JPS6327624B2 - - Google Patents

Info

Publication number
JPS6327624B2
JPS6327624B2 JP57190082A JP19008282A JPS6327624B2 JP S6327624 B2 JPS6327624 B2 JP S6327624B2 JP 57190082 A JP57190082 A JP 57190082A JP 19008282 A JP19008282 A JP 19008282A JP S6327624 B2 JPS6327624 B2 JP S6327624B2
Authority
JP
Japan
Prior art keywords
reaction vessel
metal hydride
hydrogen
passed
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57190082A
Other languages
Japanese (ja)
Other versions
JPS5981469A (en
Inventor
Michoshi Nishizaki
Minoru Myamoto
Takeshi Yoshida
Katsuhiko Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP19008282A priority Critical patent/JPS5981469A/en
Publication of JPS5981469A publication Critical patent/JPS5981469A/en
Publication of JPS6327624B2 publication Critical patent/JPS6327624B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明はヒートポンプ装置に関し、詳しくは、
金属水素化物を用いるヒートポンプ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump device, and more specifically,
The present invention relates to a heat pump device using metal hydride.

ある種の金属や合金が発熱的に水素を吸蔵して
金属水素化物を形成し、また、この金属水素化物
が可逆的に吸熱的に水素を放出することが知られ
ており、近年、これらの金属水素化物の特性を利
用したヒートポンプ装置が種々提案されている。
It is known that certain metals and alloys exothermically absorb hydrogen to form metal hydrides, and that these metal hydrides reversibly and endothermically release hydrogen. Various heat pump devices have been proposed that utilize the characteristics of metal hydrides.

従来、提案されているこれらヒートポンプ装置
の多くは、水素の平衡分解圧の異なる金属水素化
物をそれぞれ熱交換器をなす密閉容器に充填し、
一方の熱交換器内の金属水素化物から吸熱的に水
素を放出させると共に、この水素を他方の熱交換
器に導き、この熱交換器内の金属水素化物に吸熱
させる動作を各熱交換器について交互に繰返させ
て、各熱交換器から金属水素化物の発熱又は吸熱
を出力として取出している。従つて、このような
ヒートポンプ装置においては、金属水素化物に上
記のような反応を行なわせるために、複雑な熱媒
回路に熱交換器を組み込み、弁操作によつて熱媒
回路を切換えて、各熱交換器を交互に加熱又は冷
却している。従つて、装置が信頼性に乏しいうえ
に、熱媒回路自体が熱容量を有するために、熱媒
回路に温度の異なる熱媒を流通させる際の熱損失
も無視し得ず、装置の成績係数を低めることとな
る。
In most of the heat pump devices that have been proposed, metal hydrides with different equilibrium hydrogen decomposition pressures are filled in sealed containers that form heat exchangers.
For each heat exchanger, hydrogen is endothermically released from the metal hydride in one heat exchanger, and this hydrogen is guided to the other heat exchanger so that the metal hydride in this heat exchanger absorbs heat. This is repeated alternately, and the heat generated or absorbed by the metal hydride is extracted as output from each heat exchanger. Therefore, in such a heat pump device, in order to cause the metal hydride to undergo the above-mentioned reaction, a heat exchanger is incorporated into a complicated heat medium circuit, and the heat medium circuit is switched by valve operation. Each heat exchanger is heated or cooled alternately. Therefore, not only is the device unreliable, but the heat medium circuit itself has a heat capacity, so the heat loss when circulating heat mediums of different temperatures through the heat medium circuit cannot be ignored, and the coefficient of performance of the device is It will be lowered.

本発明は上記の問題を解決するためになされた
ものであつて、所定温度の熱媒が流通する熱媒回
路に対して、金属水素化物を充填した反応容器を
収容する反応容器室の相対的な位置を切り換える
ことにより、複雑な熱媒回路や、そのための制御
機構を不要にして、簡単な操作により確実に作動
し、また、成績係数も高いヒートポンプ装置を提
供することを目的とする。
The present invention has been made in order to solve the above problem, and is directed to a heating medium circuit in which a heating medium of a predetermined temperature flows, and a reaction vessel chamber containing a reaction vessel filled with a metal hydride. The purpose of the present invention is to provide a heat pump device that operates reliably with simple operation and has a high coefficient of performance, without requiring a complicated heat medium circuit or its control mechanism, by switching the position.

