JPS63274706A - Production of metallic fine powder - Google Patents

Production of metallic fine powder

Info

Publication number
JPS63274706A
JPS63274706A JP10938987A JP10938987A JPS63274706A JP S63274706 A JPS63274706 A JP S63274706A JP 10938987 A JP10938987 A JP 10938987A JP 10938987 A JP10938987 A JP 10938987A JP S63274706 A JPS63274706 A JP S63274706A
Authority
JP
Japan
Prior art keywords
reaction
solution
reducing agent
metal
water solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10938987A
Other languages
Japanese (ja)
Other versions
JPH0372683B2 (en
Inventor
Hiroshi Kawakami
浩 川上
Mitsuharu Mori
森 充玄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP10938987A priority Critical patent/JPS63274706A/en
Publication of JPS63274706A publication Critical patent/JPS63274706A/en
Publication of JPH0372683B2 publication Critical patent/JPH0372683B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce metallic fine powder having the desired grain size under high yield by further adding metallic ion, reducing agent and pH conditioner after executing reduction reaction by adding reaction initiator to mixed water solution of the metallic ion, reducing agent and complexing agent. CONSTITUTION:The complexing agent water solution (citric acid, etc., about 0.01-1mol./l concn.) adjusted to the prescribed pH, is heated to >=about 50 deg.C and the metallic salt water solution (Ni, copper, etc.,) and the reducing agent water solution (sodium hypophosphite, etc.,) are added at suitable quantity and further a little quantity of the reaction initiator is added to execute reduction reaction of the metal. At the time of completing the reaction, further as the same way as the above, the metallic salt water solution and the reducing agent water solution are dripped at the fixed dripping speed to continue the reaction and pH in the solution during reaction is adjusted. When the dripping and the reaction complete, the solution is filtrated and after repulping-washing the filtrated residue, it is dried. By this method, the metallic powder having the desirable grain size and extremely stable quality with a little impurity is produced under good productivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属微粉末の製造法に関し、特に所望の粒径の
金属微粉末な高収率で製造する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing fine metal powder, and particularly to a method for producing fine metal powder having a desired particle size in high yield.

[従来の技術] 従来、金属微粉末の製造法には化学的方法と物理的方法
が知られている。
[Prior Art] Conventionally, chemical methods and physical methods are known as methods for producing fine metal powder.

化学的方法には、金属を加熱揮発させ、還元雰囲気下で
金属蒸気を來縮させる気相法および金属塩溶液中に還元
剤を添加し、金属粉末を得る沈澱法(特開昭60−23
8406号公報)等がある。しかしながら、気相法は設
備が高価で生産性が低く経済的ではなく、また沈澱法は
薬剤の利用率が低く、大量の純水を消費し、反応初期と
終期の液組成が大巾に変化するので、生成する金属粉末
が均質でなく、生成する粒子も細か過ぎて(例えば、0
.O1〜0.03p−s )回収作業が困難となり、生
産性も低〈、いずれも実用的でない。
Chemical methods include a gas phase method in which the metal is heated to volatilize and metal vapor is condensed in a reducing atmosphere, and a precipitation method in which a reducing agent is added to a metal salt solution to obtain metal powder (Japanese Patent Laid-Open No. 60-23
No. 8406), etc. However, the gas phase method requires expensive equipment, low productivity, and is not economical, and the precipitation method has a low chemical utilization rate, consumes a large amount of pure water, and the liquid composition changes drastically between the initial and final stages of the reaction. Therefore, the metal powder produced is not homogeneous, and the particles produced are too fine (for example, 0
.. O1~0.03 p-s) Recovery work becomes difficult and productivity is low (neither is practical.

その他の化学的方法の中には、主として金属銅微粉末を
製造する方法としで、金属塩溶液の電解法があるが、こ
の方法では金属銅微粉末に酸素や電解液が混入したり、
粒径が不揃いで大きい(例えば、10〜al(IILs
)ものが得られる。また、酸化銅および亜酸化銅の水溶
液を還元する方法があるが、この方法では純度も高く粒
径も1終■程度のものが得られるが、要求に応じた任意
の粒径のものを得ることが困難な欠点がある。
Among other chemical methods, there is a metal salt solution electrolysis method, which is mainly used to produce fine metallic copper powder, but this method does not allow oxygen or electrolyte to mix into the fine metallic copper powder.
The particle size is irregular and large (for example, 10~al(IILs)
) get something. In addition, there is a method of reducing an aqueous solution of copper oxide and cuprous oxide, but with this method, particles with high purity and a particle size of about 1 mm can be obtained, but particles with any particle size can be obtained according to the requirements. There are drawbacks that make it difficult.

他方、物理的方法には2金属を機械的に粉砕する方法、
溶融金属をWA霧冷却する方法等があるが、いずれも微
粉末を得る事は困難であり、粉末表面が酸化されるため
導電性が悪く1粒度分布も広く、粒度分布の狭い任意の
粒径のものを得るためには分級等の操作が必要となり、
結果的に高価となる。
On the other hand, physical methods include mechanically crushing two metals;
There are methods such as WA mist cooling of molten metal, but it is difficult to obtain fine powder in either method, and the powder surface is oxidized, resulting in poor conductivity and a wide particle size distribution. In order to obtain this, operations such as classification are required.
As a result, it becomes expensive.

