases. .. Therefore, next, machine learning is performed using the output data as teacher data in one learning data set acquired in step S13, that is, the control parameters and the control parameters of the output layer generated in step S13. It is carried out (step S15). The machine learning performed here is, for example, to compare the control parameters constituting the teacher data and the control parameters constituting the output layer, detect an error between them, and obtain an output layer in which this error becomes small. , It may be a process (backpropagation) for adjusting the weight associated with each node in the neural network model before learning. Further, the number and format of the control parameters output to the output layer of the neural network model before training are the same number and format as the teacher data in the training data set as the training target. Therefore, for example, when the control parameter as the teacher data in the training data set is composed of the data corresponding to the two control parameters, the control parameter output to the output layer by the neural network model is also the two control parameters. It should be the corresponding data.
 ステップS15において機械学習が実施されると、さらに機械学習を継続する必要があるか否かを、例えば学習用データセット記憶ユニット22内に記憶された未学習の学習用データセットの残数に基づいて特定する(ステップS16)。そして、機械学習を継続する場合(ステップS16でNo)にはステップS13に戻り、機械学習を終了する場合(ステップS16でYes)には、ステップS17に移る。上記機械学習を継続する場合には、学習中のニューラルネットワークモデルに対してステップS13~S15の工程を未学習の学習用データセットを用いて複数回実施する。最終的に生成される学習済モデルの精度は、一般にこの回数に比例して高くなる傾向がある。 When machine learning is performed in step S15, whether or not it is necessary to continue machine learning is determined based on, for example, the remaining number of unlearned learning data sets stored in the learning data set storage unit 22. (Step S16). Then, when the machine learning is continued (No in step S16), the process returns to step S13, and when the machine learning is finished (Yes in step S16), the process proceeds to step S17. When the machine learning is continued, the steps S13 to S15 are performed a plurality of times on the neural network model being trained by using the unlearned learning data set. The accuracy of the finally generated trained model generally tends to increase in proportion to this number of times.
 機械学習を終了する場合(ステップS16でYes)には、各ノードに対応付けられた重みが一連の工程によって調整され生成されたニューラルネットワークを学習済モデルとして、学習済モデル記憶ユニット24に記憶し(ステップS17)、一連の学習プロセスを終了する。ここで記憶された学習済モデルは、種々のデータ処理システムに適用され使用され得るものであるが、当該データ処理システムの具体例については後述する。 When machine learning is terminated (Yes in step S16), the neural network generated by adjusting the weights associated with each node by a series of steps is stored in the trained model storage unit 24 as a trained model. (Step S17), a series of learning processes is completed. The trained model stored here can be applied to various data processing systems and used, and specific examples of the data processing systems will be described later.
 上述した機械学習装置の学習プロセス及び機械学習方法においては、1つの学習済モデルを生成するために、1つの(学習前の)ニューラルネットワークモデルに対して複数回の機械学習処理を繰り返し実行することでその推論精度を向上させ、データ処理システムに適用するに足る学習済モデルを得るものを説示しているが、本開示はこの取得方法に限定されない。例えば、所定回数の機械学習を実施した学習済モデルを一候補として複数個学習済モデル記憶ユニット24に格納しておき、この複数個の学習済モデル群に妥当性判断のための共通のデータセットの入力データを入力して出力層(のニューロンの値)を生成し、この出力層で特定された制御パラメータの精度を比較検討して、データ処理システムに適用する最良の学習済モデルを1つ選定するようにしてもよい。なお、妥当性判断用データセットは、学習に用いた学習用データセットと同様のデータセットで構成され、且つ学習に用いられていないものであればよい。 In the learning process and machine learning method of the machine learning device described above, in order to generate one trained model, one machine learning process is repeatedly executed for one (pre-learning) neural network model. The present disclosure is not limited to this acquisition method, although the method of improving the inference accuracy and obtaining a trained model sufficient for application to a data processing system is explained in the above. For example, a plurality of trained models that have undergone machine learning a predetermined number of times are stored as one candidate in a plurality of trained model storage units 24, and a common data set for determining validity is stored in the plurality of trained model groups. One of the best trained models to apply to a data processing system by inputting the input data of to generate an output layer (value of neurons) and comparing the accuracy of the control parameters identified in this output layer. You may choose. The validity determination data set may be any data set that is the same as the learning data set used for learning and is not used for learning.
 オプションとして、上記ステップS12において準備されるノードの重みが初期値に設定された学習前のニューラルネットワークモデルに代えて、例えば任意の画像認識のために予め生成された学習済モデルを利用することもできる。この場合には、いわゆるファインチューニング又は転移学習により所望の学習済モデルを生成することとなる。そのため、上述した通常の機械学習プロセスに比して少ない学習用データセットの数で高精度の学習済モデルを生成できる。 As an option, instead of the pre-learning neural network model in which the node weight prepared in step S12 is set to the initial value, for example, a pre-generated trained model for arbitrary image recognition may be used. can. In this case, a desired trained model is generated by so-called fine tuning or transfer learning. Therefore, a highly accurate trained model can be generated with a smaller number of training data sets as compared with the above-mentioned normal machine learning process.
 以上説明した通り、本実施の形態に係る機械学習装置20及び機械学習方法を適用することにより、脱水固形物監視システム50により取得される画像データから、最適な制御パラメータを導出することが可能な学習済モデルを得ることができる。 As described above, by applying the machine learning device 20 and the machine learning method according to the present embodiment, it is possible to derive the optimum control parameters from the image data acquired by the dehydrated solid matter monitoring system 50. You can get a trained model.
<データ処理システム>
 次に、図7を参照して、上述した機械学習装置及び機械学習方法によって生成された学習済モデルの適用例について説示する。図7は、本開示の第1の実施の形態に係るデータ処理システム80を示す概略ブロック図である。本実施の形態に係るデータ処理システム80としては、上述した横型のデカンタ1のコントロールユニット30内に適用されたものを例示する。
<Data processing system>
Next, with reference to FIG. 7, an application example of the trained model generated by the machine learning device and the machine learning method described above will be described. FIG. 7 is a schematic block diagram showing a data processing system 80 according to the first embodiment of the present disclosure. As the data processing system 80 according to the present embodiment, the one applied in the control unit 30 of the horizontal decanter 1 described above is exemplified.
 データ処理システム80は、図7に示すように、主に第1の画像データ取得ユニット81と、パラメータ調整ユニット82と、演算ユニット83と、データベース(DB)84と、ユーザインタフェース85と、これらを相互に接続するための内部バス86とを含むものとすることができる。なお、図7においては、データ処理システム80に関連する構成要素のみ示し、コントロールユニット30が備える本実施の形態に係るデータ処理システム80とは直接関係しない他の構成要素についてはその記載を省略している。 As shown in FIG. 7, the data processing system 80 mainly includes a first image data acquisition unit 81, a parameter adjustment unit 82, an arithmetic unit 83, a database (DB) 84, a user interface 85, and the like. It may include an internal bus 86 for interconnecting. Note that, in FIG. 7, only the components related to the data processing system 80 are shown, and the description of other components not directly related to the data processing system 80 according to the present embodiment of the control unit 30 is omitted. ing.
 第1の画像データ取得ユニット81は、画像データ、詳しくは脱水固形物Mの画像データを取得するためのものであってよい。具体的には、上述した脱水固形物監視システム50に接続されて脱水固形物監視システム50の脱水固形物撮像用カメラ53により撮像された画像データを取得するものとすることができる。 The first image data acquisition unit 81 may be for acquiring image data, specifically, image data of the dehydrated solid M. Specifically, it can be connected to the above-mentioned dehydrated solids monitoring system 50 and acquire image data captured by the dehydrated solids imaging camera 53 of the dehydrated solids monitoring system 50.
 パラメータ調整ユニット82は、コントロールユニット30により最適な動作制御を実現するために調整される各種制御ユニットを、後述する推論ユニット87の推論結果に基づいて調整するためのものであってよい。このパラメータ調整ユニット82は、駆動モータ4に接続されてその回転数を制御することが可能な駆動モータ制御ユニット31と、添加物配管11cに設けられ薬剤の供給量を可変するポンプ11aを制御することが可能なポンプ制御ユニット32と、差動モータ5bに接続されてその回転数を制御してスクリューコンベア3の(ボウル2に対する)回転数を制御することが可能な差動モータ制御ユニット33と、に接続されているとよい。なお、本実施の形態に係るパラメータ調整ユニット82は上述した3つの制御ユニットに接続されたものを例示しているが、推論ユニット87が出力する制御パラメータの数及び種類に合わせてその接続先は適宜調整され得る。 The parameter adjustment unit 82 may be for adjusting various control units adjusted by the control unit 30 to realize optimum operation control based on the inference result of the inference unit 87 described later. The parameter adjusting unit 82 controls a drive motor control unit 31 which is connected to the drive motor 4 and can control the rotation speed thereof, and a pump 11a provided in the additive pipe 11c to change the supply amount of the drug. A pump control unit 32 capable of controlling the pump control unit 32, and a differential motor control unit 33 connected to the differential motor 5b and capable of controlling the rotation speed thereof to control the rotation speed of the screw conveyor 3 (relative to the bowl 2). It should be connected to. The parameter adjustment unit 82 according to the present embodiment exemplifies those connected to the above-mentioned three control units, but the connection destinations are set according to the number and types of control parameters output by the inference unit 87. It can be adjusted as appropriate.
 演算ユニット83は、データ処理システム80における各種処理を実現するためのプロセッサを構成するものであってよく、少なくとも推論ユニット87を含み得る。また、この演算ユニット83は、推論ユニット87において利用する学習済モデルを格納した学習済モデル記憶ユニット88に接続されているとよい。推論ユニット87は、学習済モデル記憶ユニット88に格納された一の学習済モデルを参酌することで、第1の画像データ取得ユニット81で取得した状態変数としての画像データから、パラメータ調整ユニット82により調整を行う制御パラメータを推論するものであってよい。学習済モデル記憶ユニット88に記憶されている学習済モデルは、その用途や各種条件(例えば季節、天候及び温度・湿度といった環境条件、あるいは被処理液の種類等)に合わせて複数個記憶されていると好ましい。これに関連して、複数個の学習済モデルから適切な一の学習済モデルを選択する作業は、各種センサ等を用いて自動的に選択できるようにしてもよいし、オペレータEN等によって手動で選択できるようにしてもよい。 The arithmetic unit 83 may constitute a processor for realizing various processes in the data processing system 80, and may include at least an inference unit 87. Further, the arithmetic unit 83 may be connected to the trained model storage unit 88 that stores the trained model used in the inference unit 87. The inference unit 87 uses the parameter adjustment unit 82 to obtain image data as a state variable acquired by the first image data acquisition unit 81 by referring to one trained model stored in the trained model storage unit 88. It may infer the control parameters to be adjusted. A plurality of trained models stored in the trained model storage unit 88 are stored according to the intended use and various conditions (for example, environmental conditions such as season, weather and temperature / humidity, type of liquid to be treated, etc.). It is preferable to have it. In relation to this, the work of selecting an appropriate trained model from a plurality of trained models may be automatically selected using various sensors or the like, or may be manually selected by an operator EN or the like. You may be able to select it.
 データベース84は、周知の記録媒体からなり、第1の画像データ取得ユニット81が取得した画像データや演算ユニット83による演算結果等、データ処理システム80で扱う各種データを一時的にあるいは継続的に記憶するためのものであってよい。また、ユーザインタフェース85は、例えばGUI(グラフィカルユーザインタフェース)で構成されており、デカンタ1のステータス表示やオペレータEN等からの入力操作等を受け取るためのものであってよい。 The database 84 is made of a well-known recording medium, and temporarily or continuously stores various data handled by the data processing system 80, such as image data acquired by the first image data acquisition unit 81 and calculation results by the calculation unit 83. It may be for the purpose of doing. Further, the user interface 85 is composed of, for example, a GUI (graphical user interface), and may be for receiving a status display of the decanter 1, an input operation from an operator EN, or the like.
 図8は、本開示の第1の実施の形態に係るデータ処理システム80によるパラメータ調整の例を示すフローチャートである。データ処理システム80が適用されたデカンタ1の駆動が開始されると、図8に示すように、先ずデータ処理システム80は、パラメータ調整のタイミングであるか否かを判断する(ステップS21)。ここで、制御パラメータの調整を行うタイミングは、自動的に特定することも、手動で調整することも可能である。また、デカンタ1が作動している間は所定時間間隔で定期的に当該調整を行ってもよいし、例えば、デカンタ1の作動を開始した時、デカンタ1で処理を行う被処理液の種類が変更された時、作動後予め設定された所定時間が経過した時、あるいは被処理液監視システム60又は分離液監視システム40において被処理液又は分離液の濃度の変化を検出可能とし当該変化が所定の閾値を超えた時といった特定のタイミングにのみ当該調整を行ってもよい。 FIG. 8 is a flowchart showing an example of parameter adjustment by the data processing system 80 according to the first embodiment of the present disclosure. When the drive of the decanter 1 to which the data processing system 80 is applied is started, as shown in FIG. 8, the data processing system 80 first determines whether or not it is the timing of parameter adjustment (step S21). Here, the timing for adjusting the control parameters can be automatically specified or manually adjusted. Further, the adjustment may be performed periodically at predetermined time intervals while the decanter 1 is operating. For example, when the operation of the decanter 1 is started, the type of the liquid to be treated by the decanter 1 may be changed. When the change is made, when a predetermined time set in advance has elapsed after the operation, or the change in the concentration of the liquid to be treated or the separation liquid can be detected by the liquid to be monitored system 60 or the separation liquid monitoring system 40, the change is predetermined. The adjustment may be made only at a specific timing such as when the threshold value of is exceeded.
 パラメータ調整のタイミングであることを検知すると(ステップS21でYes)、脱水固形物監視システム50内の脱水固形物撮像用カメラ53を動作させて固形物排出導管7内を通過する脱水固形物Mを撮像する(ステップS22)。ここで撮像された画像データは、第1の画像データ取得ユニット81によりデータ処理システム80に取得される(ステップS23)。 When it is detected that it is the timing of parameter adjustment (Yes in step S21), the dehydrated solid imaging camera 53 in the dehydrated solid monitoring system 50 is operated to detect the dehydrated solid M passing through the solid discharge conduit 7. Image is taken (step S22). The image data captured here is acquired by the first image data acquisition unit 81 in the data processing system 80 (step S23).
 次いで、第1の画像データ取得ユニット81が取得した画像データは推論ユニット87に内部バス86を介して送られ、推論ユニット87において、この画像データが推論ユニット87において予め特定された学習済モデル記憶ユニット88内の一の学習済モデルの入力層に入力されることにより、制御パラメータを推論する(ステップS24)。そして、ここで推論された制御パラメータの値を用いて、パラメータ調整ユニット82が各制御ユニットを調整する(ステップS25)。その後、ステップS21に戻って待機状態となる。 Next, the image data acquired by the first image data acquisition unit 81 is sent to the inference unit 87 via the internal bus 86, and in the inference unit 87, this image data is stored in the trained model previously specified in the inference unit 87. The control parameters are inferred by being input to the input layer of one trained model in the unit 88 (step S24). Then, the parameter adjustment unit 82 adjusts each control unit using the value of the control parameter inferred here (step S25). After that, the process returns to step S21 to enter the standby state.
 以上説明した通り、本実施の形態に係るデータ処理システム80によれば、脱水固形物の画像データという比較的取得しやすい情報に基づきデカンタ1の好ましい制御パラメータを推定できるため、このデータ処理システム80を比較的簡単にデカンタ1に適用することができる。そして、制御パラメータの調整をオペレータEN等の判断に依存することなく簡単に行うことができるようになる。 As described above, according to the data processing system 80 according to the present embodiment, the preferable control parameters of the decanter 1 can be estimated based on the relatively easy-to-acquire information such as the image data of the dehydrated solid matter. Therefore, the data processing system 80. Can be applied to Decanter 1 relatively easily. Then, the adjustment of the control parameter can be easily performed without depending on the judgment of the operator EN or the like.
 オプションとして、上記実施の形態においては、推論ユニット87において参酌される学習済モデルとして、図6に示すようないわゆるバッチ学習による学習を経て生成されたものを説示しているが、本開示のデータ処理システム80はこれに限定されない。具体的には、例えば上述のバッチ学習による学習を経て生成された学習済モデルに、さらにオンライン学習を適用することで更なる精度向上を図ってもよい。この具体的な方法としては、先ず、第1の画像データ取得ユニット81において取得された状態変数としての画像データと、推論ユニット87によって推論された制御パラメータであって、特にパラメータ調整ユニット82における調整を反映した結果固液分離処理結果が改善された時の制御パラメータとを一組のオンライン学習用データセットとしてデータベース84に一時的に格納する。そして、任意のタイミングでデータベース84内に蓄積された当該オンライン学習用データセットを用いて、図6に示すものと同様の機械学習(具体的にはファインチューニング)を実行すれば良い。 As an option, in the above embodiment, as a trained model referred to in the inference unit 87, a model generated through learning by so-called batch learning as shown in FIG. 6 is explained, but the data of the present disclosure is explained. The processing system 80 is not limited to this. Specifically, for example, the accuracy may be further improved by further applying online learning to the trained model generated through the above-mentioned learning by batch learning. As a specific method thereof, first, the image data as a state variable acquired by the first image data acquisition unit 81 and the control parameters inferred by the inference unit 87, particularly the adjustment in the parameter adjustment unit 82. As a result of reflecting the above, the control parameters when the solid-liquid separation processing result is improved are temporarily stored in the database 84 as a set of online learning data sets. Then, machine learning (specifically, fine tuning) similar to that shown in FIG. 6 may be executed using the online learning data set accumulated in the database 84 at an arbitrary timing.
 また、上述のデータ処理システム80は横型のデカンタ1のコントロールユニット30内に適用されているが、これに代えて、例えばデカンタ1のコントロールユニット30に通信可能に接続されたコンピュータや、デカンタ1のコントロールユニット30にネットワーク等を介して接続されたサーバ装置等に適用することも可能である。ただし、本実施の形態で主に想定している汚泥処理に用いられる遠心分離システムは、その処理内容(被処理液の種類や単位時間当たりの処理量等)や周辺環境(気候等)がシステム毎に大きく異なる場合が通常である。したがって、これらの遠心分離システム全てに適用できるような汎用的な学習済モデルを生成することは、その生成に要する学習用データセットの数が非常に多くなり、またそのデータの内容も様々な条件下で取得されたものが偏りなく必要となるため、生成コストが高くなりやすい。したがって、データ処理システム80及び上述した学習済モデルは、遠心分離システム毎に適用して運用することがコスト面で有利となる場合が多く好ましい。 Further, the above-mentioned data processing system 80 is applied in the control unit 30 of the horizontal decanter 1, but instead of this, for example, a computer communicably connected to the control unit 30 of the decanter 1 or a decanter 1 can be used. It can also be applied to a server device or the like connected to the control unit 30 via a network or the like. However, the centrifugal separation system mainly assumed for sludge treatment in this embodiment is based on the treatment content (type of liquid to be treated, treatment amount per unit time, etc.) and surrounding environment (climate, etc.). It is usually the case that it varies greatly from one to another. Therefore, generating a general-purpose trained model that can be applied to all of these centrifuge systems requires a very large number of training datasets to generate, and the content of the data is also various conditions. Since the ones acquired below are required evenly, the generation cost tends to be high. Therefore, it is often preferable that the data processing system 80 and the above-mentioned trained model are applied and operated for each centrifuge system in terms of cost.
<第2の実施の形態>
 上記第1の実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムにおいては、1つの学習済モデルを用いて脱水固形物Mの画像データから制御パラメータを推論する場合について説明を行った。しかし、脱水固形物Mの画像データと制御パラメータとの間には相関関係は認められるものの、両者の相関の度合いは特定が困難である。一般に、ニューラルネットワークモデルの機械学習プロセスにおいて、学習用データセットの入力データと出力データとの間の相関の度合いが高いことに比例して、十分な精度の推論が可能な学習済モデルを得るまでに必要な学習用データセットの数は少なくて済む傾向がある。したがって、上記第1の実施の態様においては、脱水固形物Mの画像データと制御パラメータとの間の相関関係を学習するためには、学習用データセットを比較的多く準備する必要が生じることもあり得る。そこで、より少ない学習用データセットの数で十分な精度の推論が可能な学習済モデルを生成可能とするための一態様として、脱水固形物Mの画像データから制御パラメータを推論するために2つの学習済モデルを利用する場合を、本開示の第2の実施の形態として以下に説明する。なお、以下に示す第2の実施の形態に係る機械学習装置20A及びデータ処理システム80Aの各構成要素のうち、第1の実施の形態に係る機械学習装置20及びデータ処理システム80の各構成要素と共通するものについては、同一の符号を付してその説明を省略する。また、以下に示す第2の実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムは、第1の実施の形態に係るものと同様に、図1及び図2に示す遠心分離システムに適用した場合を例にとり説明されている。さらに、上述したあるいは後述する各実施の形態において説示された全ての変形例は、矛盾が生じない範囲において本実施の形態にも適用可能なものである。
<Second embodiment>
In the machine learning device, the machine learning method, and the data processing system according to the first embodiment, the case where the control parameter is inferred from the image data of the dehydrated solid M using one trained model has been described. .. However, although there is a correlation between the image data of the dehydrated solid M and the control parameters, it is difficult to specify the degree of the correlation between the two. Generally, in the machine learning process of a neural network model, until a trained model that can be inferred with sufficient accuracy is obtained in proportion to the degree of correlation between the input data and the output data of the training data set. The number of training datasets required for a neural network tends to be small. Therefore, in the first embodiment described above, it may be necessary to prepare a relatively large number of training data sets in order to learn the correlation between the image data of the dehydrated solid M and the control parameters. possible. Therefore, as one aspect to enable the generation of a trained model capable of inferring with sufficient accuracy with a smaller number of training data sets, there are two ways to infer control parameters from the image data of the dehydrated solid M. The case of using the trained model will be described below as a second embodiment of the present disclosure. Of the components of the machine learning device 20A and the data processing system 80A according to the second embodiment shown below, each component of the machine learning device 20 and the data processing system 80 according to the first embodiment. The same reference numerals are given to those common to the above, and the description thereof will be omitted. Further, the machine learning device, the machine learning method, and the data processing system according to the second embodiment shown below are the same as those according to the first embodiment, and the centrifugal separation system shown in FIGS. 1 and 2 is used. The explanation is given by taking the case of application as an example. Furthermore, all the modifications described in each of the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
 図9は、本開示の第2の実施の形態に係る機械学習装置20Aの概略ブロック図である。本実施の形態に係る機械学習装置20Aは、図9に示すように、その構成要素としては、学習用データセット記憶ユニットとして、第1の学習用データセット記憶ユニット221と第2の学習用データセット記憶ユニット222とを含み、学習ユニットとして第1の学習ユニット231と第2の学習ユニット232とを含む点以外は、第1の実施の形態に係る機械学習装置20と同様であってよい。また、これに関連して、学習用データセット取得ユニット21において取得される複数のデータも第1の実施の形態のものとは異なっていてよい。 FIG. 9 is a schematic block diagram of the machine learning device 20A according to the second embodiment of the present disclosure. As shown in FIG. 9, the machine learning device 20A according to the present embodiment has, as its components, a first learning data set storage unit 221 and a second learning data as a learning data set storage unit. It may be the same as the machine learning device 20 according to the first embodiment except that the set storage unit 222 is included and the learning unit includes the first learning unit 231 and the second learning unit 232. Further, in connection with this, the plurality of data acquired by the learning data set acquisition unit 21 may also be different from those of the first embodiment.
 本実施の形態に係る学習用データセット取得ユニット21が取得する複数のデータは、コンピュータPC1等から取得できるものであるが、この複数のデータは、脱水固形物Mの画像データと、制御パラメータとに加えて、更に脱水固形物Mの画像データの特徴量(以下、「脱水固形物Mの特徴量」ともいう)を含んでいてよい。脱水固形物Mの特徴量としては、撮像された脱水固形物Mに基づいて特定される種々の情報を採用することができる。具体的には、例えば脱水固形物Mの含水率、色値、密度等を1又は複数含むことができる。この特徴量は、例えば脱水固形物Mを実際にサンプリングして各種測定器等を用いて測定・分析することにより、あるいはオペレータENが目視で判断することにより、特定することができる。 A plurality of data acquired by the learning data set acquisition unit 21 according to the present embodiment can be acquired from a computer PC 1 or the like, and the plurality of data include image data of the dehydrated solid M and control parameters. In addition to this, the feature amount of the image data of the dehydrated solid matter M (hereinafter, also referred to as “characteristic amount of the dehydrated solid matter M”) may be included. As the feature amount of the dehydrated solid M, various information specified based on the imaged dehydrated solid M can be adopted. Specifically, for example, one or a plurality of water content, color value, density and the like of the dehydrated solid M can be included. This feature amount can be specified, for example, by actually sampling the dehydrated solid M and measuring and analyzing it using various measuring instruments or the like, or by visually determining by the operator EN.
 上述した特徴量を測定等するために、本実施の形態に係る脱水固形物M監視システム50Aには、脱水固形物Mをサンプリング抽出可能な構成を採用することが好ましい。具体的には、この脱水固形物監視システム50Aは、図9に示すように、脱水固形物Mを充填可能な所定の深さを含むトレー54と、トレー54を内部に載置可能であって内部に光源を備える撮影ボックス55と、トレー54に充填された脱水固形物Mの表面を所定画角から撮像可能な脱水固形物撮像用カメラ53とを含むことができる。トレー54内に充填された脱水固形物Mは、固形物排出導管7や主搬送路7a等の脱水固形物Mの搬送路の適所に設けられた図示しないサンプリングユニットを用いて所定のタイミングで抽出されたものであってよい。そして、トレー54内に抽出された脱水固形物Mを脱水固形物撮像用カメラ53により撮像することで画像データが生成され、この画像データに対応する所望の制御パラメータがオペレータEN等により特定される。さらには、このトレー54内にサンプリングされた脱水固形物Mの測定・分析等を行えば、この脱水固形物Mの特徴量を特定することができる。なお、当然ながら、本実施の形態においても、上述した第1の実施の形態において説示した脱水固形物監視システム50を代替的に採用可能である。 In order to measure the above-mentioned feature amount, it is preferable that the dehydrated solid M monitoring system 50A according to the present embodiment adopts a configuration capable of sampling and extracting the dehydrated solid M. Specifically, as shown in FIG. 9, the dehydrated solids monitoring system 50A has a tray 54 including a predetermined depth in which the dehydrated solids M can be filled, and the tray 54 can be placed inside. It can include a photographing box 55 having a light source inside, and a camera 53 for capturing a dehydrated solid that can image the surface of the dehydrated solid M filled in the tray 54 from a predetermined angle of view. The dehydrated solid M filled in the tray 54 is extracted at a predetermined timing using a sampling unit (not shown) provided at an appropriate position in the dehydrated solid M transport path such as the solid discharge conduit 7 or the main transport path 7a. It may be the one that was done. Then, image data is generated by imaging the dehydrated solid M extracted in the tray 54 with the dehydrated solid imaging camera 53, and a desired control parameter corresponding to the image data is specified by the operator EN or the like. .. Further, by measuring and analyzing the dehydrated solid M sampled in the tray 54, the characteristic amount of the dehydrated solid M can be specified. As a matter of course, also in the present embodiment, the dehydrated solid matter monitoring system 50 described in the above-described first embodiment can be adopted as an alternative.
