JPS63277771A - Plating method - Google Patents

Plating method

Info

Publication number
JPS63277771A
JPS63277771A JP11315487A JP11315487A JPS63277771A JP S63277771 A JPS63277771 A JP S63277771A JP 11315487 A JP11315487 A JP 11315487A JP 11315487 A JP11315487 A JP 11315487A JP S63277771 A JPS63277771 A JP S63277771A
Authority
JP
Japan
Prior art keywords
plating
solution
dissolved gas
plated
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11315487A
Other languages
Japanese (ja)
Inventor
Hiroaki Wakayama
若山 宏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP11315487A priority Critical patent/JPS63277771A/en
Publication of JPS63277771A publication Critical patent/JPS63277771A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1682Control of atmosphere
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/04Removal of gases or vapours ; Gas or pressure control
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/003Electroplating using gases, e.g. pressure influence

Abstract

PURPOSE:To prevent the occurrence of defects such as pinholes and abnormal deposition by putting a plating soln. in an atmosphere under a lower pressure than atmospheric pressure before or during plating so as to easily separate bubbles of dissolved gas and gaseous hydrogen generated during plating. CONSTITUTION:When electroplating or electroless plating is carried out, a plating soln. in a plating tank is put in an atmosphere under a lower pressure than atmospheric pressure before or during plating. The diameter of bubbles of dissolved gas and gaseous hydrogen generated by a reaction is increased and the bubbles rise at an increased speed and are easily separated. Accordingly, the adhesion of gaseous hydrogen and dissolved gas to a member to be plated can be prevented and the occurrence of defects such as pinholes and the abnormal deposition of a plating metal can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、例えばアルミニウムまたはアルミニウム合金
の基板に、ニッケルーリン(N i −P)メッキを施
すメッキ処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plating method for applying nickel-phosphorus (N i -P) plating to, for example, an aluminum or aluminum alloy substrate.

[従来の技術] 従来、この種のメッキ処理方法は、例えば、磁気ディス
クの下地層を形成するメッキ処理として利用されている
。この磁気ディスクは、コンピュータの外部メモリ等に
用いられる磁気記録媒体であり、非磁性体の基板上に、
非磁性体の下地層と記録用の磁性体層を設けることによ
り形成される。
[Prior Art] Conventionally, this type of plating method has been used, for example, as a plating process for forming an underlayer of a magnetic disk. This magnetic disk is a magnetic recording medium used for external memory of computers, etc.
It is formed by providing a non-magnetic underlayer and a recording magnetic layer.

上記の下地層は、磁気ディスクの表面硬度を高める目的
で投げられるが、これは磁気ディスクの表面と磁気ヘッ
ドとの瞬間接触によって、磁気ディスク表面が破壊され
、情報の記録再生が不可能になることを防ぐためのもの
である。この下地層は、大気圧のもとで、無電解メッキ
を行うことによって、ニッケル合金を被覆することによ
り形成される。
The above-mentioned underlayer is added to increase the surface hardness of the magnetic disk, but the momentary contact between the surface of the magnetic disk and the magnetic head destroys the surface of the magnetic disk, making it impossible to record or read information. This is to prevent this from happening. This base layer is formed by coating the nickel alloy by performing electroless plating under atmospheric pressure.

[発明が解決しよう“とする問題点コ しかし、この従来のメ・ンキ処理方法では、メッキ反応
により生成する水素ガスやメッキ液中の溶存ガスが、メ
ッキ層の表面に付着し、それによってその部分の反応が
停止してピンホールができたり、メッキ金属が異常析出
して突起ができる等の表面欠陥が生ずることがあった。
[Problems that the invention seeks to solve] However, in this conventional coating method, hydrogen gas generated by the plating reaction and dissolved gas in the plating solution adhere to the surface of the plating layer, thereby causing damage to the plating layer. In some cases, surface defects such as pinholes are formed due to stopping of reaction in the parts, or protrusions are formed due to abnormal precipitation of plated metal.

そしてこの様な表面欠陥のある磁気ディスクを用いると
、記録再生不良やヘッドクラッシュという問題が生ずる
ことがあった。
When a magnetic disk with such surface defects is used, problems such as recording/reproducing failures and head crashes may occur.