[発明が解決しようとする問題点] 本発明はこの様な従来技術に鑑みてなされたものであり
、水系化学還元法により、粒度範囲の規ルノされた所望
のa径を有し、品質が極めて安定した不純物の少ない金
属微粉末を生産性が高く、高収率で製造する方法を提供
することを目的とするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned prior art, and uses an aqueous chemical reduction method to obtain particles with a desired a diameter within a defined particle size range and with good quality. The object of the present invention is to provide a method for producing extremely stable metal fine powder with few impurities with high productivity and high yield.

[171題点を解決するための手段] 即ち3本発明は金属イオン、還元剤および錯化剤よりな
る混合水溶液中に反応開始剤を添加しで、還元反応を生
ぜしめた後、金属イオン、還元剤および911調整剤を
添加することを特徴とする金属微粉末の製造法に係わる
ものである。
[Means for Solving Problem 171] Namely, the present invention involves adding a reaction initiator to a mixed aqueous solution consisting of metal ions, a reducing agent, and a complexing agent to cause a reduction reaction, and then adding metal ions, The present invention relates to a method for producing fine metal powder, which is characterized by adding a reducing agent and a 911 regulator.

以下1本発明の詳細な説明する。Hereinafter, one aspect of the present invention will be explained in detail.

本発明に係わる金属微粉末の製造法は、まず第1工程に
おいで、金属イオンが還元反応を起こし易いpHに調整
した錯化剤水溶液を、50℃以上、好ましくは60℃〜
沸点に加温し、予め溶解した金属塩水溶液及び還元剤水
溶液を適量、前記錯化剤水溶液に添加し、さらに少量の
反応開始剤を加えて金属の還元反応を開始させる。
In the method for producing fine metal powder according to the present invention, in the first step, a complexing agent aqueous solution adjusted to a pH at which metal ions easily undergo a reduction reaction is heated at 50°C or higher, preferably at 60°C or higher.
Appropriate amounts of a pre-dissolved metal salt aqueous solution and a reducing agent aqueous solution are added to the complexing agent aqueous solution after heating to the boiling point, and a small amount of a reaction initiator is further added to initiate a metal reduction reaction.

金属イオンとしては、特に限定することなく広範囲のも
のが使用でき、例えばニッケルイオン、銅イオン、鉄イ
オン、コバルトイオン、銀イオン、金イオン等が用いら
れ、各金属イオンに相当する金属微粉末が得られるが、
これ等の中で特に二・ンケルイオンおよび銅イオンが一
般的である。
A wide range of metal ions can be used without particular limitation, such as nickel ions, copper ions, iron ions, cobalt ions, silver ions, gold ions, etc., and fine metal powders corresponding to each metal ion are used. You can get it, but
Among these, the di-linker ion and the copper ion are particularly common.

また、金属イオンには2種以上の金属イオンを用いるこ
ともでき、この場合には合金の金属微粉末を得ることが
できる。さらに、前記金属イオンは使用する還元剤の選
択により、Xl−P、 Ni−8合金等を得ることがで
きる。
Moreover, two or more types of metal ions can be used as the metal ions, and in this case, an alloy metal fine powder can be obtained. Furthermore, the metal ion can be used to obtain Xl-P, Ni-8 alloy, etc. by selecting the reducing agent used.

錯化剤としては、クエン酸、リンゴs6乳酸。Complexing agents include citric acid and apple S6 lactic acid.

酒石酸、グルコン酸等のオキシカルボン猷またはそのア
ルカリ金属塩、アンモニアまたは硫酸アンモニウム、塩
化アンモニウム等のアンモニウム塩、エチレンジアミン
、エチルアミン、 EDTA等のアミン化合物、ビロリ
ン酸、ヘキサメタりん酸。
Oxycarboxylic acid or its alkali metal salts such as tartaric acid and gluconic acid, ammonium salts such as ammonia or ammonium sulfate and ammonium chloride, amine compounds such as ethylenediamine, ethylamine and EDTA, birophosphoric acid and hexametaphosphoric acid.

トリポリりん酸のアルカリ金属塩等のりん酸塩化合物、
グリシン等のアミノ酸、シアン化合物の中から選ばれた
1、!!以上の化合物が用いられる。
phosphate compounds such as alkali metal salts of tripolyphosphate;
1 selected from amino acids such as glycine and cyanide compounds,! ! The above compounds are used.

錯化剤水溶液のphiは1反応に使用する還元剤の種類
により決定される範囲に調節する0例えば。
The phi of the complexing agent aqueous solution is adjusted to a range determined by the type of reducing agent used in one reaction, for example 0.

