JPS63277809A - Cryogenic power generating installation making use of lng - Google Patents
Cryogenic power generating installation making use of lngInfo
- Publication number
- JPS63277809A JPS63277809A JP11230887A JP11230887A JPS63277809A JP S63277809 A JPS63277809 A JP S63277809A JP 11230887 A JP11230887 A JP 11230887A JP 11230887 A JP11230887 A JP 11230887A JP S63277809 A JPS63277809 A JP S63277809A
- Authority
- JP
- Japan
- Prior art keywords
- lng
- pump
- control device
- expansion turbine
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009434 installation Methods 0.000 title 1
- 230000008016 vaporization Effects 0.000 claims abstract description 13
- 238000009834 vaporization Methods 0.000 claims abstract description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 18
- 239000003345 natural gas Substances 0.000 claims description 9
- 238000010248 power generation Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 abstract description 6
- 230000002040 relaxant effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 101150037263 PIP2 gene Proteins 0.000 description 1
- 101100262439 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UBA2 gene Proteins 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はLNGの保有する冷熱を利用し、動力を発生さ
せる設備を有するLNGの気化供給に好適なLNG冷熱
利用発電設備に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an LNG cold energy power generation facility suitable for vaporizing and supplying LNG and having equipment for generating power by utilizing the cold energy possessed by LNG.
従来のLNG冷熱利用発電設備における一実施例の系統
図を第3図に示す。図において、導管10よりLNGが
一160’C程度で供給さn%LNGポンプlで所定の
圧力まで昇圧し、流量調節弁2部
で要求されるLNG気化量を制置し、LNG蒸発器3に
送らnる。ここで加熱源となる海水等を導管四で供給す
ることによりLNGは常i!で気化し、高圧のガス(以
下天然ガスと呼ぶ)となって、導管13より加減弁4を
経て膨張タービン5Iこ入る。FIG. 3 shows a system diagram of an example of a conventional LNG cold energy power generation facility. In the figure, LNG is supplied from a conduit 10 at a temperature of about 1160'C, is pressurized to a predetermined pressure by an n% LNG pump 1, and the required LNG vaporization amount is controlled by a flow rate control valve 2, and an LNG evaporator 3 Sent to. By supplying seawater, etc., which serves as a heating source, through conduit 4, LNG is constantly heated! The gas is vaporized and becomes a high-pressure gas (hereinafter referred to as natural gas), which enters the expansion turbine 5I from the conduit 13 via the control valve 4.
ここで天然ガスが**することにより膨張タービン5を
作動させ、接続さnた発電機6を駆動し発電、動力を得
る。一方膨張タービン5で膨張し、低圧、低温となった
天然ガスは加温器7で導管ムから供給される加熱源(海
水等)により常温まで加温さn、導管15より発電所等
へ燃料ガスとじて供給さnる。導管15の天然ガスの圧
力は3M電所等での必要な一定の圧力に保持させるため
膨張タービン5の出口圧力はほぼ一定の圧力で運転さn
る。Here, the natural gas operates the expansion turbine 5 and drives the connected generator 6 to generate electricity and power. On the other hand, the natural gas expanded in the expansion turbine 5 to a low pressure and low temperature is heated to room temperature by a heating source (seawater, etc.) supplied from a conduit in a heater 7, and then sent as fuel to a power plant, etc. through a conduit 15. Supplied as gas. In order to maintain the pressure of the natural gas in the conduit 15 at a constant pressure required at a 3M power station, etc., the outlet pressure of the expansion turbine 5 is operated at a substantially constant pressure.
Ru.