[問題点を解決するための手段] 上記問題点を解決するために成された本発明は、電気メ
ッキ又は無電解メッキのメッキ処理方法において、メッ
キを行う前又はメッキ中に、メッキ液を大気圧より小な
る圧力の雰囲気におくことを特徴とするメッキ処理方法
を要旨とする。
[Means for Solving the Problems] The present invention, which has been made to solve the above-mentioned problems, is a plating method using electroplating or electroless plating, in which a large amount of plating solution is applied before or during plating. The gist of the present invention is a plating method characterized by being placed in an atmosphere with a pressure lower than atmospheric pressure.

[作用コ メッキを行う前又はメッキ中に、メッキ液を大気圧より
小なる圧力の雰囲気におくことによって、常圧の時に比
べて、メッキ反応により発生する水素ガスやメッキ液中
から生成する溶存ガスの泡の径が大きくなる。その結果
、上記水素ガスや溶存ガスの上昇力や上昇速度が増して
、泡切れがよくなり、水素ガスや溶存ガスはメッキ液中
より速やかに除去される。従って、電気メッキ又は無電
解メッキを行った場合に、水素ガスやメッキ液中の溶存
ガスが、メッキ表面に付着しにくくなり、それによって
付着した部分の反応が停止してピンホールができたり、
メッキ金属が異常析出して突起ができたりすることが減
少する。
[Effects] By placing the plating solution in an atmosphere with a pressure lower than atmospheric pressure before or during plating, hydrogen gas generated by the plating reaction and dissolved gas generated from the plating solution are reduced compared to normal pressure. The diameter of the bubbles increases. As a result, the rising power and speed of the hydrogen gas and dissolved gas increase, the bubbles are removed more easily, and the hydrogen gas and dissolved gas are removed more quickly than in the plating solution. Therefore, when electroplating or electroless plating is performed, hydrogen gas or dissolved gas in the plating solution becomes difficult to adhere to the plating surface, and as a result, the reaction at the attached part stops and pinholes are formed.
The occurrence of abnormal precipitation of plated metal and the formation of protrusions is reduced.

[実施例] 以下本発明の一実施例を図面にしたがって説明する。第
1図は磁気ディスクの製造工程を示しており、第2図は
、減圧下においてメッキを行なうメッキ装置1を示して
いる。
[Example] An example of the present invention will be described below with reference to the drawings. FIG. 1 shows the manufacturing process of a magnetic disk, and FIG. 2 shows a plating apparatus 1 that performs plating under reduced pressure.

まず、kQ−Mg系のアルミニウム合金(例えば、JI
S規格: A−5086)を素材とし、板厚1 、2m
m、外径95mm、内径25mmのドーナツ状の被メツ
キ部材2(第2図参照)を製造する(工程■)。
First, kQ-Mg-based aluminum alloy (for example, JI
S standard: A-5086) material, plate thickness 1, 2m
A doughnut-shaped member 2 to be plated (see FIG. 2) having an outer diameter of 95 mm and an inner diameter of 25 mm is manufactured (Step 2).

次に、被メツキ部材2を非シリカ系のアルカリ性の脱脂
溶液(奥野製薬玉業:製品番号:アルブレップ204)
を温度65℃にして、該博)夜に2分30秒間浸漬し、
非エツチング型アルカリ脱脂処理を行う(工程■)。続
いて、イオン交換水を用いて水洗処理を行った後に、非
シリカ系の溶液(奥野製薬工業:製品番号:アルプレッ
プ230)を用いて、温度65℃にて、該溶液に4分間
浸漬し、非エツチング型酸性脱脂処理することでアルミ
ニウム酸化物を除去する(工程■)。
Next, the member 2 to be plated is coated with a non-silica alkaline degreasing solution (Okuno Pharmaceutical Co., Ltd., product number: Alblep 204).
The temperature was set to 65°C, and soaked for 2 minutes and 30 seconds at night,
Perform non-etching alkaline degreasing treatment (Step ■). Subsequently, after performing a water washing treatment using ion-exchanged water, using a non-silica-based solution (Okuno Pharmaceutical Industries, product number: Alprep 230), it was immersed in the solution for 4 minutes at a temperature of 65 ° C. Aluminum oxide is removed by non-etching acidic degreasing treatment (Step ①).

