JPS63275129A - Object shape inspection method - Google Patents

Object shape inspection method

Info

Publication number
JPS63275129A
JPS63275129A JP10978287A JP10978287A JPS63275129A JP S63275129 A JPS63275129 A JP S63275129A JP 10978287 A JP10978287 A JP 10978287A JP 10978287 A JP10978287 A JP 10978287A JP S63275129 A JPS63275129 A JP S63275129A
Authority
JP
Japan
Prior art keywords
wedge
luminous flux
loop
metal thin
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10978287A
Other languages
Japanese (ja)
Inventor
Fumiaki Uchida
内田 文明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10978287A priority Critical patent/JPS63275129A/en
Publication of JPS63275129A publication Critical patent/JPS63275129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To determine accurately a loop shape, and improve the degree of labor saving and quality reliability, by a method wherein an aggregate of luminous flux in the form of a wedge having a small nose angle and different color tones is formed by an optical system to illuminate a metal thin wire loop, whose image is sensed and subjected to an image processing to judge the loop shape. CONSTITUTION:When a luminous flux 3 in the form of a wedge having neighboring luminous fluxes 1..., 2..., which have the same focus 6 and show red and blue, is radiated on metal thin wires 4 and 6, an image of the metal thin wires is obtained, in which two colors are alternately arranged. That is, the parallel luminous flux of a laser beam 16 is turned into a grating type by a color streaking filter, and extended in one direction by a convex lens 20. When this luminous flux is again converged in one direction by a convex lens 21, a plurality of wedge type luminous fluxes are obtained. By applying a half-mirror 22, the wedge type luminous flux 3 is divided into beams, and these divided fluxes are projected on the whole part of a metal thin wire loop 4a-4e arranged on a pellet 23 surface. The reflected light is sensed by a camera 23, and the obtained image data are subjected to operational processing by a processing equipment 24, to judge the quality. Thereby, automation is enabled, and the reliability of inspection can be improved, because the quantitative assay for reference is enabled.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体素子に適用している目視による検査工
程を自動化するもので、特に熱圧着工程によって形成す
る金属細線のループ形状の全数検査に使用するものであ
る。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is for automating the visual inspection process applied to semiconductor devices, and in particular for automating the visual inspection process applied to semiconductor devices. This is used for 100% inspection of loop shapes.

(従来の技術) 半導体産業ではご多聞に洩れず、自動化の波が挿寄せて
おり、又最近の厳しい経済環境に由来するC、Dにも寄
与するためにも各種の自動化が要求されその開発が進め
られている。
(Conventional technology) As is often the case in the semiconductor industry, there is a wave of automation, and in order to contribute to C and D caused by the recent harsh economic environment, various types of automation are required and development is required. is in progress.

集積回路素子に適用している熱圧着工程の検査としては
大別して金属細線検査とボール検査があるが、後者につ
いてはX、Y方向に形成した面を移動することによって
判別できるので比較的に自動化が進められているのに対
して熱圧着工程によって得られる金属細線のループ形状
検査は3次元形状が対象となるために自動化が困難であ
って、目視検査に頼っているのが実情である。
Inspections for the thermocompression bonding process applied to integrated circuit devices can be roughly divided into fine metal wire inspection and ball inspection, but the latter is relatively automated as it can be determined by moving the plane formed in the X and Y directions. In contrast, loop shape inspection of thin metal wires obtained by thermocompression bonding processes is difficult to automate because the object is a three-dimensional shape, and the reality is that the loop shape inspection relies on visual inspection.

マニュアルによる目視検査は、判定基準に個人差がある
ことや、このループを上からしか見られないために正確
な検査は極めて難かしく、更に抜き取り検査によるため
検査の信頼性には自ずがら限界があり、この目視検査は
、半導体装置の全組、 立て工程を自動化することが大
きな妨げになっている。
Manual visual inspection is extremely difficult to perform accurately because there are individual differences in the judgment criteria and the loop can only be seen from above, and the reliability of the inspection is naturally limited because it involves sampling. However, this visual inspection is greatly hindered by the automation of all semiconductor device assembly and assembly processes.

