JPS6349523Y2 - - Google Patents

Info

Publication number
JPS6349523Y2
JPS6349523Y2 JP1658283U JP1658283U JPS6349523Y2 JP S6349523 Y2 JPS6349523 Y2 JP S6349523Y2 JP 1658283 U JP1658283 U JP 1658283U JP 1658283 U JP1658283 U JP 1658283U JP S6349523 Y2 JPS6349523 Y2 JP S6349523Y2
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
power generation
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1658283U
Other languages
Japanese (ja)
Other versions
JPS59123602U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1658283U priority Critical patent/JPS59123602U/en
Publication of JPS59123602U publication Critical patent/JPS59123602U/en
Application granted granted Critical
Publication of JPS6349523Y2 publication Critical patent/JPS6349523Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Description

【考案の詳細な説明】 本考案はタービン蒸気の一部を抽出してプロセ
ス蒸気に用いる混気背圧タービンを備えた熱併給
発電設備に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combined heat and power generation facility equipped with an air-fuel mixture back pressure turbine that extracts a portion of turbine steam and uses it as process steam.

ボイラーから発生した蒸気でタービンを回して
電力を発生させると共に、そのタービン蒸気の一
部を抽出して工場等で用いるプロセス蒸気とする
のが熱併給発電である。
Cogeneration power generation uses steam generated from a boiler to rotate a turbine to generate electricity, and a portion of the turbine steam is extracted to produce process steam for use in factories and the like.

第1図は従来の熱併給発電設備の構成の一例を
示すものであり、高圧高温の蒸気を発生するボイ
ラー1と、該ボイラー1で発生した蒸気を負荷に
供給する主蒸気管2と、該主蒸気管2より供給さ
れる主蒸気を受けて蒸気エネルギーを回転エネル
ギーに変換する高圧タービン3と、該高圧タービ
ン3より排出される蒸気を加熱する再熱器4と、
高圧タービン3と同軸に結合され再熱器4より供
給される蒸気を受けて蒸気エネルギーを回転エネ
ルギーに変換する中圧タービン5と、中圧タービ
ン5と同軸に結合され該中圧タービン5より排出
される蒸気の供給を受けて蒸気エネルギーを回転
エネルギーに変換する低圧タービン6と、タービ
ンによつて回転され所要の電力を発生する発電機
7と、低圧タービン6より排出される蒸気を冷却
凝結したのちボイラー1に供給する復水器8と、
高圧タービン3と再熱器4を結ぶ低温再熱管9よ
りプロセス蒸気供給ライン10を介してタービン
蒸気の一部が供給される背圧タービン11と、該
背圧タービン11によつて駆動される発電機12
と、背圧タービン11より出力される排気が供給
される排気ライン13と、該排気ライン13の排
気圧力を検出する圧力検出器14と、背圧タービ
ン11に供給する蒸気量を調整する蒸気加減弁1
5と、該蒸気加減弁15を圧力検出器14の検出
レベルに応じて制御する制御装置16と、排気ラ
イン13に接続されて通過蒸気流量を制御する流
量制御弁17と、該流量制御弁17の出側に設置
されて通過流量を検出する流量検出器18と、該
流量検出器18の検出レベルに応じて流量制御弁
17を制御する流量調節設定器19とより構成さ
れる。
Figure 1 shows an example of the configuration of a conventional combined heat and power generation facility, which includes a boiler 1 that generates high-pressure and high-temperature steam, a main steam pipe 2 that supplies the steam generated in the boiler 1 to a load, and a high-pressure turbine 3 that receives main steam supplied from a main steam pipe 2 and converts the steam energy into rotational energy; a reheater 4 that heats the steam discharged from the high-pressure turbine 3;
An intermediate pressure turbine 5 is connected coaxially with the high pressure turbine 3 and receives steam supplied from the reheater 4 and converts the steam energy into rotational energy; and an intermediate pressure turbine 5 is connected coaxially with the intermediate pressure turbine 5 and is discharged from the intermediate pressure turbine 5. A low-pressure turbine 6 receives supplied steam and converts the steam energy into rotational energy, a generator 7 rotates by the turbine and generates the required electric power, and a generator 7 that cools and condenses the steam discharged from the low-pressure turbine 6. A condenser 8 that will later be supplied to the boiler 1,
A back pressure turbine 11 to which a portion of turbine steam is supplied via a process steam supply line 10 from a low temperature reheat pipe 9 connecting a high pressure turbine 3 and a reheater 4, and power generation driven by the back pressure turbine 11. Machine 12
, an exhaust line 13 to which the exhaust gas output from the back pressure turbine 11 is supplied, a pressure detector 14 that detects the exhaust pressure of the exhaust line 13, and a steam regulator that adjusts the amount of steam supplied to the back pressure turbine 11. Valve 1
5, a control device 16 that controls the steam control valve 15 according to the detection level of the pressure detector 14, a flow control valve 17 that is connected to the exhaust line 13 and controls the flow rate of passing steam, and the flow control valve 17. The flow rate detector 18 is installed on the outlet side of the flow rate detector 18 to detect the passing flow rate, and the flow rate adjustment setting device 19 controls the flow rate control valve 17 according to the detection level of the flow rate detector 18.