膨張タービン5の入口にある加減弁4は、膨張タービン
5の効率の高い点を選び開度を設定し通常運転時はその
開度な一定にしたまま運用さnるいわゆる変圧運転方式
により、低負荷から高負荷の広い範囲で高効率の発電を
行なうものである。第4図は変圧運転方式による設備の
特性を示す。図において膨張タービン前圧特性線は、L
NG気化量が増大するに従って圧力が高くなる特性、即
ち膨張タービンは回転数が一定で通過面積が一足なため
天然ガス流量が増加すnば、膨張タービン旧圧は必然的
に上昇する変圧タービン運転となる。The regulating valve 4 at the inlet of the expansion turbine 5 uses a so-called variable pressure operation method, in which the opening is set at a point where the efficiency of the expansion turbine 5 is high, and the opening is kept constant during normal operation. It performs highly efficient power generation over a wide range from low to high loads. Figure 4 shows the characteristics of equipment using the variable voltage operation method. In the figure, the expansion turbine front pressure characteristic line is L
The characteristic is that the pressure increases as the amount of NG vaporized increases. In other words, the rotation speed of the expansion turbine is constant and the passage area is small, so if the natural gas flow rate increases, the old pressure of the expansion turbine will inevitably increase due to variable pressure turbine operation. becomes.
一方第4図におけるポンプ出口圧力特性は、まず最大気
化量設計点(B点)における、膨張タービン前圧特性2
4点に、流量調節弁に必要な圧力損失および膨張タービ
ン5に入るまでの機器配管等の圧力損失を加えた23点
をL N Gポンプlの定格設計点として容量を決定す
る。LNGポンプは通常遠心式サブマージドポンプが使
用さnるため、第4図のポンプ出口圧力特性曲線の如<
、LNG気化量が減少すれば圧力は高(なる特性を示す
。なお、二の種の装置として関連するものには1例えば
特開昭56−104105JiiJが挙げられる。On the other hand, the pump outlet pressure characteristics in Fig. 4 are as follows: First, the expansion turbine front pressure characteristics 2
The capacity is determined by using 23 points, which are the 4 points plus the pressure loss required for the flow rate control valve and the pressure loss of equipment piping etc. up to the expansion turbine 5, as the rated design point of the LNG pump I. Since a centrifugal submerged pump is usually used as an LNG pump, the pump outlet pressure characteristic curve shown in Fig. 4 is
, the pressure increases as the amount of LNG vaporized decreases. Note that related devices of the second type include, for example, JP-A-56-104105JiiJ.
上記従来技術において、第4図の如くポンプ出口圧力と
、膨張タービン前圧はLNG気化量の変化により逆の圧
力特性を示している。このことは例えば@4図において
A点ではポンプ出口圧力P1と膨張タービンP2の差は
流量調節弁2(第3図参照)により減圧していることと
なる。従ってLNG気化量が減少するに従って圧力差(
PIP2)は増加する傾向を示す。即ち、Ps P2
の圧力差はL N Gポンプ1の動力のロスとなるとと
もに、tiL量調節弁2の差圧が大きくなるため、流量
調節弁の振動、馳音、および液化ガスによるキャビテー
シ冒ン現象も想定され、苛酷な使用条件となり信相性の
低下を招く問題があった。In the prior art described above, as shown in FIG. 4, the pump outlet pressure and the expansion turbine front pressure exhibit opposite pressure characteristics due to changes in the LNG vaporization amount. This means that, for example, in Figure 4, at point A, the difference between the pump outlet pressure P1 and the expansion turbine P2 is reduced by the flow control valve 2 (see Figure 3). Therefore, as the LNG vaporization amount decreases, the pressure difference (
PIP2) shows an increasing tendency. That is, Ps P2
The pressure difference causes a loss of power in the LNG pump 1, and the pressure difference in the tiL quantity control valve 2 increases, so it is assumed that the flow rate control valve may vibrate, make noise, and cavitate due to liquefied gas. However, there was a problem in that the usage conditions were harsh and reliability deteriorated.