(発明が解決しようとする問題点) このような目視検査では作業者による判定基準を定量化
し難いし、限度見本によるために検査に個人差が出る。
(Problems to be Solved by the Invention) In such a visual inspection, it is difficult to quantify the criteria for judgment by the operator, and since limit samples are used, there are individual differences in the inspection.

更に、作業者の体調が先入観等によって判断基準が変り
、長時間の作業では疲れによって見過ごしが出、更に又
、ループ形状を正確に把握することが難かしい。
Furthermore, judgment criteria change depending on the worker's physical condition and preconceived notions, and when working for a long time, fatigue may lead to oversights, and furthermore, it is difficult to accurately grasp the loop shape.

この検査は前述のように抜取りであるので信頼性が十分
とは言えず、組立工程全般のシステム化更には、全ライ
ン自動化にとって大きなネックとなっている。
As mentioned above, since this inspection is based on sampling, it cannot be said to be sufficiently reliable, and this is a major bottleneck in systematizing the entire assembly process and automating the entire line.

本発明は上記難点を除去する新規な物体形状の検査方法
を提供するもので、特に省力化及び品質信頼性の向上を
図り、ボンディング装置及び上位コンピュータとの接続
によってボンディング装置の製造状況管理や検査結果デ
ータの蓄積による統計的品質管理を可能にすることを目
的とするものである。
The present invention provides a novel object shape inspection method that eliminates the above-mentioned difficulties.In particular, it aims to save labor and improve quality reliability, and enables manufacturing status management and inspection of bonding equipment by connecting the bonding equipment and a host computer. The purpose is to enable statistical quality control by accumulating result data.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 半導体素子に必要な熱圧着工程を終えた後に、この半導
体素子をダイボンディングしたリードフレームを所定の
位置に搬送してから位置決めを行い、この熱圧着工程に
よって取着けた金属細線のループを照射する光学系を配
置する。
(Means for solving the problem) After finishing the thermocompression bonding process necessary for the semiconductor element, the lead frame to which the semiconductor element is die-bonded is transported to a predetermined position and then positioned. An optical system is placed to illuminate the attached loop of thin metal wire.

この光学系としては刃先角が小さくかつ色調の異なるく
さび状の光束の集合体を形成し、これによって前記金属
細線のループを撮像し、この画像処理によって、ループ
形状の判定を行う寸法を採用する。
This optical system forms a wedge-shaped collection of light beams with a small cutting edge angle and different tones, and uses this to image the loop of the thin metal wire, and through image processing, the shape of the loop is determined. .

(作  用) 光学系としては、前述のようにくさび状の光束を利用し
ており、しかもこの隣接する光束は色調が異なるものを
適用している。と言うのは金属細線に写し出される明暗
を利用することも想定されるが、暗部と異常個所が一致
した場合には検出不能になる難点は避けられないので、
色調の異なる−  光束を採用する。
(Function) As described above, the optical system uses a wedge-shaped light beam, and the adjacent light beams have different color tones. Although it is possible to use the brightness and darkness reflected on the thin metal wire, there is an unavoidable problem that if the dark area and the abnormal area match, it will become undetectable.
Adopt different tones of luminous flux.

しかも、金属細線に写し出される色調の相違は、そのル
ープ高さの変化に対応するのでこれを撮像して得られる
画像データを処理することによって高さを求めることが
可能となる。
Moreover, since the difference in color tone projected on the thin metal wire corresponds to the change in the loop height, it is possible to determine the height by processing the image data obtained by imaging this.

そこで目視検査に頼っていたのを自動化でき、しかもそ
の良否判定の定量化ひいては信頼性の高い形状検査を提
供するもので、この照明光学系の光源にレーザー光を利
用すると直径2〜3項程度までの金属細線が検出限界と
なる。
Therefore, it is possible to automate the reliance on visual inspection, quantify the pass/fail judgment, and provide highly reliable shape inspection.If a laser beam is used as the light source of this illumination optical system, the diameter will be approximately 2 to 3 diameters. The detection limit is a thin metal wire up to

(実 施 例) 第1図ならびに第4図イ2口により本発明の実施例を詳
述する。
(Embodiment) An embodiment of the present invention will be described in detail with reference to FIG. 1 and FIG.