還元剤に次亜リン酸塩を用いる場合はpH4〜8゜水素
化ほう素アルカリ、ヒドラジン又はホルマリンを用いる
場合はpH8〜13にXl節する。
When hypophosphite is used as the reducing agent, the pH is adjusted to 4 to 8 degrees, and when an alkali boron hydride, hydrazine or formalin is used, the pH is adjusted to 8 to 13.

錯化剤水溶液の濃度は0.1)1〜1 mol/Rが適
当であり、0.Olmoj)/j’未満では金属イオン
の化合物、例えば木醜化物や亜りん酸塩等が沈澱し易く
なり、  l mol!/Rをこえると必要以上の錯化
剤を使用するので不経済となる。
The appropriate concentration of the complexing agent aqueous solution is 0.1)1 to 1 mol/R; If the value is less than l mol! When /R is exceeded, more complexing agent than necessary is used, which becomes uneconomical.

本発明に3いで、金属イオン、還元剤および錯化剤を混
合する方法としては、金属塩および還元剤を予め適量錯
化剤溶液に添加溶解しておくか。
In the method of mixing metal ions, reducing agents, and complexing agents in step 3 of the present invention, appropriate amounts of metal salts and reducing agents may be added and dissolved in a complexing agent solution in advance.

或いは金属塩水溶液及び還元剤水溶液を別にそれぞれ溶
解調整したものを、錯化剤溶液に適量添加すればよいが
、必ずしもこれ等の方法に限定されるものではない0次
いで、反応開始剤を少量添加し反応を開始させる。
Alternatively, an appropriate amount of a metal salt aqueous solution and a reducing agent aqueous solution prepared separately may be added to the complexing agent solution, but the method is not necessarily limited to these methods.Next, a small amount of a reaction initiator may be added. and start the reaction.

次いで、第2工程においで、前記反応がおさまった後1
例えば発泡現象がおさまった後、前記と同様の金属塩水
溶液および還元剤水溶液を一定の滴下速度で滴下し反応
を続行させる1反応中、溶液のpHは自動調節装置また
はそれに準する方法により、pl+調節剤として水酸化
カリウム、水酸化ナトリウム水溶液等を添加して始めの
pHに保持させる。
Then, in the second step, after the reaction has subsided, 1
For example, after the bubbling phenomenon has subsided, the same metal salt aqueous solution and reducing agent aqueous solution are added dropwise at a constant dropping rate to continue the reaction. During one reaction, the pH of the solution is adjusted to pl+ by an automatic adjustment device or a similar method. Potassium hydroxide, sodium hydroxide aqueous solution, etc. are added as a regulator to maintain the initial pH.

滴下が終了し反応完了後、溶液を濾過し、濾過残渣をリ
パルプ洗浄した後乾燥することにより金属微粉末を得る
ことができる。
After the dropping is completed and the reaction is completed, the solution is filtered, the filtration residue is repulped and washed, and then dried to obtain a fine metal powder.

本発明においで、金属塩は、目的とする金属イオンを有
する化合物が用いられ、例えばニッケルイオンの場合に
は塩化ニッケル、硫酸ニッケル、硝酸ニッケル等のニッ
ケル塩、また銅イオンの場合には硫醜銅、硝酸銀等の銅
塩、さらに銀イオンの場合にはシアン化銀、硝酸銀等が
用いられる。
In the present invention, the metal salt used is a compound having the target metal ion, for example, in the case of nickel ions, nickel salts such as nickel chloride, nickel sulfate, and nickel nitrate, and in the case of copper ions, nickel salts such as nickel chloride, nickel sulfate, and nickel nitrate; Copper salts such as copper and silver nitrate are used, and in the case of silver ions, silver cyanide, silver nitrate, etc. are used.

金属塩水溶液の濃度は高い程経済的であり望ましいので
、溶解度近くが用いられる。また、金属塩の添加量は所
望の金属微粉末の粒径により経験的に算出される。
Since the higher the concentration of the metal salt aqueous solution, the more economical and desirable it is, a concentration close to the solubility is used. Further, the amount of the metal salt added is calculated empirically based on the desired particle size of the metal fine powder.

還元剤は次亜りん酸アルカリ、水素化ほう素アルカリ、
アルキルアミンボラン、ヒドラジン、ホルマリン、単糖
類、多糖類、酒石酸等が用いられ、これ等は金属イオン
の種類により適宜選択して使用すればよい。
The reducing agent is alkali hypophosphite, alkali boron hydride,
Alkylamine borane, hydrazine, formalin, monosaccharides, polysaccharides, tartaric acid, etc. are used, and these may be appropriately selected and used depending on the type of metal ion.

還元剤水溶液の濃度も高い程経済的で望ましい。The higher the concentration of the reducing agent aqueous solution is, the more economical and desirable it is.

本発明においで、金属塩と還元剤の使用量の比率は使用
する還元剤により異なる。
In the present invention, the ratio of the amount of the metal salt to the reducing agent used varies depending on the reducing agent used.