本発明のヒートポンプ装置は、作動温度領域に
おいて水素の平衡分解圧が異なる第1及び第2の
金属水素化物を用い、第1の金属水素化物から水
素を吸熱的に放出させ、この水素を第2の金属水
素化物に発熱的に吸蔵させ、次に、第2の金属水
素化物から水素を吸熱的に放出させ、この水素を
第1の金属水素化物に発熱的に吸蔵させるように
したヒートポンプ装置において、 (a) 密閉容器と、 (b) この密閉容器の軸方向に延びる隔板によつて
密閉容器内に気密若しくは液密に分割された4
の倍数の反応容器室と、 (c) 各反応容器室に臨んで密閉容器壁に取付けら
れた、各反応容器室に熱媒を供給する熱媒管
と、 (d) 一方の反応容器に第1の金属水素化物が充填
され、他方の反応容器に第2の金属水素化物が
充填されて、それぞれの反応容器が隣接する反
応容器室に配設されると共に、水素連通管にて
連通され、両方の反応容器の間でのみ水素が移
動可能になされた作動対をなす反応容器とから
なり、 作動対の数は偶数であり、第1の金属水素化物
が充填された反応容器が配設された反応容器室の
異なる隣接する反応容器室には異なる作動対をな
す第1の金属水素化物が充填された反応容器が配
設されると共に第2の金属水素化物が充填された
反応容器が配設された反応容器室の異なる隣接す
る反応容器室には異なる作動対をなす第2の金属
水素化物が充填された反応容器が配設されてお
り、作動温度領域において水素の平衡分解圧は第
1の金属水素化物よりも第2の金属水素化物が高
く、且つ密閉容器と反応容器室は相対的に第1の
所定位置と第2の所定位置との間を往復できるよ
うに一方が他方に対して回動自在に支持され、第
1の所定位置では、第1の作動対において第1の
金属水素化物を有する反応容器室に高温の熱媒が
流通され、第2の金属水素化物を有する反応容器
室に中温の熱媒が流通されると共に、第2の作動
対において第1の金属水素化物を有する反応容器
室に中温の熱媒が流通され、第2の金属水素化物
を有する反応容器室に低温熱媒が流通され、第2
の所定位置では、第1の作動対において第1の金
属水素化物を有する反応容器室に中温の熱媒が流
通され、第2の金属水素化物を有する反応容器室
に低温の熱媒が流通されると共に、第2の作動対
において第1の金属水素化物を有する反応容器室
に高温の熱媒が流通され、第2の金属水素化物を
有する反応容器室に中温の熱媒が流通されること
を特徴とするものである。
The heat pump device of the present invention uses first and second metal hydrides having different equilibrium decomposition pressures of hydrogen in the operating temperature range, endothermically releases hydrogen from the first metal hydride, and transfers this hydrogen to the second metal hydride. In a heat pump device, hydrogen is exothermically occluded in a metal hydride, then hydrogen is endothermically released from a second metal hydride, and hydrogen is exothermically occluded in a first metal hydride. , (a) a closed container, and (b) 4 compartments partitioned into the closed container in an air-tight or liquid-tight manner by a diaphragm extending in the axial direction of the closed container.
(c) A heat transfer pipe for supplying a heat medium to each reaction vessel chamber, which is attached to the wall of the closed vessel facing each reaction vessel chamber; one metal hydride is filled in the other reaction vessel, the other reaction vessel is filled with a second metal hydride, and the respective reaction vessels are arranged in adjacent reaction vessel chambers and communicated with each other through a hydrogen communication pipe, and a reaction vessel forming a working pair in which hydrogen can only be transferred between both reaction vessels, the number of working pairs is an even number, and a reaction vessel filled with a first metal hydride is disposed. A reaction vessel filled with a first metal hydride and a reaction vessel filled with a second metal hydride forming a different working pair are disposed in adjacent reaction vessel chambers different from each other. A reaction vessel filled with a second metal hydride forming a different working pair is disposed in a different adjacent reaction vessel chamber, and the equilibrium decomposition pressure of hydrogen in the operating temperature range is the second metal hydride is higher than the first metal hydride, and the closed vessel and the reaction vessel chamber are relatively movable between the first predetermined position and the second predetermined position. At the first predetermined position, a high-temperature heating medium is passed through the reaction vessel chamber containing the first metal hydride in the first working pair, and the second metal hydride is supported in a first predetermined position. A medium-temperature heating medium is passed through the reaction vessel chamber, and at the same time, a medium-temperature heating medium is passed through the reaction vessel chamber containing the first metal hydride in the second working pair, and the reaction vessel containing the second metal hydride is passed through the reaction vessel chamber containing the second metal hydride. A low-temperature heat medium is passed through the chamber, and the second
At a predetermined position, in the first working pair, a medium temperature heating medium is passed through the reaction vessel chamber containing the first metal hydride, and a low temperature heating medium is passed through the reaction vessel chamber containing the second metal hydride. At the same time, in the second working pair, a high-temperature heating medium is passed through the reaction vessel chamber containing the first metal hydride, and a medium-temperature heat medium is passed through the reaction vessel chamber containing the second metal hydride. It is characterized by:

以下に実施例を示す図面に基づいて本発明のヒ
ートポンプ装置を説明する。
EMBODIMENT OF THE INVENTION The heat pump apparatus of this invention is demonstrated based on the drawing which shows an Example below.

第1図及び第2図に示すように、胴部1とその
前後の隔壁2とからなる円筒状の密閉容器3に、
その軸方向に貫通して駆動軸4が回転可能に支承
され、この駆動軸上に複数の隔板5が放射状に固
定されて、密閉容器内はそれぞれ反応容器6を収
容する4つの反応容器室7に分割されている。隔
板は密閉容器の内壁面、即ち、胴部及び隔壁の内
壁面と摺動し得るように形成されて、各反応容器
室を実質的に気密若しくは液密に保持している。
As shown in FIGS. 1 and 2, a cylindrical airtight container 3 consisting of a body 1 and partition walls 2 on the front and rear sides,
A drive shaft 4 is rotatably supported through the drive shaft in the axial direction, and a plurality of partition plates 5 are fixed radially on the drive shaft. It is divided into 7 parts. The partition plate is formed to be able to slide on the inner wall surface of the closed container, that is, the inner wall surface of the body and the partition wall, and maintains each reaction container chamber substantially airtight or liquid-tight.

第2図に示すように、隣接する一対の反応容器
室には、一方7aに、作動温度領域で水素の平衡
分解圧が低い第1の金属水素化物(以下、MH1
と称する。)を充填した反応容器aが配設され、
他方の反応容器室7bには、作動温度領域で水素
の平衡分解圧がMH1よりも高い第2の金属水素
化物(以下、MH2と称する。)を充填した反応容
器bが配設されていると共に、これら反応容器間
で水素移動が可能なように連通管8で連通され、
このようにして隣接する反応容器室に収容された
反応容器は作動対を形成する。これを第1の作動
対とすれば、同様に、隣接する他の一対の反応容
器室の一方7cにMH1を充填した反応容器cが
配設され、他方の反応容器室7dにはMH2を充
填した反応容器dが配設され、連通管で連通され
て第2の作動対をなす。
As shown in FIG. 2, in a pair of adjacent reaction chambers, one 7a contains a first metal hydride (hereinafter referred to as MH1) which has a low equilibrium decomposition pressure of hydrogen in the operating temperature range.
It is called. ) is provided, a reaction vessel a filled with
The other reaction vessel chamber 7b is provided with a reaction vessel b filled with a second metal hydride (hereinafter referred to as MH2) whose equilibrium decomposition pressure of hydrogen is higher than MH1 in the operating temperature range. , these reaction vessels are communicated with each other through a communication pipe 8 so that hydrogen can be transferred between them,
Reaction vessels accommodated in adjacent reaction vessel chambers thus form a working pair. If this is the first working pair, similarly, one of the other pair of adjacent reaction vessel chambers 7c is provided with a reaction vessel c filled with MH1, and the other reaction vessel chamber 7d is filled with MH2. A reaction vessel d is disposed therein and communicated with each other through a communication pipe to form a second working pair.

本発明の装置においては、密閉容器には、予め
決められた所定位置において、各反応容器室に熱
媒を供給するための熱媒管9が反応容器内に開口
するようにそれぞれ隔壁に接続されており、所定
温度の熱媒が各反応容器室に流通される。
In the apparatus of the present invention, heat medium pipes 9 for supplying heat medium to each reaction vessel chamber are connected to partition walls at predetermined positions in the closed vessel so as to open into the reaction vessel. A heating medium at a predetermined temperature is distributed to each reaction vessel chamber.