第4図イに示すように、焦点6を同じにして赤と青を示
す隣接する光束1・・・、2・・・をもつくさび状光束
−β−を金属細線4.5に照射すると、2色が交互に配
列した金属細線の画像が得られる。(第4図口) この画像でその相対的な位置関係は金属細線ループの高
さの変化を示すことになり、即ち金属細線ループの高い
位置はくさび状光束の幅の広い部分を横切るので光が照
射される部分7は長く、又金属細線4では中央部が低い
位置にあってくさび状光束の狭い部分を横切るので光が
照射される部分は短くなる。
As shown in FIG. 4A, when the thin metal wire 4.5 is irradiated with a wedge-shaped light beam -β- having the same focus 6 and adjacent light beams 1..., 2... showing red and blue, An image of thin metal wires in which two colors are alternately arranged is obtained. (Figure 4 mouth) In this image, the relative positional relationship shows the change in the height of the metal thin wire loop. In other words, the high position of the metal thin wire loop crosses the wide part of the wedge-shaped light beam, so it emits light. The portion 7 to which the light is irradiated is long, and since the central portion of the thin metal wire 4 is at a low position and crosses the narrow portion of the wedge-shaped light beam, the portion 7 to be irradiated with light is short.

又、この金属細線4,5にくさび状光束Aを確実に照射
するために、紙面と垂直な方向に充分な厚みをもつよう
にする。このくさび状光束菱は、第2図に示す光学系に
よって得られる。
In addition, in order to reliably irradiate the thin metal wires 4 and 5 with the wedge-shaped light beam A, they are made to have a sufficient thickness in the direction perpendicular to the plane of the paper. This wedge-shaped beam diamond is obtained by the optical system shown in FIG.

図に示すようにレーザー光源15よりレーザービーム1
6を発生させ、これをポリゴンミラー17によって扇状
に広げ1次に凸レンズ18で板状の平行光束を作ってか
ら色縞フィルター19によって光束を格子状にし、その
格子状光束を凸レンズ2oで、一方向に拡げる。そして
凸レンズ21によりその光束を再び一方向に絞ることに
より、複数のくさび状光束附を得ることができるし、こ
の色縞フィルター19の設置により凸レンズ20.21
で得られる色調を夫々示した。
As shown in the figure, a laser beam 1 is emitted from a laser light source 15.
6 is spread in a fan shape by a polygon mirror 17, first, a plate-shaped parallel light beam is created by a convex lens 18, the light beam is made into a lattice shape by a color stripe filter 19, and the lattice-shaped light beam is unified by a convex lens 2o. Expand in the direction. By focusing the light beam in one direction again using the convex lens 21, a plurality of wedge-shaped light beams can be obtained.By installing the color stripe filter 19, the convex lens 20.
The color tones obtained are shown below.

このくさび状光束王を用いた検査システムを第3図に示
すと、ハーフミラ−22を使用してくさび状光束立をビ
ーム分割し、この分割した光束をぺレット23表面に配
線した金属細線ループ4a〜4e全体を照射してその反
射光をカメラ23で撮像する。
FIG. 3 shows an inspection system using this wedge-shaped light beam. A half mirror 22 is used to split the wedge-shaped light beam into beams, and the divided light beams are wired into a thin metal wire loop 4a on the surface of the pellet 23. 4e is irradiated and the reflected light is imaged by the camera 23.

この場合、ハーフミラ−22を適用しているので、くさ
び状光束主の照射方向と同一方向からカメラ23によっ
て撮像するので、正確な観測が可能となり、この金属細
線画像が入力されて、次にこの画像データは処理装置2
4で演算処理されて、ループ形状の良否が判断される。
In this case, since the half mirror 22 is applied, the image is taken by the camera 23 from the same direction as the main irradiation direction of the wedge-shaped light beam, so accurate observation is possible. Image data is processed by processing device 2
In step 4, arithmetic processing is performed to determine whether the loop shape is good or bad.