まず、ニッケル塩と還元剤については1次亜りん触アル
カリを還元剤として使用する場合、ニッケル塩l■oR
を還元するために次亜りん酸アルカリは2.0〜3.0
■oRを必要とする。
First, regarding nickel salt and reducing agent, when using primary phosphite alkali as reducing agent, nickel salt l■oR
Alkali hypophosphite is 2.0 to 3.0 to reduce
■Requires oR.

水素化ほう素アルカリの場合、同様な理由から、ニッケ
ル塩の1.5〜2.5倍鵬oI!、ヒドラジンの場合は
3〜4倍mallを使用する。
In the case of alkali boron hydride, the concentration is 1.5 to 2.5 times that of nickel salt for the same reason! In the case of hydrazine, use 3 to 4 times the mall.

次に、銅塩と還元剤については、ヒドラジンを還元剤と
して用いる場合、銅塩の1〜2倍moR、ホルマリンを
還元剤として用いる場合、銅塩の2.5〜3.5倍麿o
Rが必要である。
Next, regarding the copper salt and reducing agent, when hydrazine is used as the reducing agent, the moR is 1 to 2 times that of the copper salt, and when formalin is used as the reducing agent, the moR is 2.5 to 3.5 times that of the copper salt.
R is required.

また、銀塩と還元剤については、ヒドラジンの場合は2
〜3倍■oR、ホルマリンの場合は1.5〜3倍■oR
、水素化ほう素アルカリの場合は1〜1.5倍l1of
!、単糖類、多糖類の場合は0.5〜2倍l1Of!が
必要である。
Regarding silver salt and reducing agent, in the case of hydrazine, 2
~3 times ■oR, 1.5 to 3 times ■oR for formalin
, in the case of alkali boron hydride, 1 to 1.5 times l1of
! , for monosaccharides and polysaccharides, 0.5 to 2 times l1Of! is necessary.

pH調整剤には、通常水酸化ナトリウム、水酸化カリウ
ムが使用され、その使用量は初期のplを保持するのに
必要な量であればよく、一般には金属塩の2〜6倍■0
!が使用される。
Sodium hydroxide and potassium hydroxide are usually used as pH adjusters, and the amount used is just the amount necessary to maintain the initial PL, and is generally 2 to 6 times the amount of the metal salt.
! is used.

反応開始剤は、本発明における還元反応を誘起するもの
であれば如何なるものても使用できるが、その具体例を
示すと貴金属イオンおよびそのコロイド、水素化ほう素
アルカリ等が挙げられる。
Any reaction initiator can be used as long as it induces the reduction reaction in the present invention, and specific examples thereof include noble metal ions and their colloids, alkali boron hydrides, and the like.

反応開始剤の添加量は生成する金属微粉末の1/100
0以下が好ましい。
The amount of reaction initiator added is 1/100 of the generated metal fine powder.
It is preferably 0 or less.

反応温度は通常50℃以上、好ましくは60℃〜沸点が
望ましく、50℃未満では反応速度が遅く生産性が低下
するのて好ましくない。
The reaction temperature is usually 50° C. or higher, preferably 60° C. to the boiling point. If it is lower than 50° C., the reaction rate is slow and the productivity is lowered, which is not preferred.

反応液中には、金属塩、還元剤、po調整剤等が含有さ
れているが、必要に応じで、ゼラチンやアラビアゴム等
の保護コロイド、物性改善剤等を加えてもさしつかえな
い。
The reaction solution contains metal salts, reducing agents, PO regulators, etc., but if necessary, protective colloids such as gelatin or gum arabic, physical property improvers, etc. may be added.

反応が完了後、濾過、リパルプ洗浄した後乾燥すること
により金属微粉末を得ることができる。
After the reaction is completed, fine metal powder can be obtained by filtering, repulping, washing, and drying.

この場合、金属微粉末の種類によっては、例えば、銅微
粉末等の酸化され易いものは、微粉末を反応液と分離し
、リパルプ洗浄した後、酸化防止のため真空乾燥器で乾
燥する事が望ましい、また、アルコールやアセトン等の
有機溶剤を用いで、洗沙、脱水処理してもよい、更に、
乾燥前に防錆剤を用いて防錆処理してもさしつかえない
In this case, depending on the type of fine metal powder, for example, if it is easily oxidized such as fine copper powder, it may be necessary to separate the fine powder from the reaction liquid, wash it with repulp, and then dry it in a vacuum dryer to prevent oxidation. Desirable, and may also be washed and dehydrated using an organic solvent such as alcohol or acetone;
It is also possible to apply rust prevention treatment using a rust preventive agent before drying.

以上に説明した製造法により1粒度範囲の規制された所
望の粒径な有する金属微粉末を得ることができるが、特
にニッケル、銅、S又はそれ等を少なくとも181含有
する合金で平均粒子径が0.05〜Igmの範囲の金属
微粉末を容易に得ることが可能である。
By the production method explained above, it is possible to obtain fine metal powder having a desired particle size within a particle size range, but especially when the average particle size is It is possible to easily obtain fine metal powder in the range of 0.05 to Igm.