以上の構成において、ボイラー1で発生した高
圧高温の蒸気は主蒸気管2を介して高圧タービン
3に送られ回転エネルギーとして消費され、発電
機7を回転して電力として回収したのち、再熱器
4に送られて昇温されたのち中圧タービン5に送
られる。中圧タービン5で回転エネルギーとして
消費した蒸気は更に低圧タービン6でエネルギー
を消費して電力として回収されたのち、全量が復
水器8に送られ、冷却して水にされたのちボイラ
ー1に戻される。この水は再度ボイラー1に送ら
れ、以後前述の工程がくり返される。また、工場
等で消費するプロセス蒸気の不足を補うため、高
圧タービン3より排出される蒸気の一部を背圧タ
ービン11に導入し、このタービンで使用した蒸
気をプロセス蒸気として供給している。このよう
に背圧タービン11を介してプロセス蒸気を生成
する理由は、例えば、約35Kg/cm2で温度が350℃
の蒸気を工場のプロセス蒸気設定圧である約13
Kg/cm2で温度が220℃のレベルにまで減圧減温す
るに際し、圧力調整弁や注水装置を用いるとエネ
ルギー損失となり回収できないため、背圧タービ
ンを設けて電力として回収したのちプロセス蒸気
として供給するものである。
In the above configuration, high-pressure, high-temperature steam generated in the boiler 1 is sent to the high-pressure turbine 3 via the main steam pipe 2 and is consumed as rotational energy, which is recovered as electric power by rotating the generator 7, and then transferred to the reheater. After being sent to the intermediate pressure turbine 5, it is sent to the intermediate pressure turbine 5. The steam consumed as rotational energy in the intermediate pressure turbine 5 is further consumed in the low pressure turbine 6 and recovered as electricity, and then the entire amount is sent to the condenser 8, where it is cooled and turned into water, and then sent to the boiler 1. be returned. This water is sent to boiler 1 again, and the above-mentioned process is repeated thereafter. In addition, in order to compensate for the shortage of process steam consumed in factories and the like, a portion of the steam discharged from the high-pressure turbine 3 is introduced into the back-pressure turbine 11, and the steam used in this turbine is supplied as process steam. The reason why process steam is generated through the back pressure turbine 11 in this way is, for example, at a temperature of about 35Kg/cm 2 and a temperature of 350°C.
The factory process steam set pressure is approximately 13
When reducing pressure and temperature to a level of 220℃ at Kg/ cm2 , using a pressure regulating valve or water injection device results in energy loss and cannot be recovered, so a back pressure turbine is installed to recover it as electricity and then supply it as process steam. It is something to do.