 学習用データセット取得ユニット21において取得された複数のデータは、それぞれの対応関係を考慮しつつ、2つの学習用データセットとして第1の学習用データセット記憶ユニット221及び第2の学習用データセット記憶ユニット222内に別々に格納されるとよい。第1の学習用データセット記憶ユニット221に格納される第1の学習用データセットは、排出口2aから排出された脱水固形物Mを所定画角から撮像した脱水固形物Mの画像データを第1の入力データとして含み、第1の入力データに対応付けられた脱水固形物Mの特徴量を第1の出力データとして含むものであって良い。また、第2の学習用データセット記憶ユニット222に格納される第2の学習用データセットは、脱水固形物Mの特徴量を第2の入力データとして含み、第2の入力データに対応付けられた制御パラメータを第2の出力データとして含むものであって良い。なお、このように複数のデータから2つの学習用データセットを分割生成する際は、例えば、同一の脱水固形物Mに関連付けられた脱水固形物Mの画像データ、脱水固形物Mの特徴量及び制御パラメータを、脱水固形物Mの画像データと脱水固形物Mの特徴量とのセットと、脱水固形物Mの特徴量と制御パラメータとのセットに分割して、それぞれを一の第1及び第2の学習用データセットとすればよい。なお、この際分割した後の一の第1及び第2の学習用データセット同士は、それぞれが後述する異なる学習ユニットにおいて参照されるものであるため、その関連性を維持した形式で格納されなくてよい。 The plurality of data acquired in the learning data set acquisition unit 21 are the first learning data set storage unit 221 and the second learning data set as two learning data sets while considering their respective correspondences. It may be stored separately in the storage unit 222. The first learning data set stored in the first learning data set storage unit 221 is the image data of the dehydrated solid M obtained by imaging the dehydrated solid M discharged from the discharge port 2a from a predetermined angle. It may be included as the input data of No. 1 and may include the feature amount of the dehydrated solid M associated with the first input data as the first output data. Further, the second learning data set stored in the second learning data set storage unit 222 includes the feature amount of the dehydrated solid M as the second input data and is associated with the second input data. The control parameter may be included as the second output data. When two training data sets are separately generated from a plurality of data in this way, for example, the image data of the dehydrated solid M associated with the same dehydrated solid M, the feature amount of the dehydrated solid M, and the feature amount of the dehydrated solid M The control parameters are divided into a set of the image data of the dehydrated solid M and the feature amount of the dehydrated solid M and a set of the feature amount of the dehydrated solid M and the control parameter, and each of them is the first and the first. It may be the training data set of 2. At this time, since the first and second learning data sets after the division are referred to in different learning units described later, they are not stored in a format that maintains the relationship. You can do it.
 第1の学習用データセット記憶ユニット221及び第2の学習用データセット記憶ユニット222にそれぞれ格納された第1及び第2の学習用データセットは、それぞれ別の学習ユニットにのみ参照されるものであってよい。第1の学習ユニット231は、第1の学習用データセットを複数組入力することで、第1の入力データと第1の出力データとの相関関係を推論する学習モデルを学習するものであってよい。言い換えれば、この第1の学習ユニット231は、第1の学習用データセット内の脱水固形物Mの画像データを入力することで、この画像データ内の脱水固形物Mの特徴量、すなわち画像データの特徴量を推論する第1の学習モデルを学習するものであってよい。そして、第2の学習ユニット232は、第2の学習用データセットを複数組入力することで、第2の入力データと第2の出力データとの相関関係を推論する学習モデルを学習するものであってよい。言い換えれば、この第2の学習ユニット232は、第2の学習用データセット内の画像データの特徴量を入力することで、制御パラメータを推論する第2の学習モデルを学習するものであってよい。 The first and second learning data sets stored in the first learning data set storage unit 221 and the second learning data set storage unit 222, respectively, are referred only to different learning units. It may be there. The first learning unit 231 learns a learning model that infers the correlation between the first input data and the first output data by inputting a plurality of sets of the first learning data sets. good. In other words, the first learning unit 231 inputs the image data of the dehydrated solid M in the first learning data set, so that the feature amount of the dehydrated solid M in the image data, that is, the image data It may be the one that learns the first learning model that infers the feature quantity of. Then, the second learning unit 232 learns a learning model that infers the correlation between the second input data and the second output data by inputting a plurality of sets of the second learning data sets. It may be there. In other words, the second learning unit 232 may learn the second learning model for inferring the control parameter by inputting the feature amount of the image data in the second learning data set. ..
 第1及び第2の学習ユニット231、232における具体的な機械学習方法は、学習に用いる学習用データセットは異なるものの、その工程は図6に示した教師あり学習の工程といずれも同様とすることができる。そして、一連の機械学習工程を経て得られた第1及び第2の学習済モデルは、学習済モデル記憶ユニット24内にそれぞれ記憶されるとよい。 The specific machine learning methods in the first and second learning units 231 and 232 are the same as the supervised learning process shown in FIG. 6, although the learning data set used for learning is different. be able to. Then, the first and second trained models obtained through a series of machine learning steps may be stored in the trained model storage unit 24, respectively.
 図10は、本開示の第2の実施の形態に係るデータ処理システム80Aを示す概略ブロック図である。本実施の形態に係るデータ処理システム80Aは、図10に示すように、演算ユニット83内の推論ユニットとして、第1の推論ユニット871と第2の推論ユニット872とを含む点以外は上述した第1の実施の形態に係るデータ処理システム80と同様の構成要素を含むものであってよい。 FIG. 10 is a schematic block diagram showing a data processing system 80A according to the second embodiment of the present disclosure. As shown in FIG. 10, the data processing system 80A according to the present embodiment has the above-mentioned first inference unit except that the inference unit 83 includes the first inference unit 871 and the second inference unit 872. It may include the same components as the data processing system 80 according to the first embodiment.
 第1の推論ユニット871は、上述した機械学習装置20Aで生成され学習済モデル記憶ユニット88内に記憶された第1の学習済モデルを用いて推論を実行するものであってよい。したがって、この第1の推論ユニット871は、第1の画像データ取得ユニット81において取得された脱水固形物Mの画像データが入力されると、この画像データの特徴量を出力層に出力することができる。また、第2の推論ユニット872は、上述した機械学習装置20Aで生成され学習済モデル記憶ユニット88内に記憶された第2の学習済モデルを用いて推論を実行するものであってよい。したがって、この第2の推論ユニット872は、第1の推論ユニット871において推論された画像データの特徴量が入力されると、制御パラメータを出力層に出力することができる。 The first inference unit 871 may execute inference using the first trained model generated by the machine learning device 20A described above and stored in the trained model storage unit 88. Therefore, when the image data of the dehydrated solid M acquired by the first image data acquisition unit 81 is input, the first inference unit 871 can output the feature amount of the image data to the output layer. can. Further, the second inference unit 872 may execute inference using the second trained model generated by the machine learning device 20A described above and stored in the trained model storage unit 88. Therefore, the second inference unit 872 can output the control parameter to the output layer when the feature amount of the image data inferred by the first inference unit 871 is input.
 上述した第1及び第2の推論ユニット871、872を含むデータ処理システム80Aが適用されたデカンタ1において制御パラメータの調整を行う場合は、上述した図8に示すものと同様の処理を行えばよい。ただし、図8に示す処理のうち、ステップS24において制御パラメータを推論する際は、先ず第1の推論ユニット871に脱水固形物Mの画像データを入力し、出力された画像データの特徴量を第2の推論ユニット872に入力することとなる。 When adjusting the control parameters in the decanter 1 to which the data processing system 80A including the first and second inference units 871 and 872 described above is applied, the same processing as that shown in FIG. 8 may be performed. .. However, in the process shown in FIG. 8, when inferring the control parameter in step S24, first, the image data of the dehydrated solid M is input to the first inference unit 871, and the feature amount of the output image data is determined. It will be input to the inference unit 872 of 2.
 以上説明した通り、本実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムによれば、制御パラメータに比べて脱水固形物Mの画像データとの相関度合いの大きな画像データの特徴量を推論した上で、この脱水固形物Mの画像データに比べて制御パラメータとの相関度合いの大きな画像データの特徴量を用いて制御パラメータを推論することとなり、十分な精度の推論が可能な各学習済モデルを生成するために必要な学習用データセットの数を相対的に抑えることが期待できる。 As described above, according to the machine learning device, the machine learning method, and the data processing system according to the present embodiment, the feature amount of the image data having a large degree of correlation with the image data of the dehydrated solid matter M as compared with the control parameters can be obtained. After inferring, the control parameters are inferred using the feature amount of the image data having a larger degree of correlation with the control parameters than the image data of the dehydrated solid M, and each learning capable of inferring with sufficient accuracy is possible. It can be expected that the number of training data sets required to generate a completed model will be relatively reduced.
<第3の実施の形態>
 上記第1及び第2の実施の形態に係る機械学習装置及び機械学習方法においては、学習用データセットの入力データとして、脱水固形物Mの画像データのみを採用したものについて説明を行った。しかし、脱水固形物Mの画像データのみを入力データとすると、十分な精度の推論が可能な学習済モデルを生成するために必要な学習用データセットの数が多くなる傾向がある。そこで、より少ない学習用データセットの数で十分な精度の推論が可能な学習済モデルを生成するための一態様として、上述の第1の実施の形態に示した学習用データセットの入力データの数を増やした場合を、本開示の第3の実施の形態として以下に説明する。なお、以下に示す第3の実施の形態に係る機械学習装置20B及びデータ処理システム80Bの各構成要素のうち、第1の実施の形態に係る機械学習装置20及びデータ処理システム80の各構成要素と共通するものについては、同一の符号を付してその説明を省略する。また、以下に示す第3の実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムは、第1及び第2の実施の形態に係るものと同様に、図1及び図2に示す遠心分離システムに適用した場合を例にとり説明されている。さらに、上述したあるいは後述する実施の形態において述べられた全ての変形例は、矛盾が生じない範囲において本実施の形態にも適用可能なものである。
<Third embodiment>
In the machine learning device and the machine learning method according to the first and second embodiments, the one in which only the image data of the dehydrated solid M is adopted as the input data of the learning data set has been described. However, if only the image data of the dehydrated solid M is used as the input data, the number of training data sets required to generate a trained model capable of inferring with sufficient accuracy tends to increase. Therefore, as one aspect for generating a trained model capable of inferring with sufficient accuracy with a smaller number of training data sets, the input data of the training data set shown in the first embodiment described above is used. The case where the number is increased will be described below as a third embodiment of the present disclosure. Of the components of the machine learning device 20B and the data processing system 80B according to the third embodiment shown below, the components of the machine learning device 20 and the data processing system 80 according to the first embodiment. The same reference numerals are given to those common to the above, and the description thereof will be omitted. Further, the machine learning device, the machine learning method, and the data processing system according to the third embodiment shown below are the same as those according to the first and second embodiments, and the centrifuge shown in FIGS. 1 and 2. The explanation is given by taking the case of applying to a separation system as an example. Further, all the modifications described in the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
 図11は、本開示の第3の実施の形態に係る機械学習装置20Bの概略ブロック図である。本実施の形態に係る機械学習装置20Bは、図11に示すように、各構成要素については、学習用データセット記憶ユニットとして第3の学習用データセット記憶ユニット223を含み、学習ユニットとして第3の学習ユニット233を含む点以外は上述した第1の実施の形態に係る機械学習装置20と同様であってよい。また、学習用データセット取得ユニット21において取得される複数のデータも第1の実施の形態に係るものとは異なるものであってよい。本実施の形態に係る学習用データセット取得ユニット21は、図11に示すように、コンピュータPC1に接続されていてよく、このコンピュータPC1から所望のデータを取得することができる。このコンピュータPC1は、第1の実施の形態に係るコンピュータPC1と同様に、コントロールユニット30及び脱水固形物監視システム50に接続されているが、これらに加えて、分離液監視システム40と、被処理液監視システム60と、スクリューコンベアトルク監視システム70にも接続されているとよい。 FIG. 11 is a schematic block diagram of the machine learning device 20B according to the third embodiment of the present disclosure. As shown in FIG. 11, the machine learning device 20B according to the present embodiment includes a third learning data set storage unit 223 as a learning data set storage unit for each component, and a third learning unit as a learning unit. It may be the same as the machine learning apparatus 20 according to the first embodiment described above except that the learning unit 233 is included. Further, the plurality of data acquired by the learning data set acquisition unit 21 may also be different from those according to the first embodiment. As shown in FIG. 11, the learning data set acquisition unit 21 according to the present embodiment may be connected to the computer PC1 and can acquire desired data from the computer PC1. The computer PC 1 is connected to the control unit 30 and the dehydrated solid matter monitoring system 50 as in the computer PC 1 according to the first embodiment, but in addition to these, the separation liquid monitoring system 40 and the object to be processed. It may be connected to the liquid monitoring system 60 and the screw conveyor torque monitoring system 70.
 分離液監視システム40は、図2及び図11に示すように、例えば分離液排出導管8に設けられ、この分離液排出導管8を通過する分離液SLの固形物含有濃度を監視するものであることが好ましい。分離液濃度を監視する具体的な方法としては、例えば周知のレーザー式、光学式、あるいは超音波式の濃度センサを用いて分離液SLの濃度値を直接検出すればよい。 As shown in FIGS. 2 and 11, the separation liquid monitoring system 40 is provided in, for example, the separation liquid discharge conduit 8 and monitors the solid content concentration of the separation liquid SL passing through the separation liquid discharge conduit 8. Is preferable. As a specific method for monitoring the concentration of the separated liquid, for example, the concentration value of the separated liquid SL may be directly detected using a well-known laser type, optical type, or ultrasonic type concentration sensor.
 被処理液監視システム60は、図2及び図11に示すように、例えば被処理液配管10bに配置され、被処理液供給源10から供給される被処理液PL1のスラリー濃度を監視するものであってよい。スラリー濃度を監視する具体的な方法としては、例えば周知のレーザー式、光学式、あるいは超音波式の濃度センサを用いて被処理液の濃度値を直接検出すればよい。なお、本実施の形態においては、被処理液監視システム60を被処理液配管10bの特に添加物配管11cと合流する位置に設けているが、これに代えて、例えば被処理液監視システム60を、被処理液配管10bの添加物配管11cと合流する前の位置、給液管9内、あるいは空間3c内に設けるようにしてもよい。また、スラリー濃度の測定対象を、薬剤が添加される前の被処理液PL1ではなく、被処理液PL1に薬剤が添加された後のフロック含有被処理液PL2とすることも可能である。 As shown in FIGS. 2 and 11, the liquid to be monitored system 60 is arranged, for example, in the liquid pipe 10b to be treated, and monitors the slurry concentration of the liquid to be treated PL1 supplied from the liquid supply source 10 to be treated. It may be there. As a specific method for monitoring the slurry concentration, for example, a well-known laser-type, optical-type, or ultrasonic-type concentration sensor may be used to directly detect the concentration value of the liquid to be treated. In the present embodiment, the liquid to be treated monitoring system 60 is provided at a position where it merges with the liquid to be treated pipe 10b, particularly the additive pipe 11c. Instead of this, for example, the liquid to be treated monitoring system 60 is used. The liquid pipe 10b to be treated may be provided at a position before merging with the additive pipe 11c, in the liquid supply pipe 9, or in the space 3c. Further, it is also possible to measure the slurry concentration not with the liquid to be treated PL1 before the chemical is added, but with the floc-containing liquid to be treated PL2 after the chemical is added to the liquid PL1 to be treated.
 スクリューコンベアトルク監視システム70は、図2及び図11に示すように、例えばスクリューコンベア3の回転軸に取り付けることができ、このスクリューコンベア3に作用する反力を検出することで、スクリューコンベア3のトルク値を監視することができる。 As shown in FIGS. 2 and 11, the screw conveyor torque monitoring system 70 can be attached to, for example, the rotating shaft of the screw conveyor 3, and by detecting the reaction force acting on the screw conveyor 3, the screw conveyor 3 can be attached to the screw conveyor 3. The torque value can be monitored.
 これら4つの監視システム40、50、60及び70により取得される各種データ、詳しくは、脱水固形物Mの画像データ、分離液SLの濃度、被処理液PL1(又はフロック含有被処理液PL2)のスラリー濃度及びスクリューコンベア3のトルク値が、直接、あるいはコントロールユニット30を介してコンピュータPC1に送られ得る。そして、このコンピュータPC1より、対応する所望の制御パラメータと共に学習用データセット取得ユニット21に送られ得る。学習用データセット取得ユニット21で取得した学習用データセットを構成する複数のデータは、脱水固形物Mの画像データ、分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値を第3の入力データとし、これらのデータに対応付けられた制御パラメータを第3の出力データとする第3の学習用データセットの形式で、第3の学習用データセット記憶ユニット223に格納されてよい。そして、第3の学習ユニット233では、第3の学習用データセットを用いて、上述した第1の実施の形態の機械学習方法と同様の方法で機械学習が行われ、得られた第3の学習済モデルが学習済モデル記憶ユニット24に記憶されるとよい。なお、本実施の形態においては、第3の入力データのうち、分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値の3つは1つの値のデータであるのに対し、脱水固形物Mの画像データは画像データを構成する全ピクセルの輝度及び/又は色値であるため、これらはデータの総数が大きく異なる。したがって、これらの入力データをそのまま入力層に対応付けると、得られる推論結果は脱水固形物Mの画像データの影響を相対的に大きく受けることになる。そこで、本実施の形態においては、脱水固形物Mの画像データ以外の入力データの影響度合いが小さくなりすぎないよう、第3の入力データを入力層に対応付ける前に、データの数を調整するためのデータの前処理を行うと特に好ましい。また、当該前処理は、学習済モデルの一部として得られたニューラルネットワークモデルと共に学習済モデル記憶ユニット24内に記憶することで、推論の際にも同様に実施することができる。 Various data acquired by these four monitoring systems 40, 50, 60 and 70, specifically, image data of the dehydrated solid M, the concentration of the separation liquid SL, and the liquid to be treated PL1 (or the liquid to be treated PL2 containing flocs). The slurry concentration and the torque value of the screw conveyor 3 can be sent to the computer PC 1 directly or via the control unit 30. Then, it can be sent from the computer PC 1 to the learning data set acquisition unit 21 together with the corresponding desired control parameters. The plurality of data constituting the learning data set acquired by the learning data set acquisition unit 21 are the image data of the dehydrated solid M, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3. Is stored in the third training data set storage unit 223 in the form of a third training data set in which is used as the third input data and the control parameters associated with these data are used as the third output data. It's okay. Then, in the third learning unit 233, machine learning is performed by the same method as the machine learning method of the first embodiment described above using the third learning data set, and the obtained third learning unit is obtained. The trained model may be stored in the trained model storage unit 24. In the present embodiment, of the third input data, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3 are data of one value. On the other hand, since the image data of the dehydrated solid M is the brightness and / or the color value of all the pixels constituting the image data, the total number of data differs greatly. Therefore, if these input data are directly associated with the input layer, the obtained inference result will be relatively greatly affected by the image data of the dehydrated solid M. Therefore, in the present embodiment, in order to adjust the number of data before associating the third input data with the input layer so that the degree of influence of the input data other than the image data of the dehydrated solid M is not too small. It is particularly preferable to perform preprocessing of the data in. Further, the preprocessing can be similarly performed at the time of inference by storing it in the trained model storage unit 24 together with the neural network model obtained as a part of the trained model.
 図12は、本開示の第3の実施の形態に係るデータ処理システム80Bを示す概略ブロック図である。本実施の形態に係るデータ処理システム80Bは、図12に示すように、推論ユニットとして第3の推論ユニット873を含む点と、付加変数取得ユニット89を含む点以外は上述した第1の実施の形態に係るデータ処理システム80と同様の構成要素を含むものであってよい。 FIG. 12 is a schematic block diagram showing a data processing system 80B according to a third embodiment of the present disclosure. As shown in FIG. 12, the data processing system 80B according to the present embodiment has the first embodiment described above except that the inference unit includes the third inference unit 873 and the additional variable acquisition unit 89. It may include the same components as the data processing system 80 according to the form.
 付加変数取得ユニット89は、図12に示すように、分離液監視システム40、被処理液監視システム60及びスクリューコンベアトルク監視システム70に接続され、これらの監視システムから、分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値を取得するものであってよい。この付加変数取得ユニット89により取得される分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値は、第1の画像データ取得ユニット81が脱水固形物監視システム50から取得する画像データの撮像と同時に取得されたものであることが好ましい。 As shown in FIG. 12, the additional variable acquisition unit 89 is connected to the separation liquid monitoring system 40, the liquid to be processed monitoring system 60, and the screw conveyor torque monitoring system 70, and the concentration of the separation liquid SL and the subject to be covered from these monitoring systems. The slurry concentration of the processing liquid PL1 and the torque value of the screw conveyor 3 may be acquired. The concentration of the separation liquid SL acquired by the additional variable acquisition unit 89, the slurry concentration of the liquid to be processed PL1 and the torque value of the screw conveyor 3 are acquired by the first image data acquisition unit 81 from the dehydrated solid matter monitoring system 50. It is preferable that the data is acquired at the same time as the image data is captured.
 上述した付加変数取得ユニット89を含むデータ処理システム80Bが適用されたデカンタ1において制御パラメータの調整を行う場合は、上述した図8に示すものと同様の処理を行えばよい。ただし、図8に示す処理のうち、ステップS23と同時あるいはその前後の所定タイミングにおいて、付加変数取得ユニット89が分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値を取得する。そして、これら3つの値は、第3の推論ユニット873において学習済モデルの入力層に脱水固形物Mの画像データと共に対応付けられる。 When adjusting the control parameters in the decanter 1 to which the data processing system 80B including the additional variable acquisition unit 89 described above is applied, the same processing as that shown in FIG. 8 described above may be performed. However, among the processes shown in FIG. 8, the additional variable acquisition unit 89 acquires the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3 at the same time as or at a predetermined timing before and after step S23. do. Then, these three values are associated with the input layer of the trained model in the third inference unit 873 together with the image data of the dehydrated solid M.
 なお、上述した第3の実施の形態においては、コンピュータPC1は、コントロールユニット30と脱水固形物監視システム50とに加えて、分離液監視システム40と、被処理液監視システム60と、スクリューコンベアトルク監視システム70との3つに接続され、これらから取得される3つの値を、画像データと共に学習用データセットの入力データとして利用しているものを例示しているが、本開示はこれに限定されない。詳しくは、分離液監視システム40と、被処理液監視システム60と、スクリューコンベアトルク監視システム70とにより取得される値のうちの少なくとも1つを学習用データセットの入力データとして利用していればよい。付加変数取得ユニット89により取得される情報の数についても同様である。 In the third embodiment described above, in addition to the control unit 30 and the dehydrated solid matter monitoring system 50, the computer PC 1 includes a separation liquid monitoring system 40, a liquid to be processed monitoring system 60, and a screw conveyor torque. An example is illustrated in which three values are connected to the monitoring system 70 and the three values obtained from these are used as input data of a training data set together with image data, but the present disclosure is limited to this. Not done. Specifically, if at least one of the values acquired by the separation liquid monitoring system 40, the liquid to be processed monitoring system 60, and the screw conveyor torque monitoring system 70 is used as input data of the learning data set. good. The same applies to the number of information acquired by the additional variable acquisition unit 89.
 以上説明した通り、本実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムによれば、入力データとして脱水固形物Mの画像データに加えて、分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値を採用したことで、ニューラルネットワークモデルの学習段階において、入力データと出力データとの間の相関関係を特定しやすくなる。これにより、十分な精度の推論が可能な各学習済モデルを生成するために必要な学習用データセットの数を抑えることが期待できる。 As described above, according to the machine learning device, the machine learning method, and the data processing system according to the present embodiment, in addition to the image data of the dehydrated solid M as input data, the concentration of the separation liquid SL and the liquid to be treated PL1 By adopting the slurry concentration and the torque value of the screw conveyor 3, it becomes easy to identify the correlation between the input data and the output data in the learning stage of the neural network model. This can be expected to reduce the number of training data sets required to generate each trained model that can be reasoned with sufficient accuracy.
<第4の実施の形態>
 上述した通り、第2及び第3の実施の形態は、いずれも十分な精度の推論が可能な学習済モデルを生成するために必要な学習用データセットの数を、第1の実施の形態のものにおける数より少なくすることができ得る態様を示した例である。そして、両実施の形態は組み合わせることが可能である。そこで、上述した第2の実施の形態及び第3の実施の形態において示した技術思想を組み合わせた場合を、本開示の第4の実施の形態として以下に説明する。なお、以下に示す第4の実施の形態に係る機械学習装置20C及びデータ処理システム80Cの各構成要素のうち、第1乃至第3の実施の形態に係る機械学習装置20、20A及び20B、及び、データ処理システム80、80A及び80Bの各構成要素と共通するものについては、同一の符号を付してその説明を省略する。また、以下に示す第3の実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムは、第1乃至第3の実施の形態に係るものと同様に、図1及び図2に示す遠心分離システムに適用した場合を例にとり説明されている。さらに、上述したあるいは後述する実施の形態において述べられた全ての変形例は、矛盾が生じない範囲において本実施の形態にも適用可能なものである。
<Fourth Embodiment>
As described above, in each of the second and third embodiments, the number of training data sets required to generate a trained model capable of inferring with sufficient accuracy is determined by the first embodiment. It is an example showing an embodiment that can be less than the number in the thing. And both embodiments can be combined. Therefore, the case where the technical ideas shown in the second embodiment and the third embodiment described above are combined will be described below as the fourth embodiment of the present disclosure. Of the components of the machine learning device 20C and the data processing system 80C according to the fourth embodiment shown below, the machine learning devices 20, 20A and 20B according to the first to third embodiments, and , The same reference numerals are given to those common to the respective components of the data processing systems 80, 80A and 80B, and the description thereof will be omitted. Further, the machine learning device, the machine learning method, and the data processing system according to the third embodiment shown below are the same as those according to the first to third embodiments, and the centrifuge shown in FIGS. 1 and 2. The explanation is given by taking the case of applying to a separation system as an example. Further, all the modifications described in the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