[作 用] 本発明の金属微粉末の製造法は第1工程においで、金属
イオン、還元剤および錯化剤よりなる混合水溶液中に反
応開始剤を添加することにより、還元反応が誘起されて
金属の核が形成され、次いで第2工程において反応系へ
金属イオンおよび還元剤をpitを調整しながら徐々に
滴下しながら添加することにより、反応液中の金属イオ
ン及び還元剤は常に一定濃度に保持されながら反応は進
行するので、金属の核を次第にll1J長せしめ、粒度
範囲の規制された所望の粒径を有する金属微粒子な高収
率て得ることができるものと推定される。
[Function] In the first step of the method for producing fine metal powder of the present invention, a reduction reaction is induced by adding a reaction initiator to a mixed aqueous solution consisting of metal ions, a reducing agent, and a complexing agent. Metal nuclei are formed, and then in the second step, metal ions and reducing agent are gradually added dropwise to the reaction system while adjusting the pit, so that the metal ions and reducing agent in the reaction solution are always kept at a constant concentration. Since the reaction proceeds while the particles are retained, it is presumed that the metal core can be gradually lengthened by 11J, and fine metal particles having a desired particle size within a controlled particle size range can be obtained in high yield.

[実施例] 以下、実施例および比較例を示し、本発明をさらに具体
的に説明する。
[Example] Hereinafter, the present invention will be explained in more detail by showing Examples and Comparative Examples.

実施例1 第1表に示す各錯化剤水溶液200謹1)中に硫酸ニラ
ケルIOg 、次亜りん酸ソーダ12gを添加溶解した
水H液を、 500m1!ガラスビーカーに取り湯浴上
で90℃に加温した6次に2水素化ほう素ナトリウムの
粉末0.1gを攪拌下の上記溶液に添加した。
Example 1 500ml of aqueous H solution was prepared by adding and dissolving IOg of Nilacel sulfate and 12g of sodium hypophosphite into 200ml of each complexing agent aqueous solution shown in Table 11). 0.1 g of sodium diborohydride powder, which had been placed in a glass beaker and heated to 90° C. on a hot water bath, was added to the above stirring solution.

反応中、溶液のpitは自動TA箇装置を用い、 16
0g/i’水酸化ナトリウム水溶液を滴下し、始めのp
i(に保持させた。
During the reaction, the solution was pitted using an automatic TA device.
0 g/i' sodium hydroxide aqueous solution was added dropwise, and the initial p.
i (held in

反応がおさまり、発泡が少なくなってから。After the reaction has subsided and the foaming has decreased.

l■oR/R硫酸ニッケル水溶液及び2.5■of!1
1次亜りん酸ソーダ水溶液各100g1)を1.6■R
/分の速度で上記反応液に滴下した0反応中、溶液のp
Hは前記同様に常時一定に保持させた0滴下が終り1発
泡も止んでから溶液を濾過し、rp通過物2回りパルプ
水洗した後、真空乾燥器で乾燥してりん一ニッケル合金
の微粉末を得た。得られたりんm=・ンケル合金の微粉
末の収量、反応収率、SEM写真により計測した平均粒
子径、 BET法の表面桔測定による粒子の比表面桔を
第2表に示す。
l■oR/R nickel sulfate aqueous solution and 2.5■of! 1
1.6R of each 100g of primary sodium hypophosphite aqueous solution1)
During the 0 reaction, the p of the solution was added dropwise to the above reaction solution at a rate of
As above, H was kept constant at all times. After 0 drops and no bubbling stopped, the solution was filtered, the RP-passed material was washed twice with water, and then dried in a vacuum dryer to form a fine powder of phosphorus-nickel alloy. I got it. Table 2 shows the yield of fine powder of the obtained Phosphorus m=.Nkel alloy, the reaction yield, the average particle diameter measured by SEM photography, and the specific surface area of the particles measured by surface area measurement using the BET method.

第1表 第2表 実施例2 硫酸ニッケル53g/j) 、次亜りん酸ソーダ64g
/j) 、酒石酸ソーダ40g/i’から成る組成でp
H6,5の水溶液200mA’をビーカーに取り、湯浴
上で80℃に加温した。次に、20g/ρ塩化パラジウ
ム水溶液を第3表に示す量を、攪拌下の上記水溶液中に
滴下した。反応中、溶液のpHは自動調節装置を用い、
160g/l)水酸化ナトリウム水溶液の滴下により、
始めのpHに保持させた。
Table 1 Table 2 Example 2 Nickel sulfate 53g/j), Sodium hypophosphite 64g
/j), p with a composition consisting of 40 g/i' of sodium tartrate
200 mA' of an aqueous solution of H6,5 was placed in a beaker and heated to 80°C on a hot water bath. Next, an amount of a 20 g/ρ palladium chloride aqueous solution shown in Table 3 was dropped into the aqueous solution while stirring. During the reaction, the pH of the solution was adjusted using an automatic adjustment device.
160g/l) by dropping an aqueous sodium hydroxide solution,
The initial pH was maintained.