しかし、第1図に示した如き熱併給発電設備で
は、低温再熱管9の蒸気圧力が高圧タービン3の
出力に応じて第2図に示すようにタービン出力が
変化する。このようなタービン出力変化により背
圧タービン11の入口蒸気の条件に変動を生じ
る。そこで、この変動に追随可能なようにボイラ
ー1より再熱器4に至る系で構成される1つの発
電ユニツトに対し必らず1基の背圧タービンを設
けねばならなかつた。このため、通常、前記発電
ユニツトは、複数が設けられ(即ち、背圧タービ
ン3〜低圧タービン6によつて構成されるタービ
ンが複数基設けられる)るが、各発電ユニツトよ
り抽気される蒸気圧力は各々異なることが多い。
従つて、その都度各蒸気圧に応じた容量の背圧タ
ービンを設置せねばならず、設備費の上昇を招く
欠点がある。しかも、背圧タービン11より供給
するプロセス蒸気は、需給変動により変化するた
め、近年、廃熱ボイラー等の設置により蒸気発生
量が増大する傾向があるが、プロセス蒸気が過剰
気味になると、発電ユニツトごとに背圧タービン
を設けることは利用率の低下につながり好ましく
ないという問題がある。
However, in the combined heat and power generation equipment as shown in FIG. 1, the steam pressure in the low temperature reheat pipe 9 changes depending on the output of the high pressure turbine 3, as shown in FIG. 2, the turbine output changes. Such changes in turbine output cause fluctuations in the conditions of the inlet steam of the back pressure turbine 11. Therefore, in order to be able to follow these fluctuations, it is necessary to provide one back pressure turbine for each power generation unit consisting of the system from the boiler 1 to the reheater 4. For this reason, usually a plurality of power generation units are provided (that is, a plurality of turbines each consisting of the back pressure turbine 3 to the low pressure turbine 6 are provided), but the steam pressure extracted from each power generation unit is are often different.
Therefore, it is necessary to install a back pressure turbine with a capacity corresponding to each steam pressure each time, which has the disadvantage of increasing equipment costs. Moreover, the process steam supplied from the back pressure turbine 11 changes due to fluctuations in supply and demand, so the amount of steam generated has tended to increase in recent years due to the installation of waste heat boilers, etc. However, when the process steam becomes excessive, the power generation unit There is a problem in that providing a back pressure turbine for each of the two systems is undesirable because it leads to a decrease in the utilization rate.

本考案の目的は、一基の背圧タービンで複数の
発電ユニツトをまかなうようにして設備構成を簡
略にした混気背圧タービンを備えた熱併給発電設
備を供給するものである。
An object of the present invention is to provide a cogeneration power generation facility equipped with an air-fuel mixture backpressure turbine whose equipment configuration is simplified by allowing a single backpressure turbine to serve a plurality of power generation units.

以下、本考案の実施例を図面に基づいて詳述す
る。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第3図は本考案の一実施例を示し、第1図に示
したと同一物であるものには同一符号を用いたの
で重複する説明は省略するが、複数(本実施例で
は2系統の発電ユニツトを図示)の発電ユニツト
A,Bの夫々の低温再熱管9および9′と背圧タ
ービン11の低圧室との間に挿入される圧力制御
弁31および32と、低温再熱器9および9′と
背圧タービン11の高圧室との間に挿入される圧
力制御弁33および34と、低温再熱管9内の蒸
気圧を測定する圧力計35と、低温再熱管9′内
の蒸気圧を測定する圧力計36と、圧力計35お
よび36の検出出力のレベル差に基づいて制御指
令を出力する差圧発信器37と、該差圧発信器3
7および圧力検出器14の出力に基づいて圧力制
御弁31,32,33および34の各々を制御す
る制御装置38とを設けた構成において第1図の
構成と相違する。
Fig. 3 shows one embodiment of the present invention. Components that are the same as those shown in Fig. pressure control valves 31 and 32 inserted between the low-pressure chambers of the back-pressure turbine 11 and the low-pressure reheat pipes 9 and 9' of the power generation units A and B of the power generation units ' and a high pressure chamber of the back pressure turbine 11, a pressure gauge 35 that measures the steam pressure in the low temperature reheat pipe 9, and a pressure gauge 35 that measures the steam pressure in the low temperature reheat pipe 9'. A pressure gauge 36 to be measured, a differential pressure transmitter 37 that outputs a control command based on a level difference between detection outputs of the pressure gauges 35 and 36, and the differential pressure transmitter 3.
7 and a control device 38 that controls each of the pressure control valves 31, 32, 33 and 34 based on the output of the pressure detector 14, which differs from the structure shown in FIG.