本発明の目的は、LNG気化量に応じ膨張タービン前圧
特性曲線と同じ傾向のポンプ出口圧力特性曲線を得るよ
うにし、ポンプ動力を必要最少限にすること、およびそ
の結果、流量調節弁の差圧も最少限にできるため、使用
条件が緩和できることにより信頼性の向上を図ることに
ある。The purpose of the present invention is to obtain a pump outlet pressure characteristic curve that has the same tendency as the expansion turbine front pressure characteristic curve depending on the amount of LNG vaporization, to minimize the pump power, and as a result, to reduce the difference in the flow rate control valve. Since the pressure can also be minimized, the usage conditions can be relaxed and reliability can be improved.
る制御装置を設け、該制御装置により、流量調節弁を制
御すると共に、演算装置、ポンプ制御装置を介してLN
Gポンプを制御することにより、達成さnる。A control device is provided, and the control device controls the flow rate control valve, and also controls the LN through a calculation device and a pump control device.
This is achieved by controlling the G pump.
以下、本発明の一実施例を第1図の系統図により説明す
る。An embodiment of the present invention will be described below with reference to the system diagram shown in FIG.
図において、LNGポンプlは流xm節弁2゜LNG蒸
発器3.加減弁4を介して膨張タービン5と導管11.
12.13で連結する。上記LNGポンプlと流量調節
弁2との間に制御装置30.演算装[31、ポンプ制御
装置諺な、操作信号線40,41゜42を介して連結す
る制御回路を設ける。5@[a6は膨張タービン5へ直
結し、該膨張タービン5の出口より導管14を経て加温
器7を設ける。LNG蒸発器3と加温器7にはそnぞn
加熱源となる導管田、21を設ける。LNGポンプ1の
入口側に導管10を設けてLNGを供給し、加温器7の
出口側に導管15を設は外部に天然ガスを供給する構成
である。第1図において、LNG気化量を設定する制御
装置加により、流量調節弁2を制御し、LNG気化量を
調整するとともに、制御値[30より演算装置131に
信号を送り、この演算装置31では、LNG気化量に対
する膨張タービン5の前圧特性およびLNGポンプlの
出口圧力特性を記憶させ、制御値[30からのLNG気
化量要求指令により演算を行ない、必要ポンプ出口圧力
値を計算しポンプ制御装置132によりLNGポンプ1
の回転数を制御する。本実施例によれば、第2図に示す
如く。In the figure, the LNG pump 1 is connected to the flow xm regulating valve 2°LNG evaporator 3. The expansion turbine 5 and the conduit 11 through the regulator valve 4.
12. Connect at 13. A control device 30. An arithmetic unit [31] and a pump control device are provided with a control circuit connected via operation signal lines 40, 41 and 42. 5@[a6 is directly connected to the expansion turbine 5, and a warmer 7 is provided from the outlet of the expansion turbine 5 via a conduit 14. The LNG evaporator 3 and warmer 7 are
A conduit field 21 serving as a heating source is provided. A conduit 10 is provided on the inlet side of the LNG pump 1 to supply LNG, and a conduit 15 is provided on the outlet side of the warmer 7 to supply natural gas to the outside. In FIG. 1, a control device for setting the amount of LNG vaporization controls the flow control valve 2 to adjust the amount of LNG vaporization, and at the same time sends a signal from the control value [30 to the calculation device 131. , stores the front pressure characteristics of the expansion turbine 5 and the outlet pressure characteristics of the LNG pump l with respect to the LNG vaporization amount, performs calculations based on the LNG vaporization amount request command from the control value [30, calculates the required pump outlet pressure value, and controls the pump. LNG pump 1 by device 132
control the rotation speed. According to this embodiment, as shown in FIG.
LNG気化量に応じ膨張タービン前圧特性曲線と同じ傾
向のポンプ出口圧力特性曲線を得ることができることか
ら、LNG気化量に見合った必要最小限のポンプ消費動
力とすることが可能となることおよびLNG流量調節弁
2の差圧も必要最小限になり使用条件が緩和され、信頼
性が向上する効果もある。Since it is possible to obtain a pump outlet pressure characteristic curve with the same tendency as the expansion turbine front pressure characteristic curve depending on the amount of LNG vaporized, it is possible to set the pump power consumption to the minimum necessary commensurate with the amount of LNG vaporized. The differential pressure across the flow rate control valve 2 is also minimized, which eases usage conditions and improves reliability.