前記駆動軸は図示しないモータによつて所定時
間ごとに所定方向に所定角度回転して、作動対を
なす一対の反応容器室を熱媒管に対して予め決め
られた第1の所定位置と第2の所定位置との間を
往復させる。
The drive shaft is rotated by a motor (not shown) at a predetermined angle in a predetermined direction at predetermined time intervals to move the pair of reaction chambers forming an operating pair to a predetermined first position and a first predetermined position with respect to the heat medium pipe. 2 and the predetermined position.

即ち、図示した第1の所定位置においては、反
応容器aを収容する反応容器室には温度THの高
温熱媒を供給する熱媒管が位置し、反応容器bを
収容する反応容器室には温度TMの中温熱媒を供
給する熱媒管が位置すると共に、反応容器cを収
容する反応容器室には温度TMの中温熱媒を供給
する熱媒管が位置し、反応容器dを収容する反応
容器室には温度TLの低温熱媒を供給する熱媒管
が位置する。従つて、駆動軸が破線矢印の方向に
90゜回転するとき、第1の作動対においては、
MH1が充填された反応容器aを収容する反応容
器室7bには中温熱媒が、また、MH2が充填さ
れた反応容器bを収容する反応容器室7dには低
温熱媒が流通され、一方、第2の作動対において
は、MH1が充填された反応容器cを収容する反
応容器室7aには高温熱媒が、また、MH2が充
填された反応容器dを収容する反応容器室7cに
は中温熱媒がそれぞれ流通される。次に、駆動軸
が実線矢印のように、反時計方向に90゜回転する
とき、各反応容器は原位置に復帰して、当初と同
じ熱媒と接触するようになる。従つて、作動対を
なす各反応容器は、所定時間ごとに所定の温度の
熱媒に交互に接触する。
That is, in the illustrated first predetermined position, a heat transfer pipe for supplying a high-temperature heat medium of temperature TH is located in the reaction vessel chamber housing reaction vessel a, and a heat medium pipe for supplying a high temperature heat medium at temperature TH is located in the reaction vessel chamber housing reaction vessel b. A heat medium pipe for supplying a medium temperature heat medium at a temperature TM is located, and a heat medium pipe for supplying a medium temperature heat medium at a temperature TM is located in the reaction vessel chamber accommodating the reaction vessel c, which accommodates a reaction vessel d. A heat medium pipe that supplies a low temperature heat medium at a temperature TL is located in the reaction vessel chamber. Therefore, the drive shaft moves in the direction of the dashed arrow.
When rotating 90°, in the first working pair,
A medium-temperature heating medium is passed through the reaction vessel chamber 7b that accommodates the reaction vessel a filled with MH1, and a low-temperature heat medium is passed through the reaction vessel chamber 7d that accommodates the reaction vessel b filled with MH2. In the second working pair, the reaction vessel chamber 7a containing the reaction vessel c filled with MH1 is filled with a high temperature heating medium, and the reaction vessel chamber 7c containing the reaction vessel d filled with MH2 is filled with a high temperature heating medium. The heating medium is distributed respectively. Next, when the drive shaft rotates 90 degrees counterclockwise as indicated by the solid arrow, each reaction vessel returns to its original position and comes into contact with the same heating medium as before. Therefore, each reaction vessel forming the working pair alternately contacts the heating medium at a predetermined temperature at predetermined time intervals.

なお、以上は駆動軸の回転によつて、反応容器
を密閉容器3に対して回転させているが、反対に
反応容器を固定し、隔壁2を回転させてもよいこ
とは明らかであろう。更に、反応容器室7内の圧
力と密閉容器3外の圧力を近似させれば、熱媒の
外への漏れ或いは反応容器室7間の漏れを実質的
になくすことができる。また、熱媒が空気のよう
なものであれば、反応容器室7間、密閉容器3内
外の気密、液密性の要求精度が高くなく、本発明
の利点の一つとなる。
In addition, although the reaction container is rotated with respect to the closed container 3 by the rotation of the drive shaft, it is clear that the reaction container may be fixed and the partition wall 2 rotated on the contrary. Furthermore, by making the pressure inside the reaction container chamber 7 and the pressure outside the closed container 3 similar, leakage of the heat medium to the outside or leakage between the reaction container chambers 7 can be substantially eliminated. Further, if the heat medium is air-like, the required accuracy of airtightness and liquidtightness between the reaction vessel chamber 7 and inside and outside of the closed vessel 3 is not high, which is one of the advantages of the present invention.