以上の構成において、圧力計35,36により
常時低温再熱管9,9′の蒸気圧力を監視し、両
者の差圧を差圧発信器37で算出する。この差圧
値と圧力検出器14の検出値およびプロセス蒸気
圧として装置内に設定されている値に基づいて制
御装置38は、排気ライン13のプロセス蒸気設
定圧になるよう圧力制御弁33,34,35,3
6の各々を制御する。
In the above configuration, the pressure gauges 35 and 36 constantly monitor the steam pressure in the low-temperature reheating tubes 9 and 9', and the differential pressure between them is calculated by the differential pressure transmitter 37. Based on this differential pressure value, the detected value of the pressure detector 14, and the value set in the device as the process steam pressure, the control device 38 controls the pressure control valves 33, 34 so that the process steam set pressure in the exhaust line 13 is reached. ,35,3
6.

排気ライン13よりのプロセス蒸気供給量を流
量調節設定器19に設定する。この設定値に流量
検出器18の検出値が一致するように流量調節設
定器19は制御弁17を制御し、設定流量を流
す。しかし、このときに排気ライン13内の圧力
が変化するのに応じ、この圧力変化を設定圧に保
つべく制御装置38は圧力制御弁33〜36を制
御し、これにより各蒸気圧に応じた蒸気量が混気
背圧タービンに供給される。
The amount of process steam supplied from the exhaust line 13 is set in the flow rate adjustment setting device 19. The flow rate adjustment setting device 19 controls the control valve 17 so that the detected value of the flow rate detector 18 matches this set value, and the set flow rate is caused to flow. However, as the pressure in the exhaust line 13 changes at this time, the control device 38 controls the pressure control valves 33 to 36 to maintain this pressure change at the set pressure, thereby controlling the steam pressure according to each steam pressure. quantity is supplied to the air-fuel mixture backpressure turbine.

例えば、差圧発信器37の出力信号により発電
ユニツトA側の蒸気圧が発電ユニツトB側の蒸気
圧よりも高い場合には、制御装置38は圧力検出
器14の検出値との差に基づいて圧力制御弁33
を開方向にするとともに圧力制御弁31を全開に
制御して、圧力の高い発電ユニツトA側の蒸気を
優先的に背圧タービン11の高圧室に供給する。
一方、圧力の低い発電ユニツトB側の蒸気に対し
ては、圧力制御弁34を全閉にすると共に圧力制
御弁32を開方向に制御し、背圧タービン11の
低圧室に発電ユニツトB側より蒸気を導入する。
For example, if the output signal from the differential pressure transmitter 37 indicates that the steam pressure on the power generation unit A side is higher than the steam pressure on the power generation unit B side, the control device 38 will Pressure control valve 33
is set in the open direction, and the pressure control valve 31 is controlled to be fully open, so that steam from the power generation unit A side, which has a higher pressure, is preferentially supplied to the high pressure chamber of the back pressure turbine 11.
On the other hand, for the steam from the power generation unit B side where the pressure is low, the pressure control valve 34 is fully closed and the pressure control valve 32 is controlled in the open direction, and the low pressure chamber of the back pressure turbine 11 is supplied from the power generation unit B side. Introduce steam.