次に、水洗した後に亜鉛置換処理を行う。亜鉛置換処理
は、30.Og/QのNa2Zn○2の溶液を、NaO
HでpH14,0に調製したものを25℃にして用いて
、この溶液中に被メツキ部材2を30秒間浸す(工程■
)。
Next, after washing with water, zinc replacement treatment is performed. 30. Zinc replacement treatment. A solution of Og/Q Na2Zn○2 is converted into NaO
Using a solution adjusted to pH 14.0 with H and heated to 25°C, the member to be plated 2 is immersed in this solution for 30 seconds (step ①).
).

このときの置換反応は、次式で示される。The substitution reaction at this time is shown by the following formula.

3Na2ZnO2+2AQ+2820 →2NaAQ02+3Zn+4NaOHこの処理では、
AQより電気的に責なZnで、被メツキ部材表面のAQ
203皮膜を置換除去すると同時に、溶液中のZnを被
メツキ部材2の表面に析出させる。
3Na2ZnO2+2AQ+2820 →2NaAQ02+3Zn+4NaOHIn this process,
Zn is more electrically sensitive than AQ, and the AQ of the surface of the plated material is
At the same time as replacing and removing the 203 film, Zn in the solution is deposited on the surface of the member 2 to be plated.

次に、水洗した後に、25℃の62%の硝酸溶液で、3
0秒浸酸処理して亜鉛置換膜を溶解除去する(工程V)
Next, after washing with water, it was washed with 62% nitric acid solution at 25°C for 3
Dissolve and remove the zinc-substituted film by 0-second acid immersion treatment (Step V)
.

続いて、再度、水洗した後に、亜鉛置換処理を上述の亜
鉛置換処理(工程■)と同一の溶液で10秒行う・(工
程■)。これは、亜鉛置換処理を再度施して、置換膜を
より緻密な状態にして、後に形成するN1−P皮膜を緻
密にするためである。
Subsequently, after washing with water again, a zinc replacement treatment is performed for 10 seconds using the same solution as the above-mentioned zinc replacement treatment (step (2)) (step (2)). This is because the zinc substitution treatment is performed again to make the substituted film more dense and to make the N1-P film to be formed later more dense.

次に、水洗した後に、重炭酸ナトリウム30g/Qの弱
アルカリの溶液に、30秒浸して表面調整処理を行う(
工程■)。これは、亜鉛置換処理に用いる溶液がpH1
4と高いので、そのpHを下げてメッキ液のpHとの調
整を行うものである。
Next, after washing with water, surface conditioning treatment is performed by immersing it in a weak alkaline solution containing 30 g/Q of sodium bicarbonate for 30 seconds.
Process ■). This means that the solution used for zinc replacement treatment has a pH of 1.
Since the pH is as high as 4, the pH is lowered and adjusted to match the pH of the plating solution.

上記工程(工程■)に続いて再び水洗し、その後に、減
圧下で、即ち600〜700mmHgの圧力の雰囲気に
メッキ液をおいて、無電解N1−Pメッキを行う(工程
■)。この処理は、N1−Pメッキ溶液4中に被メツキ
部材2を、数時間浸し、15um程度の°N1−P皮膜
を形成する。N1−Pメッキ溶液4の濃度成分は、以下
に示され、pH4,6にしたものを液温85℃にして使
用する。
Following the above step (step ①), the plate is washed with water again, and then electroless N1-P plating is performed under reduced pressure, that is, by placing the plating solution in an atmosphere with a pressure of 600 to 700 mmHg (step ①). In this process, the member 2 to be plated is immersed in N1-P plating solution 4 for several hours to form a N1-P film of about 15 um. The concentration components of the N1-P plating solution 4 are shown below, and it is used at a pH of 4.6 and at a solution temperature of 85°C.

NiSO4◆6H20・・−13,OOg/QKNaC
aH40e・4H20・・・28.28g/QNaH2
PO2◆H20=−13,25g/QN840H(30
%水溶液)   −・−70m Q / Q本無電解メ
ッキ反応は、次式により表される。
NiSO4◆6H20...-13,OOg/QKNaC
aH40e・4H20...28.28g/QNaH2
PO2◆H20=-13,25g/QN840H(30
% aqueous solution) -.-70m Q/Q This electroless plating reaction is expressed by the following formula.