発泡かおさまってから、l moR/12硫酸ニッケル
溶液及び2.5moi)/i)次亜りん酸ソーダ水溶液
を第3表に示す量、それぞれ20mJ/分の滴下速度で
滴下した。反応中、溶液のpHは前記と同様にして常時
一定に保持した。滴下が終り、発泡も止んでから、溶液
を濾過し、が過物を2回りパルプ水洗した後、真空乾燥
器で乾燥してりん一ニッケル合金の微粉末を得た。得ら
れたりん一ニッケル合金の微粉末の収量、反応収率、 
SEM写真により計測した平均粒子径、BET法の表面
積測定による粒子の比表面積を第4表に示す。
After the foaming subsided, lmoR/12 nickel sulfate solution and 2.5 moi)/i) sodium hypophosphite aqueous solution were added dropwise in the amounts shown in Table 3 at a dropping rate of 20 mJ/min. During the reaction, the pH of the solution was kept constant as described above. After the dropping was completed and foaming had ceased, the solution was filtered, and the filtered material was washed twice with pulp water, and then dried in a vacuum dryer to obtain a fine powder of phosphorus-nickel alloy. Yield of fine powder of phosphorus-nickel alloy obtained, reaction yield,
Table 4 shows the average particle diameter measured by SEM photography and the specific surface area of the particles measured by surface area measurement using the BET method.

第3表 (注)1は比較例を示す。Table 3 (Note) 1 indicates a comparative example.

第4表 (注)1(お七咬例を示す。Table 4 (Note) 1 (Shows a seven-bite case.

実施例3 硫酸ニッケル53g/i) 、水素化ほう素ナトリウム
11g/i) 、エチレンジアミン15g/j!から成
る組成のpu 9.0の水溶液200mj)をビーカー
に取り、湯浴上にて80℃に加温した。20g#!塩化
パラジウム水溶液1IIRを攪拌下の上記溶液に滴下し
た0反応中溶液のpHは自動調節装置を用い、 160
g#水酸化ナトリウム水溶液を滴下し始めのpHに保持
させた。
Example 3 Nickel sulfate 53g/i), sodium borohydride 11g/i), ethylenediamine 15g/j! A 200 mj aqueous solution of PU 9.0 having a composition consisting of 20g#! An aqueous palladium chloride solution 1IIR was added dropwise to the above solution under stirring. During the reaction, the pH of the solution was adjusted to 160 using an automatic adjustment device.
g # of sodium hydroxide aqueous solution was added dropwise to maintain the initial pH.

発泡がおさまってから、l taoR/R硫酸ニッケル
溶液及び1.5soi’/i’水素化ほう素ナトリウム
水溶液を各500霞j)を51p/分の滴下速度で滴下
した。反応中、溶液のpHは前記と同様にして一定に保
持させた1滴下が終了し1発泡が止んでから、反応液を
濾過し、濾過物は2回りパルプ洗浄した後、真空乾燥器
で乾燥してほう素−ニッケル合金の微粉末を得た。得ら
れたほう素−ニッケル合金の微粉末の収量は31.58
g、反応収率は99.6%、SEM写真により計測した
平均粒径は0.617zm 、 BET法の表面測定に
よる粒子の比表面積は0.92■”/gであった。
After the foaming subsided, a solution of nickel sulfate R/R and a 1.5soi'/i' aqueous sodium borohydride solution (500 ha each) were added dropwise at a rate of 51 p/min. During the reaction, the pH of the solution was kept constant in the same way as above.After the addition of one drop was completed and the bubbling stopped, the reaction solution was filtered, and the filtered material was washed twice with pulp, and then dried in a vacuum drier. A fine powder of boron-nickel alloy was obtained. The yield of the obtained boron-nickel alloy fine powder was 31.58
g, the reaction yield was 99.6%, the average particle diameter measured by SEM photography was 0.617 zm, and the specific surface area of the particles was 0.92 ■''/g by surface measurement by BET method.

実施例4 0ツシエル塩の20g/l 、 pl+ 9.0の水溶
液2001をビーカーに取り、70℃に加温した0次に
、1 wol!/R硫酸ニッケル水溶液及び4 moR
/Rヒドラジン水溶液各50s!!をl0tj’/分の
速度で攪拌下の上記溶液に滴下した。又、前薬液を滴下
すると同時に20g/I!塩化パラジウム水溶液l■p
を添加した。
Example 4 An aqueous solution 2001 of 20 g/l of Otsuiel salt, pl+ 9.0 was placed in a beaker, heated to 70°C, and then 1 wol! /R nickel sulfate aqueous solution and 4 moR
/R hydrazine aqueous solution 50s each! ! was added dropwise to the above stirring solution at a rate of 10tj'/min. Also, at the same time as dropping the pre-medicinal solution, 20g/I! Palladium chloride aqueous solution lp
was added.

反応中、溶液のpHは自動調節装置を用い、 160g
#!の水酸化ナトリウム水溶液を滴下し、始めのpHを
保持させた。
During the reaction, the pH of the solution was adjusted using an automatic adjustment device, and 160 g
#! An aqueous sodium hydroxide solution was added dropwise to maintain the initial pH.