以上と逆の状況、すなわち発電ユニツトA側の
蒸気圧力がB側の蒸気圧力よりも低い場合には、
圧力制御弁34を開方向にすると共に圧力制御弁
32を全閉に制御し、圧力の高い発電ユニツトB
側の蒸気を優先的に背圧タービン11の低圧室に
供給する。一方、圧力の低い発電ユニツトA側の
蒸気は、圧力制御弁33を全閉にすると共に圧力
制御弁31を開方向に制御して、背圧タービン1
1の高圧室に発電ユニツトA側の蒸気を導入す
る。
In the opposite situation to the above, that is, when the steam pressure on the power generation unit A side is lower than the steam pressure on the B side,
The pressure control valve 34 is set in the open direction and the pressure control valve 32 is controlled to be fully closed, so that the high-pressure power generation unit B
The side steam is preferentially supplied to the low pressure chamber of the back pressure turbine 11. On the other hand, the steam from the power generation unit A side with lower pressure is transferred to the back pressure turbine by fully closing the pressure control valve 33 and controlling the pressure control valve 31 in the opening direction.
Steam from the power generation unit A side is introduced into the high pressure chamber No. 1.

以上のように蒸気圧の異なる複数の発電ユニツ
トであつても、単一の混気背圧タービンに適宜抽
気タービン蒸気を供給することにより、設備を簡
略化することができ、最少の設備費で電力を回収
することができる。本考案においては、高、中、
低などの如く圧力レベルが複数存在する場合で
も、配管や圧力制御弁を増加するのみで適応する
ことができる。
As mentioned above, even if there are multiple power generation units with different steam pressures, the equipment can be simplified and the equipment cost can be minimized by appropriately supplying extraction turbine steam to a single air-fuel mixture back pressure turbine. Electricity can be recovered. In this invention, high, medium,
Even if there are multiple pressure levels such as low pressure, this can be accommodated by simply increasing the number of piping and pressure control valves.

なお、前記実施例においては、各発電ユニツト
の蒸気圧に高低差がある場合について述べたが、
夫々の蒸気圧が同一であつても、排気ライン13
の圧力が設定値になるように圧力制御弁33,3
4を開方向にすると共に、圧力制御弁31,32
を閉方向に制御することによつて同様に実施する
ことができる。
In addition, in the above embodiment, the case where there is a difference in the steam pressure of each power generation unit,
Even if the respective vapor pressures are the same, the exhaust line 13
Pressure control valves 33, 3 so that the pressure of
4 in the open direction, and the pressure control valves 31, 32
This can be similarly carried out by controlling in the closing direction.

考案者は第3図に示す構成で、次のような蒸気
供給能力を有する設備で実施を試みた。
The inventor attempted to implement the system using equipment with the configuration shown in Figure 3 and having the following steam supply capacity.

全体のプロセス蒸気供給量能力 80t/h 発電ユニツトA,B各々の蒸気供給能力
40t/h 第4図に示すように発電ユニツトA側の出力が
定格の90%、第5図に示すように発電ユニツトB
側の出力が65%の状態で運転中に、排気ライン1
3における流量調節設定器15のプロセス蒸気供
給量を60t/h、蒸気圧を13Kg/cm2に設定した。
このとき、圧力制御弁33を全開とし圧力制御弁
31,34を全閉とすると共に、圧力制御弁32
を45%開けた状態に制御して、排気ライン13に
おける圧力検出器14の混気背圧タービンの排気
圧力が13Kg/cm2に一定になるように制御した。こ
の場合、発電ユニツトAは低温再熱管圧力が32
Kg/cm2で温度が350℃であり、発電ユニツトBは
低温再熱管圧力が24Kg/cm2で温度が300℃であつ
て、両ユニツト間に8Kg/cm2の差圧があるにもか
かわらず、排気ライン13のプロセス蒸気圧を設
定圧13Kg/cm2に一定に保ちながらプロセス蒸気を
供給できることをが確められた。
Overall process steam supply capacity 80t/h Steam supply capacity of each power generation unit A and B
40t/h As shown in Figure 4, the output of power generation unit A is 90% of the rated output, and as shown in Figure 5, power generation unit B
While operating with side output at 65%, exhaust line 1
The process steam supply amount of the flow rate adjustment setting device 15 in No. 3 was set to 60 t/h, and the steam pressure was set to 13 Kg/cm 2 .
At this time, the pressure control valve 33 is fully opened, the pressure control valves 31 and 34 are fully closed, and the pressure control valve 32 is fully closed.
was controlled to be 45% open, and the exhaust pressure of the air-fuel mixture back pressure turbine of the pressure detector 14 in the exhaust line 13 was controlled to be constant at 13 kg/cm 2 . In this case, power generation unit A has a low temperature reheat pipe pressure of 32
kg/cm 2 and the temperature is 350°C, and in power generation unit B, the low temperature reheat tube pressure is 24 kg/cm 2 and the temperature is 300°C, even though there is a differential pressure of 8 kg/cm 2 between both units. First, it was confirmed that process steam could be supplied while keeping the process steam pressure in the exhaust line 13 constant at a set pressure of 13 kg/cm 2 .