N i 2++ 82P 02−+ H20→N i+
82PO3−+28+ この反応は、還元剤として次亜リン酸を用いたN1の自
己触媒反応であり、Niの存在下にて活発に起こる。尚
、この副反応としてPが析出し、N1−P皮膜には、P
−h″SNi中に12%程度含有される。
N i 2++ 82P 02-+ H20→N i+
82PO3-+28+ This reaction is an autocatalytic reaction of N1 using hypophosphorous acid as a reducing agent, and actively occurs in the presence of Ni. As a side reaction, P precipitates, and the N1-P film contains P.
-h″ Contains about 12% in SNi.

上記の減圧下におけるメッキ処理は、第2図に示すよう
なメッキ装置1で行われる。図において、5はメッキ槽
であり、このメッキ槽5は、仕切板6.7により第一、
第二および第三の液室8,9゜10に分けられ、第一の
液室8と第二の液室9とは仕切板6の上部で連通し、第
二の液室9と第3の液室10とは仕切板7の下部で連通
している。
The above-mentioned plating process under reduced pressure is performed in a plating apparatus 1 as shown in FIG. In the figure, 5 is a plating tank, and this plating tank 5 is separated by a partition plate 6.7.
The first liquid chamber 8 and the second liquid chamber 9 communicate with each other at the upper part of the partition plate 6, and the second liquid chamber 9 and the third liquid chamber 9 communicate with each other at the upper part of the partition plate 6. It communicates with the liquid chamber 10 at the lower part of the partition plate 7.

第一の液室内8には、ヒータ11が設置され、一方、第
二の液室9内には、ディスク保持装置12が収納されて
いる。また、第三の液室10内には、ろ過ポンプ13が
設置されている。
A heater 11 is installed in the first liquid chamber 8, while a disk holding device 12 is housed in the second liquid chamber 9. Further, a filtration pump 13 is installed in the third liquid chamber 10.

上記ディスク保持装置12は、メッキ槽5に固定された
支持部材14と、この支持部材14の下端に回転自在に
支持された回動部材15と、この回動部材15を回転駆
動する駆動部(図示省略)等から構成され、回動部材1
5の画先端部に磁気ディスクとなる被メツキ部材2が取
り付けられる。
The disk holding device 12 includes a support member 14 fixed to the plating tank 5, a rotating member 15 rotatably supported at the lower end of the supporting member 14, and a drive unit ( (not shown), etc., and the rotating member 1
A member 2 to be plated, which becomes a magnetic disk, is attached to the leading edge of the image 5.

メッキ槽5の図示左側には、ポンプ16が設置され、こ
のポンプ16からのメッキ液がろ過装置17、管路18
を通じて第一の液室8に供給され、そして第3の液室1
0でろ過ポンプ13によって吸い込まれたメッキ液がポ
ンプ16に戻される。
A pump 16 is installed on the left side of the plating tank 5 as shown in the figure, and the plating liquid from the pump 16 is passed through a filtration device 17 and a pipe line 18.
through which the first liquid chamber 8 is supplied, and the third liquid chamber 1
At 0, the plating solution sucked by the filtration pump 13 is returned to the pump 16.

そして上記の各装置を備えたメッキ槽5を壁面20で覆
って密閉し、真空ポンプ22で圧力を下げて無電解メッ
キを行°なうものである。
Then, the plating tank 5 equipped with the above-mentioned devices is covered and sealed with a wall 20, and the pressure is lowered with a vacuum pump 22 to perform electroless plating.

この装置を用いて、圧力を下げて無電解メッキを行うこ
とにより、常圧の時に比べて、生成する溶存ガスや反応
によって発生する水素ガスの泡の径が大きくなり、その
結果それらの上昇力や上昇速度が増して、泡切れがよく
なる。従って、無電解メ・ンキの反応の過程で生成した
水素ガスや、メッキ液中の空気や炭酸ガス等の溶存ガス
が、被メツキ部材2に付着することを防止できるので、
ピンホールの生成やメッキ金属の異常析出等を防止でき
るものである。
By using this equipment to perform electroless plating at a lower pressure, the diameter of the dissolved gas and hydrogen gas bubbles generated by the reaction becomes larger than at normal pressure, resulting in their rising power. This increases the rate of rise and the rate of rise, making it easier to remove bubbles. Therefore, it is possible to prevent hydrogen gas generated during the electroless coating reaction process and dissolved gases such as air and carbon dioxide in the plating solution from adhering to the plated member 2.
This can prevent the formation of pinholes and abnormal precipitation of plated metal.