 図13は、本開示の第4の実施の形態に係る機械学習装置20Cの概略ブロック図である。本実施の形態に係る機械学習装置20Cは、図13に示すように、その構成要素としては、学習用データセット記憶ユニットとして、第1の学習用データセット記憶ユニット221と第4の学習用データセット記憶ユニット224とを含み、学習ユニットとして第1の学習ユニット231と第4の学習ユニット234とを含む点以外は、第1の実施の形態に係る機械学習装置20と同様であってよい。また、これに関連して、学習用データセット取得ユニット21において取得される複数のデータも第1の実施の形態とは異なっていてよい。 FIG. 13 is a schematic block diagram of the machine learning device 20C according to the fourth embodiment of the present disclosure. As shown in FIG. 13, the machine learning device 20C according to the present embodiment has, as its components, a first learning data set storage unit 221 and a fourth learning data as a learning data set storage unit. It may be the same as the machine learning device 20 according to the first embodiment except that the set storage unit 224 is included and the learning unit includes the first learning unit 231 and the fourth learning unit 234. Further, in connection with this, the plurality of data acquired by the learning data set acquisition unit 21 may also be different from the first embodiment.
 本実施の形態に係る学習用データセット取得ユニット21は、図13に示すように、コンピュータPC1に接続されていてよく、このコンピュータPC1から所望のデータを取得することができる。このコンピュータPC1は、第2の実施の形態に係るコンピュータPC1と同様に、コントロールユニット30及び脱水固形物監視システム50Aに接続されているが、これらに加えて、分離液監視システム40、被処理液監視システム60及びスクリューコンベアトルク監視システム70のうちの少なくとも1つにも接続されるとよい。コンピュータPC1に接続された、コントロールユニット30、脱水固形物監視システム50A、分離液監視システム40、被処理液監視システム60及びスクリューコンベアトルク監視システム70の具体的な構成は、既に上述した他の実施の形態において例示したものと同様であってよい。そして、本実施の形態における学習用データセット取得ユニット21が取得する複数のデータは、脱水固形物Mの画像データと制御パラメータとに加えて、更に分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値の少なくとも1つと、脱水固形物Mの特徴量とを含むことができる。なお、本実施の形態においては、第3の実施の形態と同様に、コンピュータPC1は、分離液監視システム40、被処理液監視システム60及びスクリューコンベアトルク監視システム70の全てに接続され、学習用データセット取得ユニット21が取得する複数のデータには、分離液SLの濃度と、被処理液PL1のスラリー濃度と、スクリューコンベア3のトルク値の全てが含まれるものを例示する。 As shown in FIG. 13, the learning data set acquisition unit 21 according to the present embodiment may be connected to the computer PC1 and can acquire desired data from the computer PC1. The computer PC1 is connected to the control unit 30 and the dehydrated solid matter monitoring system 50A as in the computer PC1 according to the second embodiment, but in addition to these, the separation liquid monitoring system 40 and the liquid to be treated It may also be connected to at least one of the monitoring system 60 and the screw conveyor torque monitoring system 70. The specific configurations of the control unit 30, the dehydrated solid matter monitoring system 50A, the separated liquid monitoring system 40, the processed liquid monitoring system 60, and the screw conveyor torque monitoring system 70 connected to the computer PC 1 are the other implementations already described above. It may be the same as that exemplified in the form of. The plurality of data acquired by the learning data set acquisition unit 21 in the present embodiment include the image data of the dehydrated solid M and the control parameters, the concentration of the separation liquid SL, and the slurry of the liquid to be treated PL1. At least one of the concentration and the torque value of the screw conveyor 3 and the characteristic amount of the dehydrated solid M can be included. In the present embodiment, as in the third embodiment, the computer PC 1 is connected to all of the separation liquid monitoring system 40, the liquid to be processed monitoring system 60, and the screw conveyor torque monitoring system 70 for learning. It is exemplified that the plurality of data acquired by the data set acquisition unit 21 include all of the concentration of the separation liquid SL, the slurry concentration of the liquid to be processed PL1, and the torque value of the screw conveyor 3.
 学習用データセット取得ユニット21において取得された複数のデータは、それぞれの対応関係を考慮しつつ、2つの学習用データセットとして第1の学習用データセット記憶ユニット221及び第4の学習用データセット記憶ユニット224内に別々に格納されるとよい。第1の学習用データセット記憶ユニット221に格納される第1の学習用データセットは、排出口2aから排出された脱水固形物Mを所定画角から撮像した脱水固形物Mの画像データを第1の入力データとして含み、第1の入力データに対応付けられた脱水固形物Mの特徴量を第1の出力データとして含むものであって良い。また、第4の学習用データセット記憶ユニット224に格納される第4の学習用データセットは、脱水固形物Mの特徴量と、分離液SLの濃度と、被処理液PL1のスラリー濃度と、スクリューコンベア3のトルク値とを第4の入力データとして含み、第4の入力データに対応付けられた制御パラメータを第4の出力データとして含むものであって良い。なお、このように複数のデータから2つの学習用データセットを分割生成する際は、例えば、同一の脱水固形物Mに関連付けられた脱水固形物Mの画像データ、分離液SLの濃度、被処理液PL1のスラリー濃度、スクリューコンベア3のトルク値、脱水固形物Mの特徴量及び制御パラメータを、脱水固形物Mの画像データと脱水固形物Mの特徴量とのセットと、分離液SLの濃度、被処理液PL1のスラリー濃度、スクリューコンベア3のトルク値及び分離液SLの特徴量と制御パラメータとのセットとに分割して、それぞれを一の第1及び第4の学習用データセットとすればよい。 The plurality of data acquired in the learning data set acquisition unit 21 are the first learning data set storage unit 221 and the fourth learning data set as two learning data sets while considering their respective correspondences. It may be stored separately in the storage unit 224. The first learning data set stored in the first learning data set storage unit 221 is the image data of the dehydrated solid M obtained by imaging the dehydrated solid M discharged from the discharge port 2a from a predetermined angle. It may be included as the input data of No. 1 and may include the feature amount of the dehydrated solid M associated with the first input data as the first output data. Further, the fourth learning data set stored in the fourth learning data set storage unit 224 includes the feature amount of the dehydrated solid M, the concentration of the separation liquid SL, and the slurry concentration of the liquid to be treated PL1. The torque value of the screw conveyor 3 may be included as the fourth input data, and the control parameter associated with the fourth input data may be included as the fourth output data. When dividing and generating two learning data sets from a plurality of data in this way, for example, the image data of the dehydrated solid M associated with the same dehydrated solid M, the concentration of the separation liquid SL, and the object to be processed. The slurry concentration of the liquid PL1, the torque value of the screw conveyor 3, the feature amount and the control parameter of the dehydrated solid M, the set of the image data of the dehydrated solid M and the feature amount of the dehydrated solid M, and the concentration of the separated liquid SL. , The slurry concentration of the liquid to be treated PL1, the torque value of the screw conveyor 3, the feature amount of the separation liquid SL, and the control parameters are divided into sets, which are used as one first and fourth learning data sets. Just do it.
 第1の学習用データセット記憶ユニット221及び第4の学習用データセット記憶ユニット224にそれぞれ格納された第1及び第4の学習用データセットは、それぞれ別の学習ユニットにのみ参照されるものであってよい。第1の学習ユニット231は、第1の学習用データセットを複数組入力することで、第1の入力データと第1の出力データとの相関関係を推論する学習モデルを学習するものであってよい。言い換えれば、この第1の学習ユニット231は、第1の学習用データセット内の脱水固形物Mの画像データを入力することで、この画像データの特徴量を推論する第1の学習モデルを学習するものであってよい。そして、第4の学習ユニット234は、第4の学習用データセットを複数組入力することで、第4の入力データと第4の出力データとの相関関係を推論する学習モデルを学習するものであってよい。言い換えれば、この第4の学習ユニット234は、第4の学習用データセット内の画像データの特徴量と、分離液SLの濃度と、被処理液PL1のスラリー濃度と、スクリューコンベア3のトルク値とを入力することで、制御パラメータを推論する第4の学習モデルを学習するものであってよい。 The first and fourth learning data sets stored in the first learning data set storage unit 221 and the fourth learning data set storage unit 224, respectively, are referred only to different learning units. It may be there. The first learning unit 231 learns a learning model for inferring the correlation between the first input data and the first output data by inputting a plurality of sets of the first learning data sets. good. In other words, the first learning unit 231 learns the first learning model for inferring the feature amount of the image data by inputting the image data of the dehydrated solid M in the first learning data set. It may be something to do. Then, the fourth learning unit 234 learns a learning model that infers the correlation between the fourth input data and the fourth output data by inputting a plurality of sets of the fourth learning data sets. It may be there. In other words, the fourth learning unit 234 has the feature amount of the image data in the fourth learning data set, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3. By inputting and, the fourth learning model for inferring the control parameter may be learned.
 第1及び第4の学習ユニット231、234における具体的な機械学習方法は、学習に用いる学習用データセットは異なるものの、その工程は図6に示した教師あり学習の工程といずれも同様であってよい。そして、一連の機械学習工程を経て得られた第1及び第4の学習済モデルは、学習済モデル記憶ユニット24内にそれぞれ記憶され得る。 The specific machine learning methods in the first and fourth learning units 231 and 234 are the same as the supervised learning process shown in FIG. 6, although the learning data set used for learning is different. You can do it. Then, the first and fourth trained models obtained through a series of machine learning steps can be stored in the trained model storage unit 24, respectively.
 図14は、本開示の第4の実施の形態に係るデータ処理システム80Cを示す概略ブロック図である。本実施の形態に係るデータ処理システム80Cは、図14に示すように、演算ユニット83内の推論ユニットとして、第1の推論ユニット871と第4の推論ユニット874とを含み、且つ付加変数取得ユニット89を含む点以外は上述した第1の実施の形態に係るデータ処理システム80と同様の構成要素を含むものであってよい。 FIG. 14 is a schematic block diagram showing a data processing system 80C according to a fourth embodiment of the present disclosure. As shown in FIG. 14, the data processing system 80C according to the present embodiment includes a first inference unit 871 and a fourth inference unit 874 as inference units in the arithmetic unit 83, and is an additional variable acquisition unit. Other than the point including 89, it may include the same components as the data processing system 80 according to the first embodiment described above.
 付加変数取得ユニット89は、図14に示すように、分離液監視システム40、被処理液監視システム60及びスクリューコンベアトルク監視システム70に接続でき、これらの監視システムから、分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値を取得するものであってよい。また、第1の推論ユニット871は、上述した機械学習装置20Cで生成され学習済モデル記憶ユニット88内に記憶された第1の学習済モデルを用いて推論を実行するものであってよい。したがって、この第1の推論ユニット871は、第1の画像データ取得ユニット81において取得された脱水固形物Mの画像データが入力されると、この画像データの特徴量を出力層に出力することができる。さらに、第4の推論ユニット874は、上述した機械学習装置20Cで生成され学習済モデル記憶ユニット88内に記憶された第4の学習済モデルを用いて推論を実行するものであってよい。したがって、この第4の推論ユニット874は、第1の推論ユニット871において推論された画像データの特徴量と、分離液SLの濃度と、被処理液PL1のスラリー濃度と、スクリューコンベア3のトルク値とが入力されると、制御パラメータを出力層に出力することができる。 As shown in FIG. 14, the additional variable acquisition unit 89 can be connected to the separation liquid monitoring system 40, the processing liquid monitoring system 60, and the screw conveyor torque monitoring system 70, and from these monitoring systems, the concentration of the separation liquid SL and the subject. The slurry concentration of the processing liquid PL1 and the torque value of the screw conveyor 3 may be acquired. Further, the first inference unit 871 may execute inference using the first trained model generated by the machine learning device 20C described above and stored in the trained model storage unit 88. Therefore, when the image data of the dehydrated solid M acquired by the first image data acquisition unit 81 is input, the first inference unit 871 can output the feature amount of the image data to the output layer. can. Further, the fourth inference unit 874 may execute inference using the fourth trained model generated by the machine learning device 20C described above and stored in the trained model storage unit 88. Therefore, the fourth inference unit 874 has the feature amount of the image data inferred by the first inference unit 871, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3. When is input, the control parameters can be output to the output layer.
 上述した付加変数取得ユニット89と第1及び第4の推論ユニット871、874とを含むデータ処理システム80Cが適用されたデカンタ1において制御パラメータの調整を行う場合は、上述した図8に示すものと同様の処理を行えばよい。ただし、図8に示す処理のうち、ステップS23と同時あるいはその前後の所定タイミングにおいて、付加変数取得ユニット89が分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値を取得する工程を更に含む。また、ステップS24において制御パラメータを推論する際は、先ず第1の推論ユニット871に脱水固形物Mの画像データを入力し、出力された画像データの特徴量を付加変数取得ユニット89において取得した3つの値と共に第4の推論ユニット874に入力する。 When the control parameters are adjusted in the decanter 1 to which the data processing system 80C including the additional variable acquisition unit 89 described above and the first and fourth inference units 871 and 874 are applied, the control parameters are adjusted as shown in FIG. The same processing may be performed. However, among the processes shown in FIG. 8, the additional variable acquisition unit 89 acquires the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3 at the same time as or at a predetermined timing before and after step S23. Further includes steps to be performed. Further, when inferring the control parameters in step S24, first, the image data of the dehydrated solid M is input to the first inference unit 871, and the feature amount of the output image data is acquired by the additional variable acquisition unit 89. It is input to the fourth inference unit 874 together with the two values.
 以上説明した通り、本実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムによれば、十分な精度の推論が可能な各学習済モデルを生成するために必要な学習用データセットの数を、上述した第2及び第3の実施の形態よりも更に抑えることが期待できる。 As described above, according to the machine learning device, the machine learning method, and the data processing system according to the present embodiment, the training data set required to generate each trained model capable of inferring with sufficient accuracy. It can be expected that the number will be further suppressed as compared with the second and third embodiments described above.
<第5の実施の形態>
 上述した第1乃至第4の実施の形態における入力データに含まれる画像データは、いずれも脱水固形物Mの画像データのみである。しかし、入力データとして採用可能な画像データは脱水固形物Mの画像データ以外にも存在する。そこで、以下には第5の実施の形態として、入力データに含まれる画像データとして、脱水固形物Mの画像データに加えて、フロック含有被処理液PL2の画像データを含むものについて説明する。なお、以下に示す第5の実施の形態に係る機械学習装置120及びデータ処理システム180の各構成要素のうち、第1乃至第4の実施の形態に係る機械学習装置20、20A乃至20C、及び、データ処理システム80、80A乃至80Cの各構成要素と共通するものについては、同一の符号を付してその説明を省略する。また、以下に示す第5の実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムは、第1乃至第4の実施の形態に係るものと同様に、図1及び図2に示す遠心分離システムに適用した場合を例にとり説明されている。さらに、上述したあるいは後述する実施の形態において述べられた全ての変形例は、矛盾が生じない範囲において本実施の形態にも適用可能なものである。
<Fifth Embodiment>
The image data included in the input data in the first to fourth embodiments described above is only the image data of the dehydrated solid M. However, the image data that can be adopted as the input data exists in addition to the image data of the dehydrated solid matter M. Therefore, as the fifth embodiment, the image data included in the input data including the image data of the floc-containing liquid to be treated PL2 in addition to the image data of the dehydrated solid M will be described below. Of the components of the machine learning device 120 and the data processing system 180 according to the fifth embodiment shown below, the machine learning devices 20, 20A to 20C, and the machine learning devices 20, 20A to 20C according to the first to fourth embodiments. , The same reference numerals are given to the components common to the components of the data processing systems 80, 80A to 80C, and the description thereof will be omitted. Further, the machine learning device, the machine learning method, and the data processing system according to the fifth embodiment shown below are the same as those according to the first to fourth embodiments, and the centrifuge shown in FIGS. 1 and 2. The explanation is given by taking the case of applying to a separation system as an example. Further, all the modifications described in the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
 図15は、本開示の第5の実施の形態に係る機械学習装置120の概略ブロック図である。本実施の形態に係る機械学習装置120は、図15に示すように、学習用データセット取得ユニット121と、第5の学習用データセット記憶ユニット225と、第5の学習ユニット235と、学習済モデル記憶ユニット124とを含むものとすることができる。 FIG. 15 is a schematic block diagram of the machine learning device 120 according to the fifth embodiment of the present disclosure. As shown in FIG. 15, the machine learning device 120 according to the present embodiment has learned the learning data set acquisition unit 121, the fifth learning data set storage unit 225, and the fifth learning unit 235. It may include a model storage unit 124.
 学習用データセット取得ユニット121は、第1の実施の形態で示した学習用データセット取得ユニット21と同様のものであって、有線又は無線の通信回線を介して学習用データセットを構成する複数のデータを取得するインタフェースユニットであってよい。この学習用データセット取得ユニット121では、複数のデータとして、脱水固形物Mを撮像した第1の画像データと、フロック含有被処理液PL2を撮像した第2の画像データと、これらの画像データに対応付けられる制御パラメータを取得することができる。また、本実施の形態に係る制御パラメータとしては、被処理液PL1へ添加される薬剤の供給量、ボウル2の遠心力及び差速発生装置5により制御される差速を含むものを例示する。 The learning data set acquisition unit 121 is the same as the learning data set acquisition unit 21 shown in the first embodiment, and a plurality of learning data sets constituting the learning data set via a wired or wireless communication line. It may be an interface unit that acquires the data of. In this learning data set acquisition unit 121, as a plurality of data, the first image data in which the dehydrated solid M is imaged, the second image data in which the floc-containing liquid to be treated PL2 is imaged, and these image data are used. The associated control parameters can be acquired. Further, as the control parameters according to the present embodiment, those including the supply amount of the chemicals added to the liquid to be treated PL1, the centrifugal force of the bowl 2, and the differential speed controlled by the differential speed generator 5 are exemplified.
 この学習用データセット取得ユニット121において取得される複数のデータの取得方法の一例を説明する。学習用データセット取得ユニット121は、図15に示すように、コンピュータPC1に接続されることで、このコンピュータPC1から所望のデータを取得することができる。このコンピュータPC1は、コントロールユニット30及び脱水固形物監視システム50に加えて、被処理液配管10bに設置された被処理液監視システム60にも直接又はコントロールユニット30を介して間接的に接続されているとよい。これにより、コントロールユニット30より各制御パラメータを、脱水固形物監視システム50より第1の画像データを、そして被処理液監視システム60より第2の画像データをそれぞれ取得することができる。 An example of an acquisition method of a plurality of data acquired by the learning data set acquisition unit 121 will be described. As shown in FIG. 15, the learning data set acquisition unit 121 can acquire desired data from the computer PC1 by being connected to the computer PC1. The computer PC 1 is directly or indirectly connected to the liquid to be monitored system 60 installed in the liquid to be treated pipe 10b in addition to the control unit 30 and the dehydrated solid matter monitoring system 50, either directly or via the control unit 30. It is good to be there. Thereby, each control parameter can be acquired from the control unit 30, the first image data can be acquired from the dehydrated solid matter monitoring system 50, and the second image data can be acquired from the liquid to be processed monitoring system 60.
 ここで、本実施の形態に係る被処理液監視システム60としては、図15に示すように、被処理液配管10bの少なくとも添加物配管11cとの接続位置よりも下流の任意箇所に連結されたサイトグラス61と、サイトグラス61に設けられた窓62に所定画角で設置され、サイトグラス61内を流れるフロック含有被処理液PL2の画像データを撮像可能なフロック含有被処理液撮像用カメラ63とを含むものを採用することができる。このうち、フロック含有被処理液撮像用カメラ63には、二次元画像を撮像可能な周知のカメラを採用することができる。また、この被処理液監視システム60においては、フロック含有被処理液撮像用カメラ63により撮像される画像データにフロック含有被処理液PL2の状態が反映されやすいよう、サイトグラス61内のフロック含有被処理液PL2を照らす図示しない光源や、フロック含有被処理液撮像用カメラ63に取り付け可能な図示しない偏光フィルタを適宜採用することができる。なお、被処理液監視システム60の構成はこれに限定されるものではなくフロック含有被処理液PL2の画像データを取得可能な構成であれば種々の構成を採用することができる。具体例としては、例えば薬剤が給液管9に接続された添加物配管11cを介して供給される場合には、フロック含有被処理液撮像用カメラ63をスクリューコンベア3内部の空間3c内を撮像可能な位置に配置した構成を採用してもよいし、例えば後述する図19に示す被処理液監視システム60Aのような構成を採用してもよい。 Here, as shown in FIG. 15, the liquid to be monitored system 60 according to the present embodiment is connected to an arbitrary position downstream of the connection position of the liquid to be treated 10b with at least the additive pipe 11c. A camera 63 for capturing the floc-containing liquid to be processed, which is installed at a predetermined angle on the sight glass 61 and the window 62 provided in the sight glass 61 and can capture the image data of the floc-containing liquid to be treated PL2 flowing in the sight glass 61. Those including and can be adopted. Of these, a well-known camera capable of capturing a two-dimensional image can be adopted as the flock-containing liquid to be image-imaging camera 63. Further, in the liquid to be processed monitoring system 60, the flock-containing subject in the sight glass 61 is easily reflected in the image data captured by the camera 63 for capturing the flock-containing liquid to be treated. A light source (not shown) that illuminates the treatment liquid PL2 and a polarization filter (not shown) that can be attached to the flock-containing liquid to be processed image capturing camera 63 can be appropriately adopted. The configuration of the liquid to be treated monitoring system 60 is not limited to this, and various configurations can be adopted as long as the image data of the liquid to be treated PL2 containing flocs can be acquired. As a specific example, for example, when the drug is supplied via the additive pipe 11c connected to the liquid supply pipe 9, the flock-containing liquid to be imaged camera 63 images the inside of the space 3c inside the screw conveyor 3. A configuration arranged at a possible position may be adopted, or a configuration such as the liquid to be monitored system 60A shown in FIG. 19 described later may be adopted.
 図16は、本開示の第5の実施の形態に係る被処理液監視システム60のフロック含有被処理液撮像用カメラ63により得られた画像データの例を示したものである。ところで、遠心分離システムにより固液分離処理を行う際、デカンタ1に投入される被処理液内の固形物成分が薬液によって十分に凝集されていると、固形物成分と液体成分を良好に分離できることが一般に知られている。また、被処理液監視システム60によって得られる第2の画像データにおいて、フロック含有被処理液PL2のフロック凝集が良好に行われていると、一のフロック凝集体が粗大化すると共に、フロック凝集体が存在しない領域の透明度が高くなる傾向がある。したがって、フロック含有被処理液PL2中のフロック凝集反応が良好に進んでいる画像データ(例えば図16Bに示すもの)は、例えば薬剤供給量が不足している等の理由により反応が良好に進んでいない画像データ(例えば図16Bに示すもの)に比べて、ピクセル間の色味の変化量が増加する傾向があると推測できる。 FIG. 16 shows an example of image data obtained by the flock-containing liquid to be image imaging camera 63 of the liquid to be treated monitoring system 60 according to the fifth embodiment of the present disclosure. By the way, when the solid-liquid separation treatment is performed by the centrifugal separation system, if the solid component in the liquid to be treated to be charged into the decanter 1 is sufficiently aggregated by the chemical solution, the solid component and the liquid component can be satisfactorily separated. Is generally known. Further, in the second image data obtained by the liquid to be treated monitoring system 60, if the floc aggregate of the floc-containing liquid to be treated PL2 is well performed, one floc aggregate becomes coarse and the floc aggregate becomes coarse. Areas where there is no sol tend to be more transparent. Therefore, in the image data (for example, the one shown in FIG. 16B) in which the floc agglutination reaction in the floc-containing liquid to be treated PL2 is satisfactorily advanced, the reaction is satisfactorily advanced due to, for example, insufficient drug supply. It can be inferred that the amount of change in color between pixels tends to increase as compared with the image data that does not exist (for example, the one shown in FIG. 16B).
 第5の学習用データセット記憶ユニット225は、学習用データセット取得ユニット121で取得した学習用データセットを構成する複数のデータを、関連する入力データと出力データとを関連付けて1つの学習用データセットとし、格納するためのデータベースであってよい。本実施の形態において第5の学習用データセット記憶ユニット225内に格納される第5の学習用データセットとしては、排出口2aから排出された脱水固形物Mを所定画角から撮像した第1の画像データと、ボウル2に供給される前であって且つ薬剤が添加された後のフロック含有被処理液PL2を所定画角から撮像した第2の画像データとを第5の入力データとし、第5の入力データとしての画像データに対応付けられた制御パラメータを第5の出力データとしたものとすることができる。この制御パラメータとしては、上述した第1の実施の形態と同様に、ボウル2の遠心力、添加物供給源11からの薬剤の供給量、及びボウル2とスクリューコンベア3との差速の少なくとも1つを含むものであってよい。 The fifth learning data set storage unit 225 associates a plurality of data constituting the learning data set acquired by the learning data set acquisition unit 121 with related input data and output data to form one learning data. It may be a database for storing as a set. As the fifth learning data set stored in the fifth learning data set storage unit 225 in the present embodiment, the first image of the dehydrated solid material M discharged from the discharge port 2a is taken from a predetermined angle. And the second image data obtained by capturing the floc-containing liquid to be treated PL2 from a predetermined angle of view before being supplied to the bowl 2 and after the drug is added, as the fifth input data. The control parameter associated with the image data as the fifth input data can be the fifth output data. The control parameters include at least one of the centrifugal force of the bowl 2, the supply amount of the drug from the additive supply source 11, and the difference speed between the bowl 2 and the screw conveyor 3, as in the first embodiment described above. It may include one.
 第5の学習ユニット235は、第5の学習用データセット記憶ユニット225に記憶された第5の学習用データセットを複数組入力することで、第5の入力データと第5の出力データとの間の相関関係を推論する学習モデルを学習するものであってよい。本実施の形態においても、上述した第1の実施の形態と同様、機械学習の具体的な手法としてニューラルネットワークを用いた教師あり学習を採用している。この第5の学習ユニット235における具体的な機械学習方法は、学習に用いる学習用データセットが異なるものの、その工程は図6に示した第1の実施の形態に係る機械学習方法と同様であってよい。また、学習済モデル記憶ユニット124は、第5の学習ユニット235で生成された学習済モデルを記憶するためのデータベースであってよい。 The fifth learning unit 235 can input the fifth input data and the fifth output data by inputting a plurality of sets of the fifth learning data set stored in the fifth learning data set storage unit 225. It may be one that learns a learning model that infers the correlation between them. Also in this embodiment, as in the first embodiment described above, supervised learning using a neural network is adopted as a specific method of machine learning. The specific machine learning method in the fifth learning unit 235 is the same as the machine learning method according to the first embodiment shown in FIG. 6, although the learning data set used for learning is different. You can do it. Further, the trained model storage unit 124 may be a database for storing the trained model generated by the fifth learning unit 235.
 図17は、本開示の第5の実施の形態に係るデータ処理システム180を示す概略ブロック図である。本実施の形態に係るデータ処理システム180は、図17に示すように、主に第1の画像データ取得ユニット81と、第2の画像データ取得ユニット181と、パラメータ調整ユニット82と、演算ユニット183と、データベース84と、ユーザインタフェース85と、内部バス86とを含むものであってよい。なお、上述した各構成要素のうち、第1の画像データ取得ユニット81、パラメータ調整ユニット82、データベース84、ユーザインタフェース85及び内部バス86は、上述した第1の実施の形態に係るデータ処理システム80のものと同様のものを採用することができる。したがって、これらの構成要素には第1の実施の形態のものと同一の符号を付してその説明を省略する。 FIG. 17 is a schematic block diagram showing a data processing system 180 according to the fifth embodiment of the present disclosure. As shown in FIG. 17, the data processing system 180 according to the present embodiment mainly includes a first image data acquisition unit 81, a second image data acquisition unit 181, a parameter adjustment unit 82, and an arithmetic unit 183. , A database 84, a user interface 85, and an internal bus 86. Among the above-mentioned components, the first image data acquisition unit 81, the parameter adjustment unit 82, the database 84, the user interface 85, and the internal bus 86 are the data processing system 80 according to the first embodiment described above. The same thing as the one can be adopted. Therefore, these components are designated by the same reference numerals as those of the first embodiment, and the description thereof will be omitted.