この画像処理装置24ではこのカメラ画像を2値化回路
(図示せず)により2値画像とし、それに基づく下記の
演算によって、ループの高さを求める。
In the image processing device 24, this camera image is converted into a binary image by a binarization circuit (not shown), and the height of the loop is determined by the following calculation based on the converted image.

このくさび状光束主の断面境界線は、それぞれ焦点距離
等の光学系のパラメーターによって次の式で表わされる
The cross-sectional boundary line of the main wedge-shaped light beam is expressed by the following equation based on the parameters of the optical system such as the focal length.

zn=anXn+bn こ\でanyt’nは光学系の構成、配置で決まる定数
、nはくさび状光束の各断面境界線、Xnは金属細線破
線の端点X座標値例えば第1図に示す25点の高さZ、
は]0の左端点父座標値X1とすると、Z1=a、X□
十b1 となり、同様な演算を他の魚についても実施することに
よって、各点の高さを求めることができる。
zn = an height Z,
]0's left end point parent coordinate value X1, then Z1=a, X□
By performing similar calculations for other fish, the height of each point can be determined.

この場合、どの−次式を使用するかは線分のスタートか
らの順番を注意しておくことが必要であり、この説明で
は、二色で行ったが3〜4色と増やすと番を間違える危
険性が/J1さくなる。
In this case, it is necessary to pay attention to the order of the line segments from the start when deciding which - next formula to use.In this explanation, we used two colors, but if you increase the number to 3 or 4 colors, you may get the wrong number. The danger is /J1 less.

ところで、金属細線の切れ12.13については、合成
画像11より簡単に検出できるものの、その部分の高さ
は正確に出なくなる。
Incidentally, although the breaks 12 and 13 in the thin metal wire can be detected more easily than in the composite image 11, the height of the parts cannot be accurately determined.

この光学系としてはレーザビームに対して交叉する方向
にポリゴンミラーなどを配置する例を示したが、このレ
ーザービームに沿った方向に高価なポリゴンミラーを使
用せず、レンズのみでくさび状光束を得ることができる
ことを記す。
As an example of this optical system, we have shown an example in which a polygon mirror or the like is placed in a direction that intersects the laser beam, but instead of using an expensive polygon mirror in the direction along the laser beam, a wedge-shaped light beam is generated using only a lens. Write down what you can get.

〔発明の効果〕〔Effect of the invention〕

この方法によると、自動化が可能となり、しかも判定基
準の定量化ができるので検査の信頼性が向上するし、抜
き取り検査を全数検査に転換して信頼性があげられる。
According to this method, automation is possible, and the criteria can be quantified, so the reliability of the inspection is improved, and the reliability can be increased by converting the sampling inspection to a 100% inspection.

−7−・ 更にオンラインが可能となってボンディング工程への早
期フィードバックができ、更には上位コンピュータへの
接続による統計的検査データ管理ができることになり、
量産上の効果極めて大きい。
-7-・ In addition, it is now possible to go online and provide early feedback to the bonding process, and furthermore, it is possible to manage statistical inspection data by connecting to a host computer.
The effect on mass production is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属細線ループの演算方向を説明する図、第2
図はくさび状光束を発生する光学系構造を示す図、第3
図はこの方法を適用する装置の構成図、第4図イ9口は
この方法を金属細線ループに実施する原理を説明する図
である。
Figure 1 is a diagram explaining the calculation direction of the thin metal wire loop, Figure 2
The figure shows the structure of the optical system that generates a wedge-shaped light beam.
The figure is a block diagram of an apparatus to which this method is applied, and FIG. 4A-9 is a diagram illustrating the principle of applying this method to a thin metal wire loop.