尚、メッキ処理を上記600〜700mmHgの範囲の
圧力で行なうことが好適な理由は、メ・ンキ液は、加温
されて用いられるので、600mmHg以下では、メッ
キ液の蒸発量が多くなって、メッキ液の成分の濃度が変
化し易くなるからであり、更に700mmHg以上では
、減圧の効果が少ないからである。
The reason why it is preferable to perform the plating process at a pressure in the above range of 600 to 700 mmHg is that the plating solution is used after being heated, so below 600 mmHg, the amount of evaporation of the plating solution increases. This is because the concentration of the components of the plating solution tends to change, and furthermore, at 700 mmHg or more, the effect of pressure reduction is small.

次に、水洗して乾燥した後に、表面研石処理を行い(工
程■)、更に非エツチング型アルカリ脱脂処理を行う(
工程X)。
Next, after washing with water and drying, the surface is subjected to a polishing stone treatment (Step ①), and then a non-etching alkaline degreasing treatment is performed (
Process X).

次に水洗した後に、磁気ディスクの表面の活性化処理を
行なう(工程XI)。この処理は、表面の酸化膜を除去
するためのもので、2NのHCQに1分間浸した後に水
洗し、更にINのH2S0Jに1分間浸すものである。
Next, after washing with water, the surface of the magnetic disk is activated (Step XI). This treatment is to remove the oxide film on the surface, and involves immersing it in 2N HCQ for 1 minute, washing with water, and then immersing it in IN H2SOJ for 1 minute.

次に再度水洗した後に、無電解Co−Pメッキを行って
、磁性体層であるCo−P皮膜を形成する(工程XII
)。このCo−Pメッキ溶液の潤度成分は、以下に示さ
れ、NaOHでpH10に調整したものを液温80℃に
して使用する。
Next, after washing with water again, electroless Co-P plating is performed to form a Co-P film as a magnetic layer (Step XII
). The moisture content of this Co-P plating solution is shown below, and the solution is adjusted to pH 10 with NaOH and used at a solution temperature of 80°C.

C03OA−7820−−−0,05mol/12KN
 aczHaos −4H20−・−0,71mo l
 /QNaH2P02・N20    ・・・0.19
m01/Q(NH4)2S04      −〜0.6
1mo L/Q次に再度水洗した後に、カーボンを用い
て保護層を形成しく工程XI[)、更に潤滑層を形成す
る(工程XrV)ことにより磁気ディスクを完成する。
C03OA-7820---0.05mol/12KN
aczHaos -4H20-・-0,71mol
/QNaH2P02・N20...0.19
m01/Q(NH4)2S04 -~0.6
1mo L/Q Next, after washing with water again, a protective layer is formed using carbon in Step XI [), and a lubricating layer is further formed (Step XrV) to complete the magnetic disk.

尚、本実施例では、メッキ処理中にメッキ液を減圧下に
おいたが、メッキ処理前に減圧下においても良い。その
場合゛は、メッキ液の温度は加温によって高くなってい
ないので、蒸発が起きにくく、600mmHg以下の圧
力にしても良い。
In this embodiment, the plating solution was placed under reduced pressure during the plating process, but it may be placed under reduced pressure before the plating process. In that case, since the temperature of the plating solution has not increased due to heating, evaporation is less likely to occur, and the pressure may be set to 600 mmHg or less.

更に、無電解メッキに限らず、メッキ液を用いる電気メ
ッキにも利用できる。
Furthermore, it can be used not only for electroless plating but also for electroplating using a plating solution.

[発明の効果] 以上説明したように、本発明によれば、電気メッキ又は
無電解メッキのメッキ処理方法において、メッキを行う
前又はメッキ中に、メッキ液を大気圧より小なる圧力の
雰囲気におくので、常圧の時に比べて、発生する溶存ガ
スや水素ガスの泡切れがよくなる。従って、それらのガ
スが、被メッキ部材の表面に付着することを防止でき、
よってピンホールの生成やメッキ金属の異密析出等のメ
ッキ膜の表面欠陥の生成を防止できるものである。
[Effects of the Invention] As explained above, according to the present invention, in the plating processing method of electroplating or electroless plating, the plating solution is placed in an atmosphere of pressure lower than atmospheric pressure before or during plating. This allows the dissolved gas and hydrogen gas to bubble out more easily than under normal pressure. Therefore, these gases can be prevented from adhering to the surface of the plated member,
Therefore, it is possible to prevent the formation of surface defects in the plating film, such as the formation of pinholes and heterodense precipitation of the plating metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による磁気ディスクのメッキ
処理を示す工程図、第2図は減圧下においてメッキを行
なう装置を示す説明図である。 2・・・被メツキ部材 5・・・メッキ槽 22・・・真空ポンプ ■・・・無電解メッキ処理
FIG. 1 is a process diagram showing a plating process for a magnetic disk according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing an apparatus for plating under reduced pressure. 2... Part to be plated 5... Plating tank 22... Vacuum pump ■... Electroless plating process