滴下が終了し、発泡がおさまった後、更に、l■ol!
/R硫酸ニッケル水溶液及び4 moR/j!ヒドラジ
ン水溶液各500*i’を4 ail1分の速度で滴下
した。
After the dripping is finished and the foaming has subsided, add l■ol!
/R nickel sulfate aqueous solution and 4 moR/j! Aqueous hydrazine solutions of 500*i' each were added dropwise at a rate of 4 ails/min.

反応中、溶液のp++は前記と同様にして一定のpHに
保持した0滴下が終了し、発泡が止んだ後、溶液をrp
過し、濾過物を2回りパルプ洗浄した後、真空乾燥器で
乾燥して金属ニッケルの微粉末を得た。得られた金属ニ
ッケルの微粉末の収量は31.85g、反応収率は98
,6%、 SEM写真により計測した平均粒子径は0.
60ルm 、 BET法の表面測定による粒子の比表面
積は1.00m”/gであった。
During the reaction, the p++ of the solution was maintained at a constant pH in the same manner as described above.After the dropwise addition was completed and foaming had stopped, the solution was rp
The filtrate was washed with pulp twice, and then dried in a vacuum dryer to obtain a fine powder of metallic nickel. The yield of the obtained fine powder of metallic nickel was 31.85 g, and the reaction yield was 98 g.
, 6%, and the average particle diameter measured by SEM photograph was 0.
The specific surface area of the particles was 1.00 m''/g by surface measurement using the BET method.

比較例1 LMの三日平底フラスコに塩化ニッケルlOg、クエン
i!8.8gを入れ、純水800mA’で溶解した。そ
の後、三ロ平底フラスコ内の混合溶液をスタラビースで
攪拌しながらフラスコの口に設けたガス吹込管から窒素
ガスを吹き込み充分に脱気した。
Comparative Example 1 In a LM three-day flat bottom flask, 10g of nickel chloride, 10g of quench! 8.8 g was added and dissolved with 800 mA' of pure water. Thereafter, the mixed solution in the Sanro flat-bottomed flask was sufficiently degassed by blowing nitrogen gas through a gas blowing tube provided at the mouth of the flask while stirring with a stirrer bead.

この際、排気口は空気の逆流を防止するため水封してお
いた。
At this time, the exhaust port was sealed with water to prevent backflow of air.

次に、水素化ほう素ナトリウム3gを充分に脱気した純
水200+++j)に溶解させ、この溶液をビユレット
に入れ、攪拌及び窒素の吹き込みを行っている混合溶液
中へ201R/分の速さで滴下し、還元反応を行った0
以上の操作は常温で実施した。生成物はメタノールで洗
浄した後、濾過回収した。
Next, 3 g of sodium borohydride was dissolved in sufficiently degassed pure water (200+++j), this solution was placed in a bilette, and the mixture was stirred and nitrogen was blown into the mixed solution at a rate of 201 R/min. Dropped and subjected to reduction reaction 0
The above operations were performed at room temperature. The product was washed with methanol and then collected by filtration.

得られたほう素−ニッケル合金粉末の収量は0.21g
 、反応収率は8.5%、 SEM写真により計測した
平均粒子径は0.02:l ps 、 BET法の表面
測定による粒子の比表面積は36■ff17gであった
The yield of the obtained boron-nickel alloy powder was 0.21g.
The reaction yield was 8.5%, the average particle diameter measured by SEM photography was 0.02:l ps, and the specific surface area of the particles was 36 ff 17 g by surface measurement using the BET method.

比較例2 還元剤をヒドラジン4.5mjl 、錯化剤をクエン酸
8.8g、反応温度を90”Cとして比較例1と全く同
様の方法て反応を行わせ、金属ニッケル粉末0.17g
を得た0反応収率は6.9%、 SEM写真により計測
した平均粒子径は0.019 p■、 BET法の表面
測定による粒子の比表面積は35m”/gであった。
Comparative Example 2 A reaction was carried out in exactly the same manner as in Comparative Example 1 using 4.5 mjl of hydrazine as a reducing agent, 8.8 g of citric acid as a complexing agent, and a reaction temperature of 90"C, and 0.17 g of metallic nickel powder.
The obtained zero reaction yield was 6.9%, the average particle diameter measured by SEM photography was 0.019 p■, and the specific surface area of the particles was 35 m''/g by surface measurement using the BET method.

実施例5 硫酸銅0.2■oi’/i’、ホルマリン1會oj’/
j! 、 EDTAO,Imof/j’から成る組成の
pH12,5の水溶液200mA’をビーカーに取り、
湯浴上で80℃に加温した0次に、塩化パラジウム20
g/j!の水溶液5臘pを攪拌下の上記水溶液中に添加
した0反応中、溶液のpHは自動調* 装21を用い、
水酸化ナトリウム100g/i)水溶液を滴下して12
,0〜12,5に保持した。
Example 5 Copper sulfate 0.2 oi'/i', formalin 1 oj'/
j! , Take 200 mA' of an aqueous solution of pH 12.5 consisting of EDTAO, Imof/j' in a beaker,
After heating to 80°C on a hot water bath, palladium chloride 20
g/j! During the reaction, 5 liters of an aqueous solution of
12 drops of sodium hydroxide 100g/i) aqueous solution
,0 to 12,5.