以上より明らかなように本考案によれば、一基
の背圧タービンと複数の発電ユニツトの低温再熱
管とを個別に圧力制御弁を介して結合し、これら
を発電ユニツト相互間の差圧および背圧タービン
の排気圧力に基づいて制御することにより、複数
の発電ユニツトに対し一基の背圧タービンで圧力
一定のプロセス蒸気を供給でき、ユニツト毎に背
圧タービンを用いる必要が無くなるため、設備費
の低減を図ることができる。
As is clear from the above, according to the present invention, one back pressure turbine and the low-temperature reheat pipes of a plurality of power generation units are individually connected via pressure control valves, and the differential pressure between the power generation units and the By controlling based on the exhaust pressure of the back pressure turbine, a single back pressure turbine can supply process steam at a constant pressure to multiple power generation units, eliminating the need to use a back pressure turbine for each unit. It is possible to reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱併給発電設備の一例を示す系
統図、第2図は第1図の設備における蒸気タービ
ン出力特性図、第3図は本考案の一実施例を示す
系統図、第4図は本考案の一実施例における発電
ユニツトAの蒸気タービン出力特性図、第5図は
本考案の一実施例における発電ユニツトBの蒸気
タービンの出力特性図である。 1……ボイラ、3,3′……高圧タービン、9,
9′……低温再熱管、10,10′……プロセス蒸
気供給ライン、11……背圧タービン、13……
排気ライン、14……圧力検出器、17……流量
制御弁、18……流量検出器、19……流量調節
設定器、31,32,33,34……圧力制御
弁、35,36……圧力計、37……差圧発信
器、38……制御装置。
Fig. 1 is a system diagram showing an example of a conventional combined heat and power generation facility, Fig. 2 is a steam turbine output characteristic diagram for the equipment shown in Fig. 1, Fig. 3 is a system diagram showing an example of the present invention, and Fig. 4 is a system diagram showing an example of a conventional combined heat and power generation facility. The figure is a steam turbine output characteristic diagram of power generation unit A in one embodiment of the present invention, and FIG. 5 is the output characteristic diagram of the steam turbine of power generation unit B in one embodiment of the present invention. 1... Boiler, 3, 3'... High pressure turbine, 9,
9'... Low temperature reheat pipe, 10, 10'... Process steam supply line, 11... Back pressure turbine, 13...
Exhaust line, 14...Pressure detector, 17...Flow rate control valve, 18...Flow rate detector, 19...Flow rate adjustment setting device, 31, 32, 33, 34...Pressure control valve, 35, 36... Pressure gauge, 37... Differential pressure transmitter, 38... Control device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 蒸気発生源より高圧蒸気の供給を受ける複数の
タービンにより複数の発電機を駆動すると共に前
記タービンより抽気したタービン蒸気をプロセス
蒸気として活用する熱併給発電設備において、抽
気されたタービン蒸気の供給を受けて発電機を駆
動するとともに排出蒸気をプロセス蒸気とする一
基の背圧タービンと、前記複数のタービンの各々
に設けられた抽気口の各々と前記背圧タービンの
蒸気取入口との間の系路に個別に設けられる圧力
制御弁と、前記タービン毎に抽気された前記ター
ビン蒸気相互の差圧とプロセス蒸気の設定圧とに
基づいて前記各圧力制御弁の開度を調整する制御
部とを設けたことを特徴とする混気背圧タービン
を備えた熱併給発電設備。
In a cogeneration power generation facility in which a plurality of generators are driven by a plurality of turbines supplied with high-pressure steam from a steam generation source, and turbine steam extracted from the turbines is utilized as process steam, the turbine steam supplied with the extracted turbine steam is supplied. a back pressure turbine that drives a generator and uses exhaust steam as process steam, and a system between each of the extraction ports provided in each of the plurality of turbines and the steam intake of the back pressure turbine. a pressure control valve that is individually provided in the passage; and a control unit that adjusts the opening degree of each pressure control valve based on the differential pressure between the turbine steam extracted for each turbine and the set pressure of the process steam. A combined heat and power generation facility equipped with an air-fuel mixture back pressure turbine.
JP1658283U 1983-02-07 1983-02-07 Combined heat and power generation equipment equipped with an air-fuel mixture backpressure turbine Granted JPS59123602U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1658283U JPS59123602U (en) 1983-02-07 1983-02-07 Combined heat and power generation equipment equipped with an air-fuel mixture backpressure turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1658283U JPS59123602U (en) 1983-02-07 1983-02-07 Combined heat and power generation equipment equipped with an air-fuel mixture backpressure turbine