Claims (1)

【特許請求の範囲】[Claims] 半導体素子に設ける電極に金属細線を熱圧着する手段と
、この金属細線を他の接続点に熱圧着する手段と、この
金属細線のループを照射する光学系を配置する手段と、
この光学系に刃先角が小さくかつ色調の異なるくさび状
光束の集合体を形成する手段と、この色調の異なるくさ
び状光束により前記金属細線のループを撮像する手段と
、この画像の処理により前記金属細線ループ形状の判定
を行う手段とを具備することを特徴とする物体形状の検
査方法。
means for thermocompression bonding a thin metal wire to an electrode provided on a semiconductor element; means for thermocompression bonding the thin metal wire to another connection point; means for arranging an optical system for irradiating the loop of the thin metal wire;
This optical system includes a means for forming a collection of wedge-shaped light beams with a small cutting edge angle and different tones, a means for imaging the loop of the thin metal wire with the wedge-like light beams having different tones, and a means for imaging the loop of the thin metal wire by processing this image. 1. A method for inspecting the shape of an object, comprising means for determining the shape of a thin wire loop.
JP10978287A 1987-05-07 1987-05-07 Object shape inspection method Pending JPS63275129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10978287A JPS63275129A (en) 1987-05-07 1987-05-07 Object shape inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10978287A JPS63275129A (en) 1987-05-07 1987-05-07 Object shape inspection method

Publications (1)

Publication Number Publication Date
JPS63275129A true JPS63275129A (en) 1988-11-11

Family

ID=14519084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10978287A Pending JPS63275129A (en) 1987-05-07 1987-05-07 Object shape inspection method

Country Status (1)

Country Link
JP (1) JPS63275129A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37740E1 (en) 1988-02-19 2002-06-11 Kla-Tencor Corporation Method and apparatus for optical inspection of substrates
JP2010019657A (en) * 2008-07-10 2010-01-28 Rozefu Technol:Kk Inspection device using color illumination
JP2021056058A (en) * 2019-09-30 2021-04-08 三菱電機株式会社 Semiconductor manufacturing inspection device
US20220115253A1 (en) * 2020-10-14 2022-04-14 Emage Equipment Pte. Ltd. Loop height measurement of overlapping bond wires

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37740E1 (en) 1988-02-19 2002-06-11 Kla-Tencor Corporation Method and apparatus for optical inspection of substrates
JP2010019657A (en) * 2008-07-10 2010-01-28 Rozefu Technol:Kk Inspection device using color illumination
JP2021056058A (en) * 2019-09-30 2021-04-08 三菱電機株式会社 Semiconductor manufacturing inspection device
US20220115253A1 (en) * 2020-10-14 2022-04-14 Emage Equipment Pte. Ltd. Loop height measurement of overlapping bond wires
US11721571B2 (en) * 2020-10-14 2023-08-08 Emage Vision Pte. Ltd. Loop height measurement of overlapping bond wires

Similar Documents

Publication Publication Date Title
KR101319682B1 (en) Automatic repair of electric circuits
TWI658524B (en) System and method for inspecting a wafer (1)
KR20220033510A (en) Method and system for detecting and classifying defects using X-rays
WO2014104191A1 (en) Charged particle beam device and method for analyzing defect therein
JP4109799B2 (en) Manufacturing method of semiconductor device
JPS63275129A (en) Object shape inspection method
JPH063123A (en) Method and equipment for visual inspection
JP3272998B2 (en) Bump height pass / fail judgment device
JP2019141529A (en) Test device for game machine, test method for game machine and method of manufacturing game machine
JP3875600B2 (en) Image production method
JP2720759B2 (en) Automatic bonding wire inspection system
JP2000311924A (en) Method and apparatus for visual inspection
US10466179B2 (en) Semiconductor device inspection of metallic discontinuities
JP2006098093A (en) Substrate inspection device, substrate inspection method, inspection logic forming device of substrate inspection device and inspection logic forming method
JP3314217B2 (en) Appearance inspection device
JPS63158847A (en) Inspection device for semiconductor
JP3803677B2 (en) Defect classification apparatus and defect classification method
JPH10112469A (en) Wirebonding inspection device
JPH11352073A (en) Foreign matter inspection method and apparatus thereof
JPH0251007A (en) Apparatus for inspecting shape of linear object
JPS63243805A (en) Body shape inspecting device
JP3348059B2 (en) Method for manufacturing semiconductor device
JPS6336543A (en) Method and apparatus for automatic inspection of semiconductor device
JPH0329807A (en) Discriminating method of quantity of solder by image processing
US20060147103A1 (en) Device for identifying a structure to be applied to a substrate, and corresponding methods