上記した装置の作動を以下に第3図に示すサイ
クル線図に基づいて説明する。
The operation of the above-mentioned device will be explained below based on the cycle diagram shown in FIG.

上記第1の所定位置において、第1の作動対を
なすMH1は温度THに加熱されて水素を放出し
(点A)、この水素を温度TMのMH2が発熱的に
吸蔵する(点B)。次に、反応容器が第2の所定
位置に置かれて、MH1が温度TMに冷却される
と(点D)、MH2は吸蔵的に水素を放出して温度
TLに至り(点C)、低温熱媒から熱を奪うと共
に、この水素をMH1が発熱的に吸蔵する。
At the first predetermined position, MH1 of the first working pair is heated to temperature TH and releases hydrogen (point A), which is exothermically occluded by MH2 at temperature TM (point B). The reaction vessel is then placed in a second predetermined position, and when MH1 is cooled to temperature TM (point D), MH2 occludedly releases hydrogen to temperature
At TL (point C), MH1 absorbs heat from the low-temperature heating medium and absorbs this hydrogen exothermically.

一方、第2の作動対においては、第1の所定位
置で点Cから点Dへの水素移動が起こり、第2の
所定位置では点Aから点Bへの水素移動が起こ
る。即ち、第2の作動対は第1の作動対に対して
半サイクル遅れで同じ作動を行なう。従つて、上
記のようなサイクルにより、例えば、高温熱媒を
駆動熱源として、低温熱媒から温度TLの冷熱出
力を各作動対から得ることができる。
On the other hand, in the second working pair, hydrogen transfer occurs from point C to point D at the first predetermined position, and hydrogen transfer from point A to point B occurs at the second predetermined position. That is, the second operating pair performs the same operation with a half-cycle delay relative to the first operating pair. Therefore, through the above-described cycle, for example, by using the high-temperature heat medium as the drive heat source, a cold output at the temperature TL can be obtained from each working pair from the low-temperature heat medium.

第4図は別のサイクルが、MH1とMH2との間
の水素移動が逆方向である以外は上記と同じであ
り、このようなサイクルにより、例えば、中温熱
媒を駆動熱源として温度THの温熱出力を得るこ
とができる。
FIG. 4 shows another cycle which is the same as above except that the hydrogen transfer between MH1 and MH2 is in the opposite direction; such a cycle produces, for example, heat at temperature TH using a medium-temperature heating medium as the driving heat source. You can get the output.

なお、図示した実施例では、密閉容器は2組の
作動対を収容するために4つの反応容器室に分割
されているが、必要に応じて、より多数の作動対
を収容するために所要数の反応容器室に分割し、
また、各反応容器室に複数の反応容器を収容して
もよいのは勿論である。
In the illustrated embodiment, the closed container is divided into four reaction chambers to accommodate two working pairs; The reaction vessel is divided into chambers,
Moreover, it goes without saying that a plurality of reaction vessels may be accommodated in each reaction vessel chamber.

以上のように、本発明のヒートポンプ装置によ
れば、反応容器を加熱又は冷却し、又は反応容器
から出力を得るにあたつて、所定温度の熱媒が流
通する熱媒回路に対して、反応容器を相対的に往
復させて、熱媒と熱交換させるので、従来の熱媒
回路を切り換えて反応容器と熱交換させる装置と
異なり、複雑な熱媒活路やそのための制御機構を
要しないので、作動が簡単である。また、熱媒管
には常に同じ温度の熱媒が流通されており、熱媒
管自体の加熱冷却による熱損失がないので、装置
の成績係数も高い。
As described above, according to the heat pump device of the present invention, when heating or cooling a reaction vessel or obtaining output from the reaction vessel, a heat medium circuit through which a heat medium of a predetermined temperature flows is Since the containers are moved back and forth relatively to exchange heat with the heat medium, unlike conventional devices that switch the heat medium circuit and exchange heat with the reaction vessel, there is no need for complex heat medium routes or control mechanisms. Easy to operate. Furthermore, since a heat medium of the same temperature is always flowing through the heat medium pipe, and there is no heat loss due to heating or cooling of the heat medium pipe itself, the coefficient of performance of the device is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のヒートポンプ装置の一部切欠
き斜視図、第2図は第1図においてA―A線に沿
う断面図、第3図及び第4図は本発明の装置の作
動を示すサイクル線図の一例である。 3……密閉容器、4……駆動軸、5……隔板、
6……反応容器、7……反応容器室、8……連通
管、9……熱媒管。
Fig. 1 is a partially cutaway perspective view of the heat pump device of the present invention, Fig. 2 is a sectional view taken along line A-A in Fig. 1, and Figs. 3 and 4 show the operation of the device of the present invention. This is an example of a cycle diagram. 3... Airtight container, 4... Drive shaft, 5... Partition plate,
6... Reaction container, 7... Reaction container chamber, 8... Communication pipe, 9... Heat medium pipe.