 第2の画像データ取得ユニット181は、第2の画像データを取得するためのものであってよい。具体的には、被処理液監視システム60に接続されて、フロック含有被処理液撮像用カメラ63により撮像されたフロック含有被処理液PL2の画像データである第2の画像データを取得するものであってよい。 The second image data acquisition unit 181 may be for acquiring the second image data. Specifically, it is connected to the liquid to be processed monitoring system 60 and acquires the second image data which is the image data of the liquid to be treated PL2 containing flock imaged by the camera 63 for capturing the liquid to be treated containing flock. It may be there.
 演算ユニット183は、データ処理システム180における各種処理を実現するためのプロセッサを構成するものであってよく、少なくとも第5の推論ユニット875を含むことができる。また、この演算ユニット183は、第5の推論ユニット875において利用する学習済モデル、すなわち第5の学習ユニット235において学習された第5の学習済モデルを格納した学習済モデル記憶ユニット188に接続されている。第5の推論ユニット875は、学習済モデル記憶ユニット188に格納された一の学習済モデルを参酌することで、第1及び第2の画像データ取得ユニット81、181で取得した状態変数としての第1及び第2の画像データから、パラメータ調整ユニット82により調整を行う制御パラメータを推論するものであってよい。 The arithmetic unit 183 may constitute a processor for realizing various processes in the data processing system 180, and may include at least a fifth inference unit 875. Further, the arithmetic unit 183 is connected to a trained model storage unit 188 that stores a trained model used in the fifth inference unit 875, that is, a fifth trained model learned in the fifth learning unit 235. ing. The fifth inference unit 875 is the second as a state variable acquired by the first and second image data acquisition units 81 and 181 by taking into consideration one trained model stored in the trained model storage unit 188. The control parameters to be adjusted by the parameter adjustment unit 82 may be inferred from the first and second image data.
 図18は、本開示の第5の実施の形態に係るデータ処理システムによるパラメータ調整の例を示すフローチャートである。データ処理システム180が適用されたデカンタ1の駆動が開始されると、図18に示すように、先ずデータ処理システム180は、パラメータ調整のタイミングであるか否かを判断する(ステップS21)。パラメータ調整のタイミングであることを検知すると(ステップS21でYes)、脱水固形物監視システム50内の脱水固形物撮像用カメラ53と、被処理液監視システム60内のフロック含有被処理液撮像用カメラ63とを動作させて、固形物排出導管7内を通過する脱水固形物Mと、被処理液配管10b内を流れるフロック含有被処理液PL2とを撮像する(ステップS221)。ここで撮像された第1及び第2の画像データは、第1及び第2の画像データ取得ユニット81、181によりデータ処理システム180内に取得される(ステップS231)。 FIG. 18 is a flowchart showing an example of parameter adjustment by the data processing system according to the fifth embodiment of the present disclosure. When the drive of the decanter 1 to which the data processing system 180 is applied is started, as shown in FIG. 18, the data processing system 180 first determines whether or not it is the timing of parameter adjustment (step S21). When it is detected that it is the timing of parameter adjustment (Yes in step S21), the dehydrated solid image imaging camera 53 in the dehydrated solid monitoring system 50 and the floc-containing processed liquid imaging camera in the processed liquid monitoring system 60 are detected. 63 is operated to image the dehydrated solid M passing through the solid discharge conduit 7 and the floc-containing liquid to be treated PL2 flowing in the liquid pipe 10b to be treated (step S221). The first and second image data captured here are acquired in the data processing system 180 by the first and second image data acquisition units 81 and 181 (step S231).
 次いで、第1及び第2の画像データ取得ユニット81、181で取得した第1及び第2の画像データは、内部バス86を介して第5の推論ユニット875に送られ、これらの画像データが第5の推論ユニット875において予め特定された学習済モデル記憶ユニット188内の一の学習済モデルの入力層に入力されることにより、制御パラメータを推論する(ステップS24)。そして、ここで推論された制御パラメータの値を用いて、パラメータ調整ユニット82が各制御ユニットを調整する(ステップS25)。その後、ステップS21に戻って待機状態となる。 Next, the first and second image data acquired by the first and second image data acquisition units 81 and 181 are sent to the fifth inference unit 875 via the internal bus 86, and these image data are sent to the fifth inference unit 875. The control parameter is inferred by being input to the input layer of one trained model in the trained model storage unit 188 previously specified in the inference unit 875 of the fifth (step S24). Then, the parameter adjustment unit 82 adjusts each control unit using the value of the control parameter inferred here (step S25). After that, the process returns to step S21 to enter the standby state.
 以上説明した通り、本実施の形態に係る機械学習装置120及び機械学習方法によれば、入力データとして2つの画像データを採用することで、1つの画像データのみの場合と比較して入力データと出力データとの間の相関関係が学習しやすくなり、比較的少ない学習用データセットの数で、十分な精度の推論が可能な各学習済モデルを生成可能とすることが期待できる。また、本実施の形態に係るデータ処理システム180によれば、脱水固形物Mの画像データ及びフロック含有被処理液PL2の画像データという2つの画像データのみから、デカンタ1の好ましい制御パラメータを推定できるため、このデータ処理システム180を比較的簡単にデカンタ1に適用することができる。そして、制御パラメータの調整をオペレータENの判断に依存することなく簡単に行うことができるようになる。 As described above, according to the machine learning device 120 and the machine learning method according to the present embodiment, by adopting two image data as input data, the input data can be compared with the case of only one image data. It is expected that the correlation with the output data will be easy to learn, and it will be possible to generate each trained model that can be inferred with sufficient accuracy with a relatively small number of training data sets. Further, according to the data processing system 180 according to the present embodiment, preferable control parameters of the decanter 1 can be estimated from only two image data, that is, the image data of the dehydrated solid M and the image data of the floc-containing liquid to be treated PL2. Therefore, this data processing system 180 can be applied to the decanter 1 relatively easily. Then, the adjustment of the control parameter can be easily performed without depending on the judgment of the operator EN.
<第6の実施の形態>
 上記第5の実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムにおいては、1つの学習済モデルを用いて第1及び第2の画像データから制御パラメータを推論するものについて説明を行った。以下には、上記第5の実施の形態の変形例として、第1及び第2の画像データから制御パラメータを推論するために複数の学習済モデルを利用する場合を、本開示の第6の実施の形態として以下に説明する。なお、以下に示す第6の実施の形態に係る機械学習装置120A及びデータ処理システム180Aの各構成要素のうち、第5の実施の形態に係る機械学習装置120及びデータ処理システム180の各構成要素と共通するものについては、同一の符号を付してその説明を省略する。また、以下に示す第6の実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムは、第1乃至第5の実施の形態に係るものと同様に、図1及び図2に示す遠心分離システムに適用した場合を例にとり説明されている。さらに、上述したあるいは後述する各実施の形態において説示された全ての変形例は、矛盾が生じない範囲において本実施の形態にも適用可能なものである。
<Sixth Embodiment>
In the machine learning device, the machine learning method, and the data processing system according to the fifth embodiment, the one inferring the control parameters from the first and second image data using one trained model will be described. rice field. In the following, as a modification of the fifth embodiment, the sixth embodiment of the present disclosure is a case where a plurality of trained models are used to infer control parameters from the first and second image data. The form of the above will be described below. Of the components of the machine learning device 120A and the data processing system 180A according to the sixth embodiment shown below, each component of the machine learning device 120 and the data processing system 180 according to the fifth embodiment. The same reference numerals are given to those common to the above, and the description thereof will be omitted. Further, the machine learning device, the machine learning method, and the data processing system according to the sixth embodiment shown below are the same as those according to the first to fifth embodiments, and the centrifuge shown in FIGS. 1 and 2. The explanation is given by taking the case of applying to a separation system as an example. Furthermore, all the modifications described in each of the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
 図19は、本開示の第6の実施の形態に係る機械学習装置120Aの概略ブロック図である。本実施の形態に係る機械学習装置120Aは、図19に示すように、その構成要素としては、学習用データセット記憶ユニットとして、第1の学習用データセット記憶ユニット221と第6の学習用データセット記憶ユニット226と第7の学習用データセット記憶ユニット227を含み、学習ユニットとして第1の学習ユニット231と第6の学習ユニット236と第7の学習ユニット237を含む点以外は、第5の実施の形態に係る機械学習装置120と同様であってよい。また、これに関連して、学習用データセット取得ユニット121において取得される複数のデータも第5の実施の形態のものとは異なっていてよい。なお、第1の学習用データセット記憶ユニット221及び第1の学習ユニット231については、上述した第2の実施の形態に係る機械学習装置20Aにおいて述べたものと同様のものとすることができるので、第2の実施の形態のものと同一の符号を付してその説明を省略する。 FIG. 19 is a schematic block diagram of the machine learning device 120A according to the sixth embodiment of the present disclosure. As shown in FIG. 19, the machine learning device 120A according to the present embodiment has, as its components, a first learning data set storage unit 221 and a sixth learning data as a learning data set storage unit. A fifth, except that it includes a set storage unit 226 and a seventh learning data set storage unit 227, and includes a first learning unit 231 and a sixth learning unit 236 and a seventh learning unit 237 as learning units. It may be the same as the machine learning device 120 according to the embodiment. Further, in connection with this, the plurality of data acquired by the learning data set acquisition unit 121 may also be different from those of the fifth embodiment. The first learning data set storage unit 221 and the first learning unit 231 can be the same as those described in the machine learning device 20A according to the second embodiment described above. , The same reference numerals as those of the second embodiment are designated, and the description thereof will be omitted.
 本実施の形態に係る学習用データセット取得ユニット121が取得する複数のデータは、第1及び第2の画像データと、制御パラメータとに加えて、更に脱水固形物Mの特徴量と、フロック含有被処理液PL2を撮像した第2の画像データの特徴量(以下、「フロック含有被処理液PL2の特徴量」ともいう)とを含んでいてよい。フロック含有被処理液PL2の特徴量としては、撮像されたフロック含有被処理液PL2に基づいて特定される種々の情報を採用することができる。具体的には、例えばフロック凝集体の大きさ、色値、密度等を1又は複数含むことができる。この特徴量は、例えばフロック含有被処理液PL2を実際にサンプリングして各種測定器等を用いて測定・分析することにより、あるいはオペレータENが目視で判断することにより、特定することができる。 The plurality of data acquired by the learning data set acquisition unit 121 according to the present embodiment includes the first and second image data, the control parameters, the feature amount of the dehydrated solid M, and the flocs. The feature amount of the second image data obtained by imaging the liquid to be treated PL2 (hereinafter, also referred to as "feature amount of the floc-containing liquid to be treated PL2") may be included. As the feature amount of the flock-containing liquid to be treated PL2, various information specified based on the imaged flock-containing liquid to be treated PL2 can be adopted. Specifically, for example, the size, color value, density, etc. of floc aggregates can be included one or more. This feature amount can be specified, for example, by actually sampling the floc-containing liquid to be treated PL2 and measuring and analyzing it using various measuring instruments or the like, or by visually determining by the operator EN.
 上述した特徴量を測定等するために、本実施の形態に係る被処理液監視システム60Aには、フロック含有被処理液PL2をサンプリング抽出した上で第2の画像データを取得することができる構成を採用することが好ましい。具体的には、この被処理液監視システム60Aとして、被処理液配管10bに設けられた分岐管64と、この分岐管64に設けられたバルブ65と、分岐管64の端部に配置された透明な容器66と、透明な容器66の側面に設置されたフロック含有被処理液撮像用カメラ63とを含むものを採用することができる。なお、フロック含有被処理液撮像用カメラ63の配置はこれに限定されるものではなく、例えば容器66を上方から撮像可能な位置に設置されていてもよい。このような構成を備える被処理液監視システム60Aにおいては、任意のタイミングでバルブ65を開くことで、被処理液配管10b内を流れるフロック含有被処理液PL2を透明な容器66内にサンプリング抽出することができる。そして、この容器66内のフロック含有被処理液PL2をフロック含有被処理液撮像用カメラ63により撮像することでフロック含有被処理液PL2の画像データを生成でき、対応する所望の制御パラメータがオペレータENにより特定され得る。さらには、容器66内にサンプリングされたフロック含有被処理液PL2の測定・分析等を行えばこのフロック含有被処理液PL2の特徴量を特定することができる。 In order to measure the feature amount described above, the liquid to be treated monitoring system 60A according to the present embodiment can acquire the second image data after sampling and extracting the floc-containing liquid to be treated PL2. It is preferable to adopt. Specifically, as the liquid to be treated monitoring system 60A, the branch pipe 64 provided in the liquid to be treated pipe 10b, the valve 65 provided in the branch pipe 64, and the end of the branch pipe 64 are arranged. A transparent container 66 and a flock-containing liquid to be image-imaging camera 63 installed on the side surface of the transparent container 66 can be adopted. The arrangement of the flock-containing liquid to be processed image imaging camera 63 is not limited to this, and for example, the container 66 may be installed at a position where imaging can be performed from above. In the liquid to be treated monitoring system 60A having such a configuration, the valve 65 is opened at an arbitrary timing to sample and extract the floc-containing liquid to be treated PL2 flowing in the liquid to be treated pipe 10b into a transparent container 66. be able to. Then, the image data of the flock-containing liquid to be treated PL2 can be generated by imaging the flock-containing liquid to be treated PL2 in the container 66 with the flock-containing liquid to be image-imaging camera 63, and the corresponding desired control parameter is the operator EN. Can be identified by. Further, by measuring and analyzing the floc-containing liquid to be treated PL2 sampled in the container 66, the characteristic amount of the floc-containing liquid to be treated PL2 can be specified.
 学習用データセット取得ユニット121において取得された複数のデータは、それぞれの対応関係を考慮しつつ、3つの学習用データセットとして第1の学習用データセット記憶ユニット221、第6の学習用データセット記憶ユニット226及び第7の学習用データセット記憶ユニット227内に別々に格納され得る。第1の学習用データセット記憶ユニット221に格納される第1の学習用データセットは、排出口2aから排出された脱水固形物Mを所定画角から撮像した第1の画像データを第1の入力データとして含み、第1の入力データに対応付けられた脱水固形物Mの特徴量を第1の出力データとして含むものであって良い。また、第6の学習用データセット記憶ユニット226に格納される第6の学習用データセットは、ボウル2に供給される前であって且つ薬剤が添加された後のフロック含有被処理液PL2を所定画角から撮像した第2の画像データを第6の入力データとして含み、第6の入力データに対応付けられたフロック含有被処理液PL2の特徴量を第6の出力データとして含むものであって良い。さらに、第7の学習用データセット記憶ユニット227に格納される第7の学習用データセットは、脱水固形物Mの特徴量とフロック含有被処理液PL2の特徴量とを第7の入力データとして含み、第7の入力データに対応付けられた制御パラメータを第7の出力データとして含むものであって良い。 The plurality of data acquired in the learning data set acquisition unit 121 are the first learning data set storage unit 221 and the sixth learning data set as three learning data sets while considering their respective correspondences. It may be stored separately in the storage unit 226 and the seventh learning data set storage unit 227. The first learning data set stored in the first learning data set storage unit 221 captures the first image data obtained by capturing the dehydrated solid M discharged from the discharge port 2a from a predetermined angle. It may be included as input data and may include the feature amount of the dehydrated solid M associated with the first input data as the first output data. Further, the sixth learning data set stored in the sixth learning data set storage unit 226 contains the floc-containing liquid to be treated PL2 before being supplied to the bowl 2 and after the drug is added. The second image data captured from a predetermined angle is included as the sixth input data, and the feature amount of the floc-containing liquid to be treated PL2 associated with the sixth input data is included as the sixth output data. It's okay. Further, in the seventh learning data set stored in the seventh learning data set storage unit 227, the feature amount of the dehydrated solid M and the feature amount of the floc-containing liquid to be treated PL2 are used as the seventh input data. It may include and include the control parameter associated with the seventh input data as the seventh output data.
 第1の学習用データセット記憶ユニット221、第6の学習用データセット記憶ユニット226及び第7の学習用データセット記憶ユニット227にそれぞれ格納された第1、第6及び第7の学習用データセットは、それぞれ別の学習ユニットにのみ参照されるものであってよい。第1の学習ユニット231は、第1の学習用データセットを複数組入力することで、第1の入力データと第1の出力データとの相関関係を推論する学習モデルを学習するものであってよい。言い換えれば、この第1の学習ユニット231は、第1の学習用データセット内の第1の画像データを入力することで、第1の画像データの特徴量を推論する第1の学習モデルを学習するものであってよい。また、第6の学習ユニット236は、第6の学習用データセットを複数組入力することで、第6の入力データと第6の出力データとの相関関係を推論する学習モデルを学習するものであってよい。言い換えれば、この第6の学習ユニット236は、第6の学習用データセット内の第2の画像データを入力することで、第2の画像データの特徴量を推論する第6の学習モデルを学習するものであってよい。さらに、第7の学習ユニット237は、第7の学習用データセットを複数組入力することで、第7の入力データと第7の出力データとの相関関係を推論する学習モデルを学習するものであってよい。言い換えれば、この第7の学習ユニット237は、第7の学習用データセット内の第1及び第2の画像データの特徴量を入力することで、制御パラメータを推論する第7の学習モデルを学習するものであってよい。 The first, sixth and seventh learning data sets stored in the first learning data set storage unit 221 and the sixth learning data set storage unit 226 and the seventh learning data set storage unit 227, respectively. May only be referenced by different learning units. The first learning unit 231 learns a learning model that infers the correlation between the first input data and the first output data by inputting a plurality of sets of the first learning data sets. good. In other words, the first learning unit 231 learns the first learning model that infers the feature amount of the first image data by inputting the first image data in the first learning data set. It may be something to do. Further, the sixth learning unit 236 learns a learning model for inferring the correlation between the sixth input data and the sixth output data by inputting a plurality of sets of the sixth learning data sets. It may be there. In other words, the sixth learning unit 236 learns a sixth learning model that infers the feature amount of the second image data by inputting the second image data in the sixth learning data set. It may be something to do. Further, the seventh learning unit 237 learns a learning model for inferring the correlation between the seventh input data and the seventh output data by inputting a plurality of sets of the seventh learning data sets. It may be there. In other words, the seventh learning unit 237 learns the seventh learning model that infers the control parameters by inputting the features of the first and second image data in the seventh learning data set. It may be something to do.
 第1、第6及び第7の学習ユニット231、236及び237における具体的な機械学習方法は、学習に用いる学習用データセットは異なるものの、その工程は図6に示した教師あり学習の工程といずれも同様であってよい。そして、一連の機械学習工程を経て得られた第1、第6及び第7の学習済モデルは、学習済モデル記憶ユニット124内にそれぞれ記憶され得る。 Although the specific machine learning methods in the first, sixth and seventh learning units 231, 236 and 237 differ from the learning data set used for learning, the process is different from the supervised learning process shown in FIG. Both may be the same. Then, the first, sixth, and seventh trained models obtained through a series of machine learning steps can be stored in the trained model storage unit 124, respectively.
 図20は、本開示の第6の実施の形態に係るデータ処理システム180Aを示す概略ブロック図である。本実施の形態に係るデータ処理システム180Aは、図20に示すように、演算ユニット183内の推論ユニットとして、第1の推論ユニット871と第6の推論ユニット876と第7の推論ユニット877を含む点以外は上述した第5の実施の形態に係るデータ処理システム180と同様の構成要素を含むものであってよい。 FIG. 20 is a schematic block diagram showing a data processing system 180A according to the sixth embodiment of the present disclosure. As shown in FIG. 20, the data processing system 180A according to the present embodiment includes a first inference unit 871, a sixth inference unit 876, and a seventh inference unit 877 as inference units in the arithmetic unit 183. Other than the points, it may include the same components as the data processing system 180 according to the fifth embodiment described above.
 第1の推論ユニット871は、上述した機械学習装置120Aで生成され学習済モデル記憶ユニット188内に記憶された第1の学習済モデルを用いて推論を実行するものであってよい。したがって、この第1の推論ユニット871は、第1の画像データ取得ユニット81において取得された第1の画像データが入力されると、第1の画像データの特徴量を出力層に出力することができる。また、第6の推論ユニット876は、上述した機械学習装置120Aで生成され学習済モデル記憶ユニット188内に記憶された第6の学習済モデルを用いて推論を実行するものであってよい。したがって、この第6の推論ユニット876は、第2の画像データ取得ユニット181において取得された第2の画像データが入力されると、第2の画像データの特徴量を出力層に出力することができる。さらに、第7の推論ユニット877は、上述した機械学習装置120Aで生成され学習済モデル記憶ユニット188内に記憶された第7の学習済モデルを用いて推論を実行するものであってよい。したがって、この第7の推論ユニット877は、第1の推論ユニット871及び第6の推論ユニット876において推論された第1及び第2の画像データの特徴量が入力されると、制御パラメータを出力層に出力することができる。 The first inference unit 871 may execute inference using the first trained model generated by the machine learning device 120A described above and stored in the trained model storage unit 188. Therefore, when the first image data acquired by the first image data acquisition unit 81 is input, the first inference unit 871 can output the feature amount of the first image data to the output layer. can. Further, the sixth inference unit 876 may execute inference using the sixth trained model generated by the machine learning device 120A described above and stored in the trained model storage unit 188. Therefore, when the second image data acquired by the second image data acquisition unit 181 is input, the sixth inference unit 876 can output the feature amount of the second image data to the output layer. can. Further, the seventh inference unit 877 may execute inference using the seventh inference model generated by the machine learning device 120A described above and stored in the trained model storage unit 188. Therefore, the seventh inference unit 877 outputs a control parameter when the feature amounts of the first and second image data inferred by the first inference unit 871 and the sixth inference unit 876 are input. Can be output to.
 上述した第1、第6及び第7の推論ユニット871、876及び877を含むデータ処理システム180Aが適用されたデカンタ1において制御パラメータの調整を行う場合は、上述した図18に示すものと同様の処理を行えばよい。ただし、図18に示す処理のうち、ステップS24において制御パラメータを推論する際は、先ず第1の推論ユニット871と第6の推論ユニット876に第1及び第2の画像データを入力し、出力された第1及び第2の画像データの特徴量を第7の推論ユニット877に入力するとよい。 When adjusting the control parameters in the decanter 1 to which the data processing system 180A including the first, sixth and seventh inference units 871, 876 and 877 described above is applied, the same as that shown in FIG. 18 described above is used. All you have to do is process it. However, in the process shown in FIG. 18, when the control parameter is inferred in step S24, the first and second image data are first input to the first inference unit 871 and the sixth inference unit 876 and output. The feature quantities of the first and second image data may be input to the seventh inference unit 877.
 以上説明した通り、本実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムによれば、複数の学習済モデルを用いて制御パラメータの推論結果を得ることで、十分な精度の推論が可能な各学習済モデルを生成するために必要な学習用データセットの数を相対的に抑えることが期待できる。 As described above, according to the machine learning device, the machine learning method, and the data processing system according to the present embodiment, by obtaining the inference results of the control parameters using a plurality of trained models, it is possible to infer with sufficient accuracy. It can be expected that the number of training data sets required to generate each possible trained model will be relatively small.
<第7の実施の形態>
 上記第5の実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムにおいては、第1及び第2の画像データのみから制御パラメータを推論する場合について説明を行った。以下には、上記第5の実施の形態の変形例として、入力データとして、第1及び第2の画像データに加えて更に他の変数を採用した場合を、本開示の第7の実施の形態として以下に説明する。なお、以下に示す第7の実施の形態に係る機械学習装置120B及びデータ処理システム180Bの各構成要素のうち、第5及び第6の実施の形態に係る機械学習装置120、120A及びデータ処理システム180、180Aの各構成要素と共通するものについては、同一の符号を付してその説明を省略する。また、以下に示す第7の実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムは、第1乃至第6の実施の形態に係るものと同様に、図1及び図2に示す遠心分離システムに適用した場合を例にとり説明されている。さらに、上述したあるいは後述する各実施の形態において説示された全ての変形例は、矛盾が生じない範囲において本実施の形態にも適用可能なものである。
<7th embodiment>
In the machine learning device, the machine learning method, and the data processing system according to the fifth embodiment, the case where the control parameter is inferred only from the first and second image data has been described. In the following, as a modification of the fifth embodiment, a case where other variables are adopted in addition to the first and second image data as input data is described in the seventh embodiment of the present disclosure. Will be described below. Of the components of the machine learning device 120B and the data processing system 180B according to the seventh embodiment shown below, the machine learning devices 120, 120A and the data processing system according to the fifth and sixth embodiments. Those common to the components of 180 and 180A are designated by the same reference numerals and the description thereof will be omitted. Further, the machine learning device, the machine learning method, and the data processing system according to the seventh embodiment shown below are the same as those according to the first to sixth embodiments, and the centrifuge shown in FIGS. 1 and 2. The explanation is given by taking the case of applying to a separation system as an example. Furthermore, all the modifications described in each of the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