Claims (1)

【特許請求の範囲】[Claims] 電気メッキ又は無電解メッキのメッキ処理方法において
、メッキを行う前又はメッキ中に、メッキ液を大気圧よ
り小なる圧力の雰囲気におくことを特徴とするメッキ処
理方法。
A plating method for electroplating or electroless plating, which comprises placing a plating solution in an atmosphere with a pressure lower than atmospheric pressure before or during plating.
JP11315487A 1987-05-07 1987-05-07 Plating method Pending JPS63277771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11315487A JPS63277771A (en) 1987-05-07 1987-05-07 Plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11315487A JPS63277771A (en) 1987-05-07 1987-05-07 Plating method

Publications (1)

Publication Number Publication Date
JPS63277771A true JPS63277771A (en) 1988-11-15

Family

ID=14604933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11315487A Pending JPS63277771A (en) 1987-05-07 1987-05-07 Plating method

Country Status (1)

Country Link
JP (1) JPS63277771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901153A2 (en) 1997-09-02 1999-03-10 Ebara Corporation Method and apparatus for plating a substrate
FR3077825A1 (en) * 2018-02-14 2019-08-16 3D Plus METHOD FOR METALLIZING HOLES OF AN ELECTRONIC MODULE BY LIQUID PHASE DEPOSITION

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901153A2 (en) 1997-09-02 1999-03-10 Ebara Corporation Method and apparatus for plating a substrate
US6544585B1 (en) 1997-09-02 2003-04-08 Ebara Corporation Method and apparatus for plating a substrate
EP0901153B1 (en) * 1997-09-02 2009-07-15 Ebara Corporation Method and apparatus for plating a substrate
FR3077825A1 (en) * 2018-02-14 2019-08-16 3D Plus METHOD FOR METALLIZING HOLES OF AN ELECTRONIC MODULE BY LIQUID PHASE DEPOSITION
WO2019158585A1 (en) * 2018-02-14 2019-08-22 3D Plus Method for metallising holes of an electronic module by liquid phase deposition

Similar Documents

Publication Publication Date Title
US4659605A (en) Electroless deposition magnetic recording media process and products produced thereby
JP2005029810A (en) Method for forming cap coating film by electroless plating, and apparatus used therefor
JP3093219B2 (en) Nickel electroless plating method
JPS6283646A (en) Method of determining activity of chemical metal plating bath
JPS63277771A (en) Plating method
JP2004019003A (en) Printed circuit board and plating method thereon
US4552787A (en) Deposition of a metal from an electroless plating composition
JP3673445B2 (en) Zinc replacement solution
JP4647159B2 (en) Formation method of electroless plating film
JPS63293170A (en) Plating method
US11192822B2 (en) Enhanced nickel plating process
JP3275476B2 (en) Substrate for magnetic disk
US4363705A (en) Passivating and silver removal method
EP0114930B1 (en) Palladium activation of silicon iron prior to electroless nickel plating
US5391395A (en) Method of preparing substrates for memory disk applications
JPS5837616B2 (en) Manufacturing method for magnetic recording media
JPH05325185A (en) Manufacture of hard disk
JP2005272932A (en) Substrate and its production method
JPS61291963A (en) Method for obtaining metal pattern on inorganic non-conductive surface
JP2805379B2 (en) Method for fine etching of A1 thin film layer
JPS63259082A (en) Plating method
JPS633378B2 (en)
JP2844661B2 (en) Method for removing film from magnetic recording medium
US6378338B1 (en) Method for producing magnetic disk substrates
JPH05314471A (en) Substrate for magnetic recording medium and manufacture of the same and magnetic recording medium