本発明による一実施例の他に、膨張タービ涌前圧を検出
したり、又はLNG流量調節弁2の差圧を検出すること
により、LNGポンプlの回転数を制御する方法におい
ても同様な効果が得られる。In addition to the embodiment according to the present invention, similar effects can be obtained in a method of controlling the rotation speed of the LNG pump l by detecting the pressure before the expansion turbine or by detecting the differential pressure of the LNG flow rate control valve 2. is obtained.
なお、火力発電所等で消費さnる天然ガスは、常に要求
負荷g(LNG気化量)が変動(正午付近と夜間等は急
激に消費電力が低下する)するため、負荷変動の激しい
設備であり、負荷運用率も平均的には60〜70%程度
である。このようにLNG気化量が変化する設備におい
ては、ポンプの動力も運用事変化に応じた割合の低減が
図n。In addition, for natural gas consumed in thermal power plants, etc., the required load g (LNG vaporization amount) constantly fluctuates (power consumption drops sharply around noon and at night), so The average load operation rate is about 60-70%. In facilities where the amount of LNG vaporized changes in this way, the power of the pump is also reduced in proportion to changes in operational conditions.
運転費の軽減と、LNG流量調整弁の差圧を下げらnる
ことによる振動、騒音、キャビチーシーン発生等のトラ
ブルを防止できるため設備全体の信頼性の向上も図れる
効果がある。This has the effect of reducing operating costs and improving the reliability of the entire facility by preventing problems such as vibration, noise, and cavity scenes caused by lowering the differential pressure of the LNG flow rate regulating valve.
本発明によnば、LNG気化量に応じ膨張タービン前圧
特性曲線と同じ傾向のポンプ出口圧力特性曲線を得るこ
とができることから、LNG気化量に見合った必要最小
限のポンプ消費動力にとどめることができる。その結果
、fijl調節弁の差圧も必要最小限となり、使用条件
が緩和さn信頼性の向上を図る効果がある。According to the present invention, it is possible to obtain a pump outlet pressure characteristic curve that has the same tendency as the expansion turbine front pressure characteristic curve depending on the amount of LNG vaporized, so that the pump power consumption can be kept to the minimum necessary commensurate with the amount of LNG vaporized. Can be done. As a result, the differential pressure of the fijl control valve is also reduced to the necessary minimum, which has the effect of easing usage conditions and improving reliability.
9E1図は本発明によるLNG冷熱利用発電設備の一実
施例を示す系統図、第2図は本発明による設備の特性を
示す線図、vg3図は従来の方法による系統図、第4図
は従来設備の特性を示す線図である。
l・・・・・・LNGポンプ、2・・・・・・流量調節
弁、3・・・LNG蒸発器、4・・・・・・加減弁、5
・・・・・・膨張タービン、6・・・・・・発電機、7
・・・・・・加温器、10〜15.20゜乙・・・・・
・導管、(9)・・・・・・制御*iil、31・・・
・・・演算装置、イ4図Figure 9E1 is a system diagram showing an example of LNG cold energy power generation equipment according to the present invention, Figure 2 is a line diagram showing the characteristics of the equipment according to the invention, Figure vg3 is a system diagram according to the conventional method, and Figure 4 is a diagram showing the conventional method. It is a diagram showing the characteristics of equipment. 1...LNG pump, 2...Flow rate control valve, 3...LNG evaporator, 4...Adjustment valve, 5
...Expansion turbine, 6... Generator, 7
...Warmer, 10~15.20゜B...
・Conduit, (9)... Control *iil, 31...