Claims (1)

【特許請求の範囲】 1 作動温度領域において水素の平衡分解圧が異
なる第1及び第2の金属水素化物を用い、第1の
金属水素化物から水素を吸熱的に放出させ、この
水素を第2の金属水素化物に発熱的に吸蔵させ、
次に、第2の金属水素化物から水素を吸熱的に放
出させ、この水素を第1の金属水素化物に発熱的
に吸蔵させるようにしたヒートポンプ装置におい
て、 (a) 密閉容器と、 (b) この密閉容器の軸方向に延びる隔板によつて
密閉容器内に気密若しくは液密に分割された4
の倍数の反応容器室と、 (c) 各反応容器室に臨んで密閉容器壁に取付けら
れた、各反応容器室に熱媒を供給する熱媒管
と、 (d) 一方の反応容器に第1の金属水素化物が充填
され、他方の反応容器に第2の金属水素化物が
充填されて、それぞれの反応容器が隣接する反
応容器室に配設されると共に、水素連通管にて
連通され、両方の反応容器の間でのみ水素が移
動可能になされた作動対をなす反応容器とから
なり、 作動対の数は偶数であり、第1の金属水素化物
が充填された反応容器が配設された反応容器室の
異なる隣接する反応容器室には異なる作動対をな
す第1の金属水素化物が充填された反応容器が配
設されると共に第2の金属水素化物が充填された
反応容器が配設された反応容器室の異なる隣接す
る反応容器室には異なる作動対をなす第2の金属
水素化物が充填された反応容器が配設されてお
り、作動温度領域において水素の平衡分解圧は第
1の金属水素化物よりも第2の金属水素化物が高
く、且つ密閉容器と反応容器室は相対的に第1の
所定位置と第2の所定位置との間を往復できるよ
うに一方が他方に対して回動自在に支持され、第
1の所定位置では、第1の作動対において第1の
金属水素化物を有する反応容器室に高温の熱媒が
流通され、第2の金属水素化物を有する反応容器
室に中温の熱媒が流通されると共に、第2の作動
対において第1の金属水素化物を有する反応容器
室に中温の熱媒が流通され、第2の金属水素化物
を有する反応容器室に低温熱媒が流通され、第2
の所定位置では、第1の作動対において第1の金
属水素化物を有する反応容器室に中温の熱媒が流
通され、第2の金属水素化物を有する反応容器室
に低温の熱媒が流通されると共に、第2の作動対
において第1の金属水素化物を有する反応容器室
に高温の熱媒が流通され、第2の金属水素化物を
有する反応容器室に中温の熱媒が流通されること
を特徴とするヒートポンプ装置。
[Claims] 1. Using first and second metal hydrides having different equilibrium decomposition pressures of hydrogen in the operating temperature range, hydrogen is endothermically released from the first metal hydride, and this hydrogen is released into the second metal hydride. exothermically occluded in the metal hydride of
Next, in a heat pump device in which hydrogen is endothermically released from a second metal hydride and hydrogen is exothermically occluded in a first metal hydride, the heat pump device includes: (a) a closed container; (b) The airtight container is divided into four airtight or liquid-tight sections by a partition plate extending in the axial direction of the airtight container.
(c) A heat transfer pipe for supplying a heat medium to each reaction vessel chamber, which is attached to the wall of the closed vessel facing each reaction vessel chamber; one metal hydride is filled in the other reaction vessel, the other reaction vessel is filled with a second metal hydride, and the respective reaction vessels are arranged in adjacent reaction vessel chambers and communicated with each other through a hydrogen communication pipe, and a reaction vessel forming a working pair in which hydrogen can only be transferred between both reaction vessels, the number of working pairs is an even number, and a reaction vessel filled with a first metal hydride is disposed. A reaction vessel filled with a first metal hydride and a reaction vessel filled with a second metal hydride forming a different working pair are disposed in adjacent reaction vessel chambers different from each other. A reaction vessel filled with a second metal hydride forming a different working pair is disposed in a different adjacent reaction vessel chamber, and the equilibrium decomposition pressure of hydrogen in the operating temperature range is the second metal hydride is higher than the first metal hydride, and the closed vessel and the reaction vessel chamber are relatively movable between the first predetermined position and the second predetermined position. At the first predetermined position, a high-temperature heating medium is passed through the reaction vessel chamber containing the first metal hydride in the first working pair, and the second metal hydride is supported in a first predetermined position. A medium-temperature heating medium is passed through the reaction vessel chamber, and at the same time, a medium-temperature heating medium is passed through the reaction vessel chamber containing the first metal hydride in the second working pair, and the reaction vessel containing the second metal hydride is passed through the reaction vessel chamber containing the second metal hydride. A low-temperature heat medium is passed through the chamber, and the second
At the predetermined position of the first working pair, a medium temperature heating medium is passed through the reaction vessel chamber containing the first metal hydride, and a low temperature heating medium is passed through the reaction vessel chamber containing the second metal hydride. At the same time, in the second working pair, a high-temperature heating medium is passed through the reaction vessel chamber containing the first metal hydride, and an intermediate-temperature heat medium is passed through the reaction vessel chamber containing the second metal hydride. A heat pump device featuring:
JP19008282A 1982-10-28 1982-10-28 Heat pump device Granted JPS5981469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19008282A JPS5981469A (en) 1982-10-28 1982-10-28 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19008282A JPS5981469A (en) 1982-10-28 1982-10-28 Heat pump device