 図21は、本開示の第7の実施の形態に係る機械学習装置120Bの概略ブロック図である。本実施の形態に係る機械学習装置120Bは、図21に示すように、各構成要素については、学習用データセット記憶ユニットとして第8の学習用データセット記憶ユニット228を含み、学習ユニットとして第8の学習ユニット238を含む点以外は上述した第5の実施の形態に係る機械学習装置120と同様であってよい。また、学習用データセット取得ユニット121において取得される複数のデータも第5の実施の形態のものとは異なるものであってよい。本実施の形態に係る学習用データセット取得ユニット121は、図21に示すように、コンピュータPC1に接続されることで、このコンピュータPC1から所望のデータを取得することができる。このコンピュータPC1は、第5の実施の形態に係るコンピュータPC1と同様に、コントロールユニット30、脱水固形物監視システム50及び被処理液監視システム60に接続されているが、これらに加えて、分離液監視システム40、被処理液濃度センサ67及びスクリューコンベアトルク監視システム70の少なくとも1つにも接続され得る。このうち、被処理液濃度センサ67は、例えば被処理液配管10bの特に添加物配管11cと合流する前の所定位置に配置され、被処理液供給源10から供給される被処理液PL1のスラリー濃度を直接測定するものであってよい。この被処理液濃度センサ67としては、例えば周知のレーザー式、光学式、あるいは超音波式の濃度センサを用いることができる。なお、本実施の形態においては、コンピュータPC1は、分離液監視システム40、被処理液濃度センサ67及びスクリューコンベアトルク監視システム70の全てに接続され、学習用データセット取得ユニット121が取得する複数のデータには、被処理液PL1のスラリー濃度と分離液SLの濃度とスクリューコンベア3のトルク値とが含まれるものについて例示する。また、分離液監視システム40及びスクリューコンベアトルク監視システム70は、上述の第3の実施の形態において例示したものと同様のものであって良く、ここではその詳細な説明は省略する。さらに、被処理液濃度センサ67は図2では図示を省略している。 FIG. 21 is a schematic block diagram of the machine learning device 120B according to the seventh embodiment of the present disclosure. As shown in FIG. 21, the machine learning device 120B according to the present embodiment includes an eighth learning data set storage unit 228 as a learning data set storage unit for each component, and an eighth learning data set storage unit 228 as a learning unit. It may be the same as the machine learning device 120 according to the fifth embodiment described above except that the learning unit 238 is included. Further, the plurality of data acquired by the learning data set acquisition unit 121 may also be different from those of the fifth embodiment. As shown in FIG. 21, the learning data set acquisition unit 121 according to the present embodiment can acquire desired data from the computer PC1 by being connected to the computer PC1. The computer PC 1 is connected to the control unit 30, the dehydrated solid matter monitoring system 50, and the liquid to be treated monitoring system 60, similarly to the computer PC 1 according to the fifth embodiment. In addition to these, the separation liquid is connected. It may also be connected to at least one of the monitoring system 40, the liquid concentration sensor 67 to be processed and the screw conveyor torque monitoring system 70. Of these, the liquid to be treated concentration sensor 67 is arranged at a predetermined position, for example, before merging with the additive pipe 11c of the liquid to be treated 10b, and is a slurry of the liquid to be treated PL1 supplied from the liquid supply source 10 to be treated. The concentration may be measured directly. As the liquid to be treated concentration sensor 67, for example, a well-known laser type, optical type, or ultrasonic type concentration sensor can be used. In the present embodiment, the computer PC 1 is connected to all of the separation liquid monitoring system 40, the liquid to be processed concentration sensor 67, and the screw conveyor torque monitoring system 70, and a plurality of data set acquisition units 121 for learning acquire. The data includes the slurry concentration of the liquid to be treated PL1, the concentration of the separation liquid SL, and the torque value of the screw conveyor 3 to be exemplified. Further, the separation liquid monitoring system 40 and the screw conveyor torque monitoring system 70 may be the same as those exemplified in the above-mentioned third embodiment, and detailed description thereof will be omitted here. Further, the liquid to be treated concentration sensor 67 is not shown in FIG. 2.
 これらの監視システム等により取得される各種データ、詳しくは、第1及び第2の画像データ、分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値が、直接、あるいはコントロールユニット30を介してコンピュータPC1に送られる。そして、このコンピュータPC1より、対応する所望の制御パラメータと共に学習用データセット取得ユニット121に送られる。学習用データセット取得ユニット121で取得した学習用データセットを構成する複数のデータは、第1及び第2の画像データと、分離液SLの濃度と、被処理液PL1のスラリー濃度と、スクリューコンベア3のトルク値とを第8の入力データとし、これらのデータに対応付けられた制御パラメータを第8の出力データとする第8の学習用データセットの形式で、第8の学習用データセット記憶ユニット228に格納され得る。そして、第8の学習ユニット238では、第8の学習用データセットを用いて、上述した第5の実施の形態の機械学習方法と同様の方法で機械学習が行われ、得られた第8の学習済モデルが学習済モデル記憶ユニット124に記憶される。 Various data acquired by these monitoring systems and the like, specifically, the first and second image data, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3 are directly or controlled. It is sent to the computer PC1 via the unit 30. Then, it is sent from the computer PC 1 to the learning data set acquisition unit 121 together with the corresponding desired control parameters. The plurality of data constituting the learning data set acquired by the learning data set acquisition unit 121 include the first and second image data, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the screw conveyor. Eighth training data set storage in the form of an eighth training data set in which the torque value of 3 is used as the eighth input data and the control parameters associated with these data are used as the eighth output data. It may be stored in unit 228. Then, in the eighth learning unit 238, machine learning is performed by the same method as the machine learning method of the fifth embodiment described above using the eighth learning data set, and the obtained eighth learning unit is obtained. The trained model is stored in the trained model storage unit 124.
 図22は、本開示の第7の実施の形態に係るデータ処理システム180Bを示す概略ブロック図である。本実施の形態に係るデータ処理システム180Bは、図22に示すように、推論ユニットとして第8の推論ユニット878を含む点と、付加変数取得ユニット89を含む点以外は上述した第5の実施の形態に係るデータ処理システム180と同様の構成要素を含むものであってよい。このうち、付加変数取得ユニット89は、図22に示すように、分離液監視システム40、被処理液濃度センサ67及びスクリューコンベアトルク監視システム70に接続され、これらから、分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値を取得するものであってよい。 FIG. 22 is a schematic block diagram showing a data processing system 180B according to the seventh embodiment of the present disclosure. As shown in FIG. 22, the data processing system 180B according to the present embodiment has the fifth embodiment described above except that the inference unit includes the eighth inference unit 878 and the additional variable acquisition unit 89. It may include the same components as the data processing system 180 according to the form. Of these, the additional variable acquisition unit 89 is connected to the separation liquid monitoring system 40, the liquid to be processed concentration sensor 67, and the screw conveyor torque monitoring system 70, as shown in FIG. 22, from which the concentration of the separation liquid SL and the subject are to be covered. The slurry concentration of the treatment liquid PL1 and the torque value of the screw conveyor 3 may be acquired.
 このデータ処理システム180Bが適用されたデカンタ1において制御パラメータの調整を行う場合は、上述した図18に示すものと同様の処理を行えばよい。ただし、図18に示す処理のうち、ステップS231と同時あるいはその前後の所定タイミングにおいて、付加変数取得ユニット89が分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値を取得する。そして、これらの値は、第8の推論ユニット878において学習済モデルの入力層に第1及び第2の画像データと共に対応付けられる。 When adjusting the control parameters in the decanter 1 to which the data processing system 180B is applied, the same processing as that shown in FIG. 18 may be performed. However, among the processes shown in FIG. 18, the additional variable acquisition unit 89 acquires the concentration of the separation liquid SL, the slurry concentration of the liquid to be processed PL1, and the torque value of the screw conveyor 3 at the same time as or at a predetermined timing before and after step S231. do. Then, these values are associated with the input layer of the trained model in the eighth inference unit 878 together with the first and second image data.
 以上説明した通り、本実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムによれば、入力データとして、第1及び第2の画像データに加えて、分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値を採用したことで、ニューラルネットワークモデルの学習段階において、入力データと出力データとの間の相関関係を特定しやすくなる。これにより、十分な精度の推論が可能な各学習済モデルを生成するために必要な学習用データセットの数を抑えることが期待できる。 As described above, according to the machine learning device, the machine learning method, and the data processing system according to the present embodiment, as input data, in addition to the first and second image data, the concentration of the separation liquid SL and the data to be processed. By adopting the slurry concentration of the liquid PL1 and the torque value of the screw conveyor 3, it becomes easy to identify the correlation between the input data and the output data in the learning stage of the neural network model. This can be expected to reduce the number of training data sets required to generate each trained model that can be reasoned with sufficient accuracy.
<第8の実施の形態>
 次に、上記第6及び第7の実施の形態において説示した技術思想を組み合わせた場合について、本開示の第8の実施の形態として以下に説明する。なお、以下に示す第8の実施の形態に係る機械学習装置120C及びデータ処理システム180Cの各構成要素のうち、第5乃至第7の実施の形態に係る機械学習装置120、120A、120B及びデータ処理システム180、180A、180Bの各構成要素と共通するものについては、同一の符号を付してその説明を省略する。また、以下に示す第8の実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムは、第1乃至第7の実施の形態に係るものと同様に、図1及び図2に示す遠心分離システムに適用した場合を例にとり説明されている。さらに、上述したあるいは後述する各実施の形態において説示された全ての変形例は、矛盾が生じない範囲において本実施の形態にも適用可能なものである。
<8th embodiment>
Next, the case where the technical ideas described in the sixth and seventh embodiments are combined will be described below as the eighth embodiment of the present disclosure. Of the components of the machine learning device 120C and the data processing system 180C according to the eighth embodiment shown below, the machine learning devices 120, 120A, 120B and data according to the fifth to seventh embodiments. Those common to the components of the processing systems 180, 180A, and 180B are designated by the same reference numerals and the description thereof will be omitted. Further, the machine learning device, the machine learning method, and the data processing system according to the eighth embodiment shown below are the same as those according to the first to seventh embodiments, and the centrifuge shown in FIGS. 1 and 2. The explanation is given by taking the case of applying to a separation system as an example. Furthermore, all the modifications described in each of the above-mentioned or later embodiments can be applied to the present embodiment as long as there is no contradiction.
 図23は、本開示の第8の実施の形態に係る機械学習装置120Cの概略ブロック図である。本実施の形態に係る機械学習装置120Cは、図23に示すように、その構成要素としては、学習用データセット記憶ユニットとして、第1の学習用データセット記憶ユニット221と第6の学習用データセット記憶ユニット226と第9の学習用データセット記憶ユニット229とを含み、学習ユニットとして第1の学習ユニット231と第6の学習ユニット236と第9の学習ユニット239とを含む点以外は、第5の実施の形態に係る機械学習装置120と同様であってよい。また、これに関連して、学習用データセット取得ユニット121において取得される複数のデータも第5の実施の形態とは異なっていてよい。 FIG. 23 is a schematic block diagram of the machine learning device 120C according to the eighth embodiment of the present disclosure. As shown in FIG. 23, the machine learning device 120C according to the present embodiment has, as its components, a first learning data set storage unit 221 and a sixth learning data as a learning data set storage unit. No. 1 except that the set storage unit 226 and the ninth learning data set storage unit 229 are included, and the learning units include the first learning unit 231 and the sixth learning unit 236 and the ninth learning unit 239. It may be the same as the machine learning device 120 according to the embodiment of 5. Further, in connection with this, the plurality of data acquired by the learning data set acquisition unit 121 may also be different from the fifth embodiment.
 本実施の形態に係る学習用データセット取得ユニット121は、図23に示すように、コンピュータPC1に接続されることで、このコンピュータPC1から所望のデータを取得することができる。このコンピュータPC1は、第5の実施の形態に係るコンピュータPC1と同様に、コントロールユニット30、脱水固形物監視システム50A及び被処理液監視システム60Aに接続されているが、これらに加えて、分離液監視システム40、被処理液濃度センサ67及びスクリューコンベアトルク監視システム70のうちの少なくとも1つにも接続され得る。コンピュータPC1に接続された、コントロールユニット30、脱水固形物監視システム50A、被処理液監視システム60A、分離液監視システム40、被処理液濃度センサ67及びスクリューコンベアトルク監視システム70の具体的な構成は、既に上述した他の実施の形態において例示したものと同様であってよい。そして、本実施の形態における学習用データセット取得ユニット121が取得する複数のデータは、第1及び第2の画像データと、制御パラメータとに加えて、更に分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値の少なくとも1つと、脱水固形物Mの特徴量と、フロック含有被処理液PL2の特徴量とを含んでいてよい。なお、本実施の形態においては、第7の実施の形態と同様に、コンピュータPC1は、分離液監視システム40、被処理液濃度センサ67及びスクリューコンベアトルク監視システム70の全てに接続され、学習用データセット取得ユニット121が取得する複数のデータには、分離液SLの濃度と、被処理液PL1のスラリー濃度と、スクリューコンベア3のトルク値とが含まれるものを例示する。 As shown in FIG. 23, the learning data set acquisition unit 121 according to the present embodiment can acquire desired data from the computer PC1 by being connected to the computer PC1. The computer PC1 is connected to the control unit 30, the dehydrated solid matter monitoring system 50A, and the liquid to be treated monitoring system 60A, similarly to the computer PC1 according to the fifth embodiment. In addition to these, the separation liquid is connected. It may also be connected to at least one of the monitoring system 40, the liquid concentration sensor 67 to be processed and the screw conveyor torque monitoring system 70. Specific configurations of the control unit 30, the dehydrated solid matter monitoring system 50A, the processed liquid monitoring system 60A, the separated liquid monitoring system 40, the processed liquid concentration sensor 67, and the screw conveyor torque monitoring system 70 connected to the computer PC1 are. , Which may be the same as those already exemplified in the other embodiments described above. The plurality of data acquired by the learning data set acquisition unit 121 in the present embodiment include the first and second image data, the control parameters, the concentration of the separation liquid SL, and the liquid to be processed PL1. It may contain at least one of the slurry concentration and the torque value of the screw conveyor 3, the characteristic amount of the dehydrated solid M, and the characteristic amount of the floc-containing liquid to be treated PL2. In the present embodiment, as in the seventh embodiment, the computer PC 1 is connected to all of the separation liquid monitoring system 40, the liquid to be processed concentration sensor 67, and the screw conveyor torque monitoring system 70 for learning. Examples of the plurality of data acquired by the data set acquisition unit 121 include the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the torque value of the screw conveyor 3.
 学習用データセット取得ユニット121において取得された複数のデータは、それぞれの対応関係を考慮しつつ、3つの学習用データセットとして第1の学習用データセット記憶ユニット221、第6の学習用データセット記憶ユニット226及び第9の学習用データセット記憶ユニット229内に別々に格納され得る。第1の学習用データセット記憶ユニット221に格納される第1の学習用データセットは、排出口2a内から排出された脱水固形物Mを所定画角から撮像した第1の画像データを第1の入力データとして含み、第1の入力データに対応付けられた第1の画像データの特徴量を第1の出力データとして含むものであって良い。また、第6の学習用データセット記憶ユニット226に格納される第6の学習用データセットは、ボウル2に供給される前であって且つ薬剤が添加されたフロック含有被処理液PL2を所定画角から撮像した第2の画像データを第6の入力データとして含み、第6の入力データに対応付けられた第2の画像データの特徴量を第6の出力データとして含むものであって良い。さらに、第9の学習用データセット記憶ユニット229に格納される第9の学習用データセットは、第1の画像データの特徴量と、第2の画像データの特徴量と、分離液SLの濃度と、被処理液PL1のスラリー濃度と、スクリューコンベア3のトルク値とを第9の入力データとして含み、第9の入力データに対応付けられた制御パラメータを第9の出力データとして含むものであって良い。 The plurality of data acquired in the learning data set acquisition unit 121 are the first learning data set storage unit 221 and the sixth learning data set as three learning data sets while considering their respective correspondences. It may be stored separately in the storage unit 226 and the ninth learning data set storage unit 229. The first learning data set stored in the first learning data set storage unit 221 captures the first image data obtained by capturing the dehydrated solid M discharged from the discharge port 2a from a predetermined angle. The feature amount of the first image data associated with the first input data may be included as the first output data. Further, the sixth learning data set stored in the sixth learning data set storage unit 226 contains a floc-containing liquid to be treated PL2 before being supplied to the bowl 2 and to which a chemical is added. The second image data captured from the corner may be included as the sixth input data, and the feature amount of the second image data associated with the sixth input data may be included as the sixth output data. Further, the ninth learning data set stored in the ninth learning data set storage unit 229 includes the feature amount of the first image data, the feature amount of the second image data, and the concentration of the separation liquid SL. The slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3 are included as the ninth input data, and the control parameter associated with the ninth input data is included as the ninth output data. It's okay.
 第1の学習用データセット記憶ユニット221、第6の学習用データセット記憶ユニット226及び第9の学習用データセット記憶ユニット229にそれぞれ格納された第1、第6及び第9の学習用データセットは、それぞれ別の学習ユニットにのみ参照されるものであってよい。第1の学習ユニット231は、第1の学習用データセットを複数組入力することで、第1の入力データと第1の出力データとの相関関係を推論する学習モデルを学習するものであってよい。言い換えれば、この第1の学習ユニット231は、第1の学習用データセット内の第1の画像データを入力することで、第1の画像データの特徴量を推論する第1の学習モデルを学習するものであってよい。また、第6の学習ユニット236は、第6の学習用データセットを複数組入力することで、第6の入力データと第6の出力データとの相関関係を推論する学習モデルを学習するものであってよい。言い換えれば、この第6の学習ユニット236は、第6の学習用データセット内の第2の画像データを入力することで、第2の画像データの特徴量を推論する第6の学習モデルを学習するものであってよい。そして、第9の学習ユニット239は、第9の学習用データセットを複数組入力することで、第9の入力データと第9の出力データとの相関関係を推論する学習モデルを学習するものであってよい。言い換えれば、この第9の学習ユニット239は、第9の学習用データセット内の第1及び第2画像データの特徴量と、分離液SLの濃度と、被処理液PL1のスラリー濃度と、スクリューコンベア3のトルク値とを入力することで、制御パラメータを推論する第9の学習モデルを学習するものであってよい。 The first, sixth and ninth learning data sets stored in the first learning data set storage unit 221 and the sixth learning data set storage unit 226 and the ninth learning data set storage unit 229, respectively. May only be referenced by different learning units. The first learning unit 231 learns a learning model that infers the correlation between the first input data and the first output data by inputting a plurality of sets of the first learning data sets. good. In other words, the first learning unit 231 learns the first learning model that infers the feature amount of the first image data by inputting the first image data in the first learning data set. It may be something to do. Further, the sixth learning unit 236 learns a learning model for inferring the correlation between the sixth input data and the sixth output data by inputting a plurality of sets of the sixth learning data sets. It may be there. In other words, the sixth learning unit 236 learns a sixth learning model that infers the feature amount of the second image data by inputting the second image data in the sixth learning data set. It may be something to do. Then, the ninth learning unit 239 learns a learning model that infers the correlation between the ninth input data and the ninth output data by inputting a plurality of sets of the ninth learning data sets. It may be there. In other words, the ninth learning unit 239 has the feature amounts of the first and second image data in the ninth learning data set, the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1, and the screw. By inputting the torque value of the conveyor 3, the ninth learning model for inferring the control parameter may be learned.
 第1、第6及び第9の学習ユニット231、236及び239における具体的な機械学習方法は、学習に用いる学習用データセットは異なるものの、その工程は図6に示した教師あり学習の工程といずれも同様であってよい。そして、一連の機械学習工程を経て得られた第1、第6及び第9の学習済モデルは、学習済モデル記憶ユニット124内にそれぞれ記憶され得る。 The specific machine learning methods in the first, sixth and ninth learning units 231 and 236 and 239 differ from the supervised learning process shown in FIG. 6, although the learning data set used for learning is different. Both may be the same. Then, the first, sixth, and ninth trained models obtained through a series of machine learning steps can be stored in the trained model storage unit 124, respectively.
 図24は、本開示の第8の実施の形態に係るデータ処理システム180Cを示す概略ブロック図である。本実施の形態に係るデータ処理システム180Cは、図24に示すように、演算ユニット183内の推論ユニットとして、第1の推論ユニット871と第6の推論ユニット876と第9の推論ユニット879とを含み、且つ付加変数取得ユニット89を含む点以外は上述した第5の実施の形態に係るデータ処理システム180と同様の構成要素を含むものであってよい。このうち、付加変数取得ユニット89は、上記第7の実施の形態において述べたものと同様のものを採用することができる。 FIG. 24 is a schematic block diagram showing a data processing system 180C according to the eighth embodiment of the present disclosure. As shown in FIG. 24, the data processing system 180C according to the present embodiment includes a first inference unit 871, a sixth inference unit 876, and a ninth inference unit 879 as inference units in the arithmetic unit 183. It may include the same components as the data processing system 180 according to the fifth embodiment described above, except that it includes the additional variable acquisition unit 89. Of these, as the additional variable acquisition unit 89, the same one as described in the seventh embodiment can be adopted.
 第1の推論ユニット871は、上述した機械学習装置120Cで生成され学習済モデル記憶ユニット188内に記憶された第1の学習済モデルを用いて推論を実行するものであってよい。したがって、この第1の推論ユニット871は、第1の画像データ取得ユニット81において取得された第1の画像データが入力されると、第1の画像データの特徴量を出力層に出力することができる。また、第6の推論ユニット876は、上述した機械学習装置120Cで生成され学習済モデル記憶ユニット188内に記憶された第6の学習済モデルを用いて推論を実行するものであってよい。したがって、この第6の推論ユニット876は、第2の画像データ取得ユニット181において取得された第2の画像データが入力されると、第2の画像データの特徴量を出力層に出力することができる。さらに、第9の推論ユニット879は、上述した機械学習装置120Cで生成され学習済モデル記憶ユニット188内に記憶された第9の学習済モデルを用いて推論を実行するものであってよい。したがって、この第9の推論ユニット879は、第1の推論ユニット871において推論された第1の画像データの特徴量と、第6の推論ユニット876において推論された第2の画像データの特徴量と、分離液SLの濃度と、被処理液PL1のスラリー濃度と、スクリューコンベア3のトルク値とが入力されると、制御パラメータを出力層に出力することができる。 The first inference unit 871 may execute inference using the first trained model generated by the machine learning device 120C described above and stored in the trained model storage unit 188. Therefore, when the first image data acquired by the first image data acquisition unit 81 is input, the first inference unit 871 can output the feature amount of the first image data to the output layer. can. Further, the sixth inference unit 876 may execute inference using the sixth trained model generated by the machine learning device 120C described above and stored in the trained model storage unit 188. Therefore, when the second image data acquired by the second image data acquisition unit 181 is input, the sixth inference unit 876 can output the feature amount of the second image data to the output layer. can. Further, the ninth inference unit 879 may execute inference using the ninth trained model generated by the machine learning device 120C described above and stored in the trained model storage unit 188. Therefore, the ninth inference unit 879 includes the feature amount of the first image data inferred by the first inference unit 871 and the feature amount of the second image data inferred by the sixth inference unit 876. When the concentration of the separation liquid SL, the slurry concentration of the liquid to be treated PL1 and the torque value of the screw conveyor 3 are input, the control parameters can be output to the output layer.
 上述した付加変数取得ユニット89と第1、第6及び第9の推論ユニット871、876及び879とを含むデータ処理システム180Cが適用されたデカンタ1において制御パラメータの調整を行う場合は、上述した図18に示すものと同様の処理を行えばよい。ただし、図18に示す処理のうち、ステップS231と同時あるいはその前後の所定タイミングにおいて、付加変数取得ユニット89が分離液SLの濃度、被処理液PL1のスラリー濃度及びスクリューコンベア3のトルク値を取得する工程を更に含むことができる。また、ステップS24において制御パラメータを推論する際は、先ず第1の推論ユニット871と第6の推論ユニット876に第1及び第2の画像データをそれぞれ入力し、出力された第1及び第2の画像データの特徴量を付加変数取得ユニット89において取得した3つの値と共に第9の推論ユニット879に入力する。 When the control parameters are adjusted in the decanter 1 to which the data processing system 180C including the additional variable acquisition unit 89 and the first, sixth and ninth inference units 871, 876 and 879 is applied, the above figure is shown. The same processing as that shown in 18 may be performed. However, among the processes shown in FIG. 18, the additional variable acquisition unit 89 acquires the concentration of the separation liquid SL, the slurry concentration of the liquid to be processed PL1, and the torque value of the screw conveyor 3 at the same time as or at a predetermined timing before and after step S231. The steps to be performed can be further included. Further, when inferring the control parameters in step S24, first, the first and second image data are input to the first inference unit 871 and the sixth inference unit 876, respectively, and the first and second image data are output. The feature amount of the image data is input to the ninth inference unit 879 together with the three values acquired in the additional variable acquisition unit 89.
 以上説明した通り、本実施の形態に係る機械学習装置、機械学習方法及びデータ処理システムによれば、十分な精度の推論が可能な各学習済モデルを生成するために必要な学習用データセットの数を、上述した第6及び第7の実施の形態よりも更に抑えることが期待できる。 As described above, according to the machine learning device, the machine learning method, and the data processing system according to the present embodiment, the training data set required to generate each trained model capable of inferring with sufficient accuracy. It can be expected that the number will be further suppressed as compared with the sixth and seventh embodiments described above.
 上述した実施の形態は一例を示したものに過ぎず、以って本開示は上述した実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲内で種々変更して実施することが可能である。そして、それらはすべて、本開示の技術思想に含まれるものである。また、本開示において、各構成要素は、矛盾が生じない限りは1つのみ存在しても2つ以上存在してもよい。 The above-described embodiment is merely an example, and therefore, the present disclosure is not limited to the above-mentioned embodiment, and various modifications are made without departing from the gist of the present disclosure. It is possible. And all of them are included in the technical idea of the present disclosure. Further, in the present disclosure, each component may be present alone or in combination of two or more as long as there is no contradiction.
 本明細書中で引用する刊行物、特許出願及び特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ限度で、ここで参照して組み込む。 All documents, including publications, patent applications and patents cited herein, are individually specifically shown, referenced and incorporated, and all of their content is described herein. To the same extent, refer to and incorporate here.
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞及び同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数及び複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」及び「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限らない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例又は例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、請求項に記載されていない要素を、本発明の実施に不可欠であるものとして示すものとは解釈されないものとする。 The use of nouns and similar demonstratives used in connection with the description of the invention (particularly in connection with the following claims) is not particularly pointed out herein or clearly inconsistent with the context. , Singular and plural. The phrases "prepare," "have," "include," and "include" are to be interpreted as open-ended terms (ie, meaning "including, but not limited to," unless otherwise noted). The description of the numerical range herein is intended solely to serve as an abbreviation for individually referring to each value within that range, unless otherwise noted herein. Each value is incorporated herein as if it were individually listed herein. All methods described herein can be performed in any suitable order, as long as they are not specifically pointed out herein or are clearly inconsistent with the context. All examples or exemplary phrases used herein (eg, "etc.") are intended solely to better illustrate the invention and set limits to the scope of the invention, unless otherwise stated. is not it. Nothing in the specification shall be construed as indicating an element not described in the claims as essential to the practice of the present invention.
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読めば、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを期待しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。したがって本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の修正及び均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組合せも本発明に包含される。
 