...Arithmetic device, Figure A4
Claims (1)
化した天然ガスを膨張タービンに送り作動させ、膨張タ
ービンに接続された発電機により発電を行ない、膨張し
た天然ガスを再び熱交換器で常温まで加温し、天然ガス
を燃料用等に供給するLNG冷熱利用発電設備において
、膨張タービン入口に設けられた加減弁開度を一定とす
る変圧運転方式を採用し、LNGポンプと流量調節弁間
にLNG気化量を設定する制御装置を設け、操作信号線
を介して流量調節弁に連結する制御回路と、 該制御装置から、演算装置、ポンプ制御装置を介してL
NGポンプに操作信号線で連結する制御回路とを設けた
ことを特徴とするLNG冷熱利用発電設備。[Claims] 1. Pressurize LNG with a pump, evaporate it with a heat exchanger, send the vaporized natural gas to an expansion turbine, operate it, and generate electricity with a generator connected to the expansion turbine. In LNG cold energy power generation equipment that reheats the gas to room temperature in a heat exchanger and supplies natural gas as fuel, we have adopted a variable pressure operation method in which the opening of the control valve installed at the inlet of the expansion turbine is constant. , a control device for setting the amount of LNG vaporization is provided between the LNG pump and the flow rate control valve, and a control circuit connected to the flow rate control valve via an operation signal line; L
A power generation facility using LNG cold energy, characterized in that it is equipped with a control circuit connected to an NG pump via an operation signal line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11230887A JPS63277809A (en) | 1987-05-11 | 1987-05-11 | Cryogenic power generating installation making use of lng |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11230887A JPS63277809A (en) | 1987-05-11 | 1987-05-11 | Cryogenic power generating installation making use of lng |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63277809A true JPS63277809A (en) | 1988-11-15 |
Family
ID=14583422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11230887A Pending JPS63277809A (en) | 1987-05-11 | 1987-05-11 | Cryogenic power generating installation making use of lng |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63277809A (en) |
-
1987
- 1987-05-11 JP JP11230887A patent/JPS63277809A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5606858A (en) | Energy recovery, pressure reducing system and method for using the same | |
CA2309058C (en) | Method for closed-loop output control of a steam power plant, and a steam power plant | |
JP2567099Y2 (en) | Gas supply device | |
US5685154A (en) | Pressure reducing system and method for using the same | |
JP3561772B2 (en) | Gas turbine intake cooling system | |
JPS6125889B2 (en) | ||
JPS6213490B2 (en) | ||
JPS63277809A (en) | Cryogenic power generating installation making use of lng | |
JPS6138300A (en) | Liquefied gas vaporizer | |
JPH0454204A (en) | Control device for gas-extraction and condensation type turbine | |
JPH01271603A (en) | Lng cryogenic power generator equipment | |
JPH0643441Y2 (en) | Pressure control device for cold heat generation equipment | |
JPS6256699A (en) | Controller for pressure of fuel gas main line | |
JP7242383B2 (en) | CONTROL METHOD OF GAS DIFFERENTIAL PRESSURE GENERATOR, GAS DIFFERENTIAL PRESSURE GENERATOR, AND CONTROL PROGRAM | |
JPS5948696A (en) | Steam distributing device of reactor plant | |
JPH10141006A (en) | Control device for city gas line energy recovery turbine | |
JPS60222510A (en) | Thermal power generating equipment | |
JP2531755B2 (en) | Water supply control device | |
JPS62203906A (en) | Lng cold thermal power generation control device | |
RU2134375C1 (en) | Gas distributing station | |
SU1341357A1 (en) | Method of operation of back-pressure turbine | |
JPH08296797A (en) | Temperature control of lng carbureter outlet cooling water in gas turbine intake cooling system | |
JPS6349523Y2 (en) | ||
JPS61212608A (en) | Idling equipment of low-pressure turbine vane wheel | |
JPS5932606A (en) | Cold heat power generating plant |