Publications (2)

Publication Number Publication Date
JPS5981469A JPS5981469A (en) 1984-05-11
JPS6327624B2 true JPS6327624B2 (en) 1988-06-03

Family

ID=16252061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19008282A Granted JPS5981469A (en) 1982-10-28 1982-10-28 Heat pump device

Country Status (1)

Country Link
JP (1) JPS5981469A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112592A (en) * 2008-11-05 2010-05-20 Suri-Ai:Kk Sorption type cooling device and heat switching device
WO2011141970A1 (en) * 2010-05-14 2011-11-17 Three Eye Co., Ltd. Sorption type cooler
WO2013069063A1 (en) * 2011-11-10 2013-05-16 Three Eye Co., Ltd. Sorption air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721267A (en) * 1980-07-15 1982-02-03 Nippon Kokan Kk <Nkk> Wet-blast process
JPS5792670A (en) * 1980-11-29 1982-06-09 Sekisui Chemical Co Ltd Heat pump apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721267A (en) * 1980-07-15 1982-02-03 Nippon Kokan Kk <Nkk> Wet-blast process
JPS5792670A (en) * 1980-11-29 1982-06-09 Sekisui Chemical Co Ltd Heat pump apparatus

Also Published As

Publication number Publication date
JPS5981469A (en) 1984-05-11

Similar Documents

Publication Publication Date Title
EP0071271B1 (en) Metal hydride heat pump system
US4402915A (en) Metal hydride reactor
JPH07501394A (en) Cooling equipment for electronic and computer components
JPS61201996A (en) Heat-pipe type hydrogen storage device
JPS6327624B2 (en)
US5083607A (en) Devices for producing cold and/or heat by solid-gas reaction managed by gravitational heat pipes
KR20110059477A (en) The medical cold/heat machine
JPH0121432B2 (en)
US5445217A (en) Device for the production of cold and/or heat by solid-gas reaction
US5720337A (en) Finned thermal energy storage device
JP2000045926A (en) Hydraulic power generation
JPS635658B2 (en)
JPS6231239B2 (en)
US6000463A (en) Metal hydride heat pump
JPS6231238B2 (en)
JPS6329182B2 (en)
JPH0445746B2 (en)
JPH02259375A (en) Cooling apparatus using metal hydride
JPS58173358A (en) Metal hydride device
JPH0610568B2 (en) Heat pump device
JPS5935002A (en) Device of metal hydride
JPS633233B2 (en)
JPH0120346B2 (en)
JPH03105172A (en) Cooling device utilizing metal hydride
JPS6047515B2 (en) metal hydride equipment