In the present specification, preferred embodiments of the present invention are described, including the best embodiments known to the inventor for carrying out the present invention. For those skilled in the art, reading the above description will reveal variations of these preferred embodiments. The inventor expects an expert to apply such modifications as appropriate, and intends to implement the invention by methods other than those specifically described herein. .. Accordingly, the invention includes all amendments and equivalents of the content of the claims attached herein, as permitted by applicable law. Moreover, any combination of the above elements in all modifications is included in the invention unless specifically pointed out herein or is clearly inconsistent with the context.

Claims (16)

  1.  被処理液に遠心力を付与して固形物と分離液とに遠心分離するボウルと、前記ボウル内の前記固形物を排出口に向けて搬送するスクリューコンベアと、前記ボウルを回転させる駆動モータと、前記スクリューコンベアを前記ボウルと相対的な差速をもって回転させる差速発生装置と、を備えた遠心分離システムのための機械学習装置であって、
     前記排出口から排出された液体含有固形物を所定画角から撮像した画像データを含む入力データと、前記入力データに対応付けられた制御パラメータを含む出力データとを備える学習用データセットを複数組記憶する学習用データセット記憶ユニットであって、前記制御パラメータは、前記被処理液に添加される添加物の供給量、前記ボウルの遠心力、及び前記差速発生装置により制御される差速のうちの少なくとも1つを備える、前記学習用データセット記憶ユニットと;
     前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習する学習ユニットと;
     前記学習ユニットによって学習された前記学習モデルを記憶する学習済モデル記憶ユニットと;を備える、
     機械学習装置。
    A bowl that applies centrifugal force to the liquid to be treated to centrifuge into the solid and the separated liquid, a screw conveyor that conveys the solid in the bowl toward the discharge port, and a drive motor that rotates the bowl. A machine learning device for a centrifugal separation system, comprising a differential speed generator that rotates the screw conveyor with a differential speed relative to the bowl.
    A plurality of sets of learning data sets including input data including image data obtained by capturing a liquid-containing solid matter discharged from the discharge port from a predetermined angle and output data including control parameters associated with the input data. A data set storage unit for learning to be stored, wherein the control parameters are the supply amount of the additive added to the liquid to be treated, the centrifugal force of the bowl, and the differential speed controlled by the differential speed generator. With the training dataset storage unit comprising at least one of them;
    With a learning unit that learns a learning model that infers the correlation between the input data and the output data by inputting a plurality of sets of the training data sets;
    A trained model storage unit that stores the learning model learned by the learning unit;
    Machine learning device.
  2.  前記学習ユニットは、
     前記学習用データセット内の画像データを入力することで、前記画像データの特徴量を推論する第1の学習モデルを学習する第1の学習ユニットと;
     前記画像データの特徴量を入力することで、前記制御パラメータを推論する第2の学習モデルを学習する第2の学習ユニットと;を備える、
     請求項1に記載の機械学習装置。
    The learning unit is
    With the first learning unit that learns the first learning model that infers the feature amount of the image data by inputting the image data in the training data set;
    A second learning unit for learning a second learning model for inferring the control parameter by inputting a feature amount of the image data;
    The machine learning device according to claim 1.
  3.  前記入力データは、前記分離液の濃度と、前記被処理液のスラリー濃度と、前記スクリューコンベアのトルク値とのうちの少なくとも1つを更に含む、
     請求項1に記載の機械学習装置。
    The input data further includes at least one of the concentration of the separation liquid, the slurry concentration of the liquid to be treated, and the torque value of the screw conveyor.
    The machine learning device according to claim 1.
  4.  前記入力データは、前記分離液の濃度と、前記被処理液のスラリー濃度と、前記スクリューコンベアのトルク値とのうちの少なくとも1つを更に含み、
     前記学習ユニットは、
     前記学習用データセット内の画像データを入力することで、前記画像データの特徴量を推論する第1の学習モデルを学習する第1の学習ユニットと;
     前記画像データの特徴量と、前記分離液の濃度と、前記被処理液のスラリー濃度と、前記スクリューコンベアのトルク値とを入力することで、前記制御パラメータを推論する第4の学習モデルを学習する第4の学習ユニットと;を備える、
     請求項1に記載の機械学習装置。
    The input data further includes at least one of the concentration of the separation liquid, the slurry concentration of the liquid to be treated, and the torque value of the screw conveyor.
    The learning unit is
    With the first learning unit that learns the first learning model that infers the feature amount of the image data by inputting the image data in the training data set;
    By inputting the feature amount of the image data, the concentration of the separation liquid, the slurry concentration of the liquid to be processed, and the torque value of the screw conveyor, a fourth learning model for inferring the control parameter is learned. With a fourth learning unit;
    The machine learning device according to claim 1.
  5.  被処理液に遠心力を付与して固形物と分離液とに遠心分離するボウルと、前記ボウル内の前記固形物を排出口に向けて搬送するスクリューコンベアと、前記ボウルを回転させる駆動モータと、前記スクリューコンベアを前記ボウルと相対的な差速をもって回転させる差速発生装置と、を備えた遠心分離システムのための機械学習装置であって、
     前記排出口から排出された液体含有固形物を所定画角から撮像した第1の画像データと、前記ボウルに供給される前であって且つ所定の添加物が添加された後の前記被処理液を所定画角から撮像した第2の画像データとを含む入力データと、前記入力データに対応付けられた制御パラメータを含む出力データとを備える学習用データセットを複数組記憶する学習用データセット記憶ユニットであって、前記制御パラメータは、前記添加物の供給量、前記ボウルの遠心力、及び前記差速発生装置により制御される差速のうちの少なくとも1つを備える、前記学習用データセット記憶ユニットと;
     前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習する学習ユニットと;
     前記学習ユニットによって学習された前記学習モデルを記憶する学習済モデル記憶ユニットと;を備える、
     機械学習装置。
    A bowl that applies centrifugal force to the liquid to be treated to centrifuge into the solid and the separated liquid, a screw conveyor that conveys the solid in the bowl toward the discharge port, and a drive motor that rotates the bowl. A machine learning device for a centrifugal separation system, comprising a differential speed generator that rotates the screw conveyor with a differential speed relative to the bowl.
    The first image data obtained by imaging the liquid-containing solid matter discharged from the discharge port from a predetermined angle, and the liquid to be treated before being supplied to the bowl and after the predetermined additive is added. Data set storage for learning that stores a plurality of sets of training data sets including input data including a second image data captured from a predetermined angle of view and output data including control parameters associated with the input data. The unit, said control parameter, said learning data set storage comprising at least one of the supply of the additive, the centrifugal force of the bowl, and the differential speed controlled by the differential speed generator. With the unit;
    With a learning unit that learns a learning model that infers the correlation between the input data and the output data by inputting a plurality of sets of the training data sets;
    A trained model storage unit that stores the learning model learned by the learning unit;
    Machine learning device.
  6.  前記学習ユニットは、
     前記学習用データセット内の第1の画像データを入力することで、前記第1の画像データの特徴量を推論する第1の学習モデルを学習する第1の学習ユニットと;
     前記学習用データセット内の第2の画像データを入力することで、前記第2の画像データの特徴量を推論する第6の学習モデルを学習する第6の学習ユニットと;
     前記第1の画像データの特徴量と、前記第2の画像データの特徴量とを入力することで、前記制御パラメータを推論する第7の学習モデルを学習する第7の学習ユニットと;を備える、
     請求項5に記載の機械学習装置。
    The learning unit is
    With the first learning unit that learns the first learning model that infers the feature amount of the first image data by inputting the first image data in the training data set;
    With a sixth learning unit that learns a sixth learning model that infers the features of the second image data by inputting the second image data in the training data set;
    A seventh learning unit that learns a seventh learning model for inferring the control parameter by inputting the feature amount of the first image data and the feature amount of the second image data; ,
    The machine learning device according to claim 5.
  7.  前記入力データは、前記分離液の濃度と、前記被処理液のスラリー濃度と、前記スクリューコンベアのトルク値とのうちの少なくとも1つを更に含む、
     請求項5に記載の機械学習装置。
    The input data further includes at least one of the concentration of the separation liquid, the slurry concentration of the liquid to be treated, and the torque value of the screw conveyor.
    The machine learning device according to claim 5.
  8.  前記入力データは、前記分離液の濃度と、前記被処理液のスラリー濃度と、前記スクリューコンベアのトルク値とのうちの少なくとも1つを更に含み、
     前記学習ユニットは、
     前記学習用データセット内の第1の画像データを入力することで、前記第1の画像データの特徴量を推論する第1の学習モデルを学習する第1の学習ユニットと;
     前記学習用データセット内の第2の画像データを入力することで、前記第2の画像データの特徴量を推論する第6の学習モデルを学習する第6の学習ユニットと;
     前記第1の画像データの特徴量と、前記第2の画像データの特徴量と、前記分離液の濃度と、前記被処理液のスラリー濃度と、前記スクリューコンベアのトルク値とを入力することで、前記制御パラメータを推論する第9の学習モデルを学習する第9の学習ユニットと;を備える、
     請求項5に記載の機械学習装置。
    The input data further includes at least one of the concentration of the separation liquid, the slurry concentration of the liquid to be treated, and the torque value of the screw conveyor.
    The learning unit is
    With the first learning unit that learns the first learning model that infers the feature amount of the first image data by inputting the first image data in the training data set;
    With a sixth learning unit that learns a sixth learning model that infers the features of the second image data by inputting the second image data in the training data set;
    By inputting the feature amount of the first image data, the feature amount of the second image data, the concentration of the separation liquid, the slurry concentration of the liquid to be processed, and the torque value of the screw conveyor. , A ninth learning unit that learns a ninth learning model that infers the control parameters;
    The machine learning device according to claim 5.
  9.  前記制御パラメータは、前記被処理液の供給量を更に備える、
     請求項1乃至請求項8のいずれか1項に記載の機械学習装置。
    The control parameter further comprises a supply of the liquid to be treated.
    The machine learning device according to any one of claims 1 to 8.
  10.  前記制御パラメータは、前記ボウルのダムセット径を更に備える、
     請求項1乃至請求項9のいずれか1項に記載の機械学習装置。
    The control parameter further comprises a dam set diameter of the bowl.
    The machine learning device according to any one of claims 1 to 9.
  11.  被処理液に遠心力を付与して固形物と分離液とに遠心分離するボウルと、前記ボウル内の前記固形物を排出口に向けて搬送するスクリューコンベアと、前記ボウルを回転させる駆動モータと、前記スクリューコンベアを前記ボウルと相対的な差速をもって回転させる差速発生装置と、を備えた遠心分離システムに用いられるデータ処理システムであって、
     前記排出口から排出された液体含有固形物を所定画角から撮像した第1の画像データを取得するための第1の画像データ取得ユニットと;
     請求項1又は請求項2に記載の機械学習装置によって生成された学習済モデルに、前記第1の画像データ取得ユニットが取得したデータを入力することで、前記遠心分離システムの制御パラメータを推論する推論ユニットと;を備える、
     データ処理システム。
    A bowl that applies centrifugal force to the liquid to be treated to centrifuge into the solid and the separated liquid, a screw conveyor that conveys the solid in the bowl toward the discharge port, and a drive motor that rotates the bowl. A data processing system used in a centrifugal separation system, comprising a differential speed generator that rotates the screw conveyor with a differential speed relative to the bowl.
    With the first image data acquisition unit for acquiring the first image data obtained by capturing the liquid-containing solid matter discharged from the discharge port from a predetermined angle of view;
    By inputting the data acquired by the first image data acquisition unit into the trained model generated by the machine learning device according to claim 1 or 2, the control parameters of the centrifugal separation system are inferred. With an inference unit;
    Data processing system.
  12.  被処理液に遠心力を付与して固形物と分離液とに遠心分離するボウルと、前記ボウル内の前記固形物を排出口に向けて搬送するスクリューコンベアと、前記ボウルを回転させる駆動モータと、前記スクリューコンベアを前記ボウルと相対的な差速をもって回転させる差速発生装置と、を備えた遠心分離システムに用いられるデータ処理システムであって、
     前記排出口から排出された液体含有固形物を所定画角から撮像した第1の画像データを取得するための第1の画像データ取得ユニットと;
     前記分離液の濃度と、前記被処理液のスラリー濃度と、前記スクリューコンベアのトルク値とのうちの少なくとも1つを取得するための付加変数取得ユニットと;
     請求項3又は請求項4に記載の機械学習装置によって生成された学習済モデルに、前記第1の画像データ取得ユニットと前記付加変数取得ユニットとが取得したデータを入力することで、前記遠心分離システムの制御パラメータを推論する推論ユニットと;を備える、
     データ処理システム。
    A bowl that applies centrifugal force to the liquid to be treated to centrifuge into the solid and the separated liquid, a screw conveyor that conveys the solid in the bowl toward the discharge port, and a drive motor that rotates the bowl. A data processing system used in a centrifugal separation system, comprising a differential speed generator that rotates the screw conveyor with a differential speed relative to the bowl.
    With the first image data acquisition unit for acquiring the first image data obtained by capturing the liquid-containing solid matter discharged from the discharge port from a predetermined angle of view;
    An additional variable acquisition unit for acquiring at least one of the concentration of the separation liquid, the slurry concentration of the liquid to be treated, and the torque value of the screw conveyor;
    By inputting the data acquired by the first image data acquisition unit and the additional variable acquisition unit into the trained model generated by the machine learning device according to claim 3 or 4, the centrifugal separation is performed. With an inference unit that infers system control parameters;
    Data processing system.
  13.  被処理液に遠心力を付与して固形物と分離液とに遠心分離するボウルと、前記ボウル内の前記固形物を排出口に向けて搬送するスクリューコンベアと、前記ボウルを回転させる駆動モータと、前記スクリューコンベアを前記ボウルと相対的な差速をもって回転させる差速発生装置と、を備えた遠心分離システムに用いられるデータ処理システムであって、
     前記排出口から排出された液体含有固形物を所定画角から撮像した第1の画像データを取得するための第1の画像データ取得ユニットと;
     前記ボウルに供給される前であって且つ所定の添加物が添加された後の前記被処理液を所定画角から撮像した第2の画像データを取得するための第2の画像データ取得ユニットと;
     請求項5又は請求項6に記載の機械学習装置によって生成された学習済モデルに、前記第1の画像データ取得ユニットと前記第2の画像データ取得ユニットとが取得したデータを入力することで、前記遠心分離システムの制御パラメータを推論する推論ユニットと;を備える、
     データ処理システム。
    A bowl that applies centrifugal force to the liquid to be treated to centrifuge into the solid and the separated liquid, a screw conveyor that conveys the solid in the bowl toward the discharge port, and a drive motor that rotates the bowl. A data processing system used in a centrifugal separation system, comprising a differential speed generator that rotates the screw conveyor with a differential speed relative to the bowl.
    With the first image data acquisition unit for acquiring the first image data obtained by capturing the liquid-containing solid matter discharged from the discharge port from a predetermined angle of view;
    With a second image data acquisition unit for acquiring a second image data obtained by imaging the liquid to be treated from a predetermined angle of view before being supplied to the bowl and after the predetermined additive is added. ;
    By inputting the data acquired by the first image data acquisition unit and the second image data acquisition unit into the trained model generated by the machine learning device according to claim 5 or 6. With an inference unit that infers the control parameters of the centrifuge system;
    Data processing system.
  14.  被処理液に遠心力を付与して固形物と分離液とに遠心分離するボウルと、前記ボウル内の前記固形物を排出口に向けて搬送するスクリューコンベアと、前記ボウルを回転させる駆動モータと、前記スクリューコンベアを前記ボウルと相対的な差速をもって回転させる差速発生装置と、を備えた遠心分離システムに用いられるデータ処理システムであって、
     前記排出口から排出された液体含有固形物を所定画角から撮像した第1の画像データを取得するための第1の画像データ取得ユニットと;
     前記ボウルに供給される前であって且つ所定の添加物が添加された後の前記被処理液を所定画角から撮像した第2の画像データを取得するための第2の画像データ取得ユニットと;
     前記分離液の濃度と、前記被処理液のスラリー濃度と、前記スクリューコンベアのトルク値とのうちの少なくとも1つを取得するための付加変数取得ユニットと;
     請求項7又は請求項8に記載の機械学習装置によって生成された学習済モデルに、前記第1の画像データ取得ユニットと前記第2の画像データ取得ユニットと前記付加変数取得ユニットとが取得したデータを入力することで、前記遠心分離システムの制御パラメータを推論する推論ユニットと;を備える、
     データ処理システム。
    A bowl that applies centrifugal force to the liquid to be treated to centrifuge into the solid and the separated liquid, a screw conveyor that conveys the solid in the bowl toward the discharge port, and a drive motor that rotates the bowl. A data processing system used in a centrifugal separation system, comprising a differential speed generator that rotates the screw conveyor with a differential speed relative to the bowl.
    With the first image data acquisition unit for acquiring the first image data obtained by capturing the liquid-containing solid matter discharged from the discharge port from a predetermined angle of view;
    With a second image data acquisition unit for acquiring a second image data obtained by imaging the liquid to be treated from a predetermined angle of view before being supplied to the bowl and after the predetermined additive is added. ;
    An additional variable acquisition unit for acquiring at least one of the concentration of the separation liquid, the slurry concentration of the liquid to be treated, and the torque value of the screw conveyor;
    Data acquired by the first image data acquisition unit, the second image data acquisition unit, and the additional variable acquisition unit in the trained model generated by the machine learning device according to claim 7 or 8. With an inference unit that infers the control parameters of the centrifuge system by inputting;
    Data processing system.
  15.  被処理液に遠心力を付与して固形物と分離液とに遠心分離するボウルと、前記ボウル内の前記固形物を排出口に向けて搬送するスクリューコンベアと、前記ボウルを回転させる駆動モータと、前記スクリューコンベアを前記ボウルと相対的な差速をもって回転させる差速発生装置と、を備えた遠心分離システムのための、コンピュータを用いた機械学習方法であって、
     前記排出口から排出された液体含有固形物を所定画角から撮像した画像データを含む入力データと、前記入力データに対応付けられた制御パラメータを含む出力データとを備える学習用データセットを複数組記憶するステップであって、前記制御パラメータは、前記被処理液に添加される添加物の供給量、前記ボウルの遠心力、及び前記差速発生装置により制御される差速のうちの少なくとも1つを備える、ステップと;
     前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習するステップと;
     学習された前記学習モデルを記憶するステップと;を備える、
     機械学習方法。
    A bowl that applies centrifugal force to the liquid to be treated to centrifuge into the solid and the separated liquid, a screw conveyor that conveys the solid in the bowl toward the discharge port, and a drive motor that rotates the bowl. , A computer-based machine learning method for a centrifuge system comprising a differential speed generator that rotates the screw conveyor with a differential speed relative to the bowl.
    A plurality of sets of learning data sets including input data including image data obtained by capturing a liquid-containing solid matter discharged from the discharge port from a predetermined angle and output data including control parameters associated with the input data. The control parameter is at least one of the supply amount of the additive added to the liquid to be treated, the centrifugal force of the bowl, and the differential speed controlled by the differential speed generator. With steps and;
    A step of learning a learning model for inferring a correlation between the input data and the output data by inputting a plurality of sets of the training data sets;
    A step of storing the learned learning model;
    Machine learning method.
  16.  被処理液に遠心力を付与して固形物と分離液とに遠心分離するボウルと、前記ボウル内の前記固形物を排出口に向けて搬送するスクリューコンベアと、前記ボウルを回転させる駆動モータと、前記スクリューコンベアを前記ボウルと相対的な差速をもって回転させる差速発生装置と、を備えた遠心分離システムのための、コンピュータを用いた機械学習方法であって、
     前記排出口から排出された液体含有固形物を所定画角から撮像した第1の画像データと、前記ボウルに供給される前であって且つ所定の添加物が添加された後の前記被処理液を所定画角から撮像した第2の画像データとを含む入力データと、前記入力データに対応付けられた制御パラメータを含む出力データとを備える学習用データセットを複数組記憶するステップであって、前記制御パラメータは、前記添加物の供給量、前記ボウルの遠心力、及び前記差速発生装置により制御される差速のうちの少なくとも1つを備える、ステップと;
     前記学習用データセットを複数組入力することで、前記入力データと前記出力データとの相関関係を推論する学習モデルを学習するステップと;
     学習された前記学習モデルを記憶するステップと;を備える、
     機械学習方法。
     