Publications (2)

Publication Number Publication Date
JPS59123602U JPS59123602U (en) 1984-08-20
JPS6349523Y2 true JPS6349523Y2 (en) 1988-12-20

Family

ID=30147859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1658283U Granted JPS59123602U (en) 1983-02-07 1983-02-07 Combined heat and power generation equipment equipped with an air-fuel mixture backpressure turbine

Country Status (1)

Country Link
JP (1) JPS59123602U (en)

Also Published As

Publication number Publication date
JPS59123602U (en) 1984-08-20

Similar Documents

Publication Publication Date Title
US5606858A (en) Energy recovery, pressure reducing system and method for using the same
JP2849140B2 (en) Waste heat steam generation method and equipment
JP4540472B2 (en) Waste heat steam generator
JPH02104906A (en) Exhaust heat recovering boiler system and its operation
WO1983001651A1 (en) Hrsg damper control
KR20150083374A (en) Apparatus and method for reactor power control of steam turbine power generation system
JP4764255B2 (en) Small once-through boiler power generation system and operation control method thereof
JPH07502322A (en) Steam system in a multi-boiler plant
JPH0933005A (en) Water feeding device for waste heat recovery boiler
JPS6349523Y2 (en)
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JPS6213490B2 (en)
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
CN114877307A (en) Double-pumping back pressure heat supply system capable of realizing high-parameter heat supply and working method thereof
CN113175370B (en) System for interconnecting boilers and steam turbines among different units and operation method
JPS6122725B2 (en)
JP5804748B2 (en) Steam supply system and steam supply method
JPH0932512A (en) Steam supply device of steam turbine gland seal
CN217978756U (en) Supercritical gas boiler and gas supply pipeline thereof
US20180094546A1 (en) Fast Frequency Response Systems with Thermal Storage for Combined Cycle Power Plants
JPS60206909A (en) Exhaust heat recovery gas turbine power generating facility
CN211011382U (en) Waste incineration power generation bypass recovery system
JPS5939122Y2 (en) combined plant
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system
KR101638296B1 (en) Apparatus and method for reactor power control of steam turbine power generation system