    A bowl that applies centrifugal force to the liquid to be treated to centrifuge into the solid and the separated liquid, a screw conveyor that conveys the solid in the bowl toward the discharge port, and a drive motor that rotates the bowl. , A computer-based machine learning method for a centrifuge system comprising a differential speed generator that rotates the screw conveyor with a differential speed relative to the bowl.
    The first image data obtained by imaging the liquid-containing solid matter discharged from the discharge port from a predetermined angle of view, and the liquid to be treated before being supplied to the bowl and after the predetermined additive is added. This is a step of storing a plurality of sets of learning data sets including input data including a second image data captured from a predetermined angle of view and output data including control parameters associated with the input data. The control parameter comprises at least one of the supply of the additive, the centrifugal force of the bowl, and the differential speed controlled by the differential speed generator;
    A step of learning a learning model for inferring a correlation between the input data and the output data by inputting a plurality of sets of the training data sets;
    A step of storing the learned learning model;
    Machine learning method.
PCT/JP2021/020912 2020-07-21 2021-06-01 Machine-learning device, data processing system, and machine-learning method WO2022018975A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-124727 2020-07-21
JP2020124727A JP2022021244A (en) 2020-07-21 2020-07-21 Machine learning device, data processing system, and machine learning method

Publications (1)

Publication Number Publication Date
WO2022018975A1 true WO2022018975A1 (en) 2022-01-27

Family

ID=79728633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020912 WO2022018975A1 (en) 2020-07-21 2021-06-01 Machine-learning device, data processing system, and machine-learning method

Country Status (2)

Country Link
JP (1) JP2022021244A (en)
WO (1) WO2022018975A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134706A (en) * 1989-10-20 1991-06-07 Hitachi Ltd Knowledge acquiring method for supporting operation of sewage-treatment plant
US5948271A (en) * 1995-12-01 1999-09-07 Baker Hughes Incorporated Method and apparatus for controlling and monitoring continuous feed centrifuge
JP2014008500A (en) * 2012-07-03 2014-01-20 Tomoe Engineering Co Ltd Sludge treatment system and control program for operating sludge treatment system
JP2015097997A (en) * 2013-11-19 2015-05-28 旭硝子株式会社 Centrifugal machine, management system, and method of manufacturing glass substrate
JP2020065964A (en) * 2018-10-23 2020-04-30 水ing株式会社 Wastewater treatment method and wastewater treatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134706A (en) * 1989-10-20 1991-06-07 Hitachi Ltd Knowledge acquiring method for supporting operation of sewage-treatment plant
US5948271A (en) * 1995-12-01 1999-09-07 Baker Hughes Incorporated Method and apparatus for controlling and monitoring continuous feed centrifuge
JP2014008500A (en) * 2012-07-03 2014-01-20 Tomoe Engineering Co Ltd Sludge treatment system and control program for operating sludge treatment system
JP2015097997A (en) * 2013-11-19 2015-05-28 旭硝子株式会社 Centrifugal machine, management system, and method of manufacturing glass substrate
JP2020065964A (en) * 2018-10-23 2020-04-30 水ing株式会社 Wastewater treatment method and wastewater treatment system

Also Published As

Publication number Publication date
JP2022021244A (en) 2022-02-02

Similar Documents

Publication Publication Date Title
WO2022018974A1 (en) Machine learning device, data processing system, and machine learning method
JP7076356B2 (en) Wastewater treatment method
JP6774977B2 (en) Coagulant addition amount control device, sludge concentration system, coagulant addition amount control method
JP6941083B2 (en) Water treatment method and water treatment system
EP4013720A1 (en) System, and method for continuous process control of water contaminant separation process
FR2583739A1 (en) METHOD AND APPARATUS FOR CONTROLLING THE ADDITION OF CHEMICALS TO FLOCKE FLOCCULATING SUBSTANCES IN SUSPENSIONS, IN PARTICULAR FOR PURIFYING RETURN WATER FROM MISERY PLANTS.
JP7146548B2 (en) Water treatment method and water treatment equipment
Narges et al. Prediction of the optimal dosage of coagulants in water treatment plants through developing models based on artificial neural network fuzzy inference system (ANFIS)
WO2022018975A1 (en) Machine-learning device, data processing system, and machine-learning method
WO2022018976A1 (en) Machine learning device, data processing system, and machine learning method
JP2021102195A (en) Machine learning device, data processing system, inference device and machine learning method
JPH0483504A (en) Flocculant injection controlling apparatus
JP7448431B2 (en) dehydration system
WO2021261173A1 (en) Machine learning device, device for measuring water content of solid, deduction device, and machine learning method
Sivchenko et al. Evaluation of image texture recognition techniques in application to wastewater coagulation
CA2312858A1 (en) Method for regulating centrifuges for dehydrating wastewater sludge, using fuzzy logic
JP3136554B2 (en) Sludge coagulation equipment
JP7300380B2 (en) Threshold update device, learning device, control device, threshold update method, and control program
JP6701251B2 (en) Flocculant addition amount control device, sludge concentration system, flocculant addition amount control method
KR20230022043A (en) Method for controlling differential-speed controlling motor in centrifugal dehydrator applying machine learning
JP2021146240A (en) Water treatment system, control apparatus, water treatment method and program
JP2023012235A (en) Machine learning device, data processing system, inference device and machine learning method
JPS63256108A (en) Method for controlling injection of flocculant
JP4166624B2 (en) Method and apparatus for supplying flocculant in sludge dewatering machine
JPH06304412A (en) Flocculant loadings control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845619

Country of ref document: EP

Kind code of ref document: A1