発泡がおさまってから、  1 woR/R硫酸銅水溶
液及び3 moR/Rホルマリン水溶液を第5表に示す
量をそれぞれ5 mR/分の速度で滴下した0反応中の
溶液のPHは前記と同様12,0〜12,5に保持した
9滴下が終り1発泡も止んでから、溶液を濾過し、濾過
物は2回りバルブ洗浄した後、真空乾燥器で乾燥して金
属銅の微粉末を得た。得られた金属銅の微粉末の収量、
反応収率、SEX写真により計測した平均粒子径、 B
ET法により測定した比表面積を第5表に示す。
After the foaming subsided, the amounts of 1 woR/R copper sulfate aqueous solution and 3 moR/R formalin aqueous solution shown in Table 5 were each added dropwise at a rate of 5 mR/min.The pH of the solution during the reaction was 12 as above. After the addition of 9 drops at a temperature of 0 to 12.5 was completed and no bubbling had stopped, the solution was filtered, and the filtrate was washed twice with a valve, and then dried in a vacuum dryer to obtain a fine powder of metallic copper. . Yield of fine powder of metallic copper obtained,
Reaction yield, average particle diameter measured by SEX photograph, B
Table 5 shows the specific surface area measured by the ET method.

実施例6 硫酸銅0.2mof’/i)、ヒドラジン0.8moj
>、ロッシェル塩0.05mof+/i’から成る組成
のp)l 13.0の水溶液200mj)をビーカーに
取り、湯浴上で90℃に加温した。次に、水素化ほう素
カリの粉末を少量(約0.1g) m押下の上記水溶液
中に添加し、自己分解反応を誘起させた0反応中、溶液
のpHは自動調節装置を用い、水酸化ナトリウム100
g/i’水溶液を滴下しで、12.5へ13.5に保持
した。
Example 6 Copper sulfate 0.2mof'/i), hydrazine 0.8moj
200 mj) of an aqueous solution of p)l 13.0 having a composition of 0.05 mof+/i' of Rochelle salt was taken in a beaker and heated to 90°C on a water bath. Next, a small amount (approximately 0.1 g) of potassium boron hydride powder was added to the above aqueous solution under pressure of m to induce a self-decomposition reaction. During the zero reaction, the pH of the solution was adjusted using an automatic adjustment device. sodium oxide 100
g/i' aqueous solution was added dropwise to maintain the temperature at 12.5 to 13.5.

発泡がおさまってから、l moR/ρ硫酸銅水溶液及
び2 moR/Rヒドラジン水溶液を、第6表に示す量
、それぞれ15m1)/分の速度で滴下した0反応中、
溶液のpHは前記と同様12.5〜13.5に保持した
0滴下が終り、発泡も止んでから、溶液を濾過し、濾過
物は2回りパルプ洗浄した後、真空乾燥器で乾燥して金
属銅の微粉末を得た。得られた金属銅の微粉末の収量、
反応収率、SEM写真による平均粒子径の計測値、BE
T法により測定した比表面積を第6表に示す。
After the foaming subsided, 1 moR/ρ copper sulfate aqueous solution and 2 moR/R hydrazine aqueous solution were added dropwise in the amounts shown in Table 6 at a rate of 15 ml/min, respectively.
The pH of the solution was maintained at 12.5 to 13.5 as above. After the addition of 0 drops was completed and foaming had stopped, the solution was filtered, and the filtered material was washed twice with pulp and then dried in a vacuum dryer. A fine powder of metallic copper was obtained. Yield of fine powder of metallic copper obtained,
Reaction yield, average particle diameter measured by SEM photograph, BE
Table 6 shows the specific surface area measured by the T method.

実施例7 シアン化銀0.2moi’/J? 、水素化ほう素ナト
リウム0.24voi’ 、 EDTA−4Na O,
1moR/i’からなる組成のpH3,0の水溶液20
0■pをビーカーに取り、湯浴上で80°Cに加温した
。次に、硝酸銀の10g/Rの水溶液10tj)を、攪
拌下の上記水溶液中に添加し反応を開始させた0反応中
、溶液のpHは自動調節装置を用い、水酸化ナトリウム
2註0 で、12〜13に保持した。
Example 7 Silver cyanide 0.2 moi'/J? , sodium borohydride 0.24voi', EDTA-4NaO,
Aqueous solution 20 with a pH of 3.0 and a composition of 1 moR/i'
0■p was placed in a beaker and heated to 80°C on a hot water bath. Next, a 10 g/R aqueous solution of silver nitrate (10 tj) was added to the above aqueous solution under stirring to start the reaction.During the reaction, the pH of the solution was adjusted using an automatic adjustment device, with 2 tj of sodium hydroxide, It was kept at 12-13.

発泡がおさまってから、1 mol;!/Rシアン化銀
カリウム水溶液及び1 、 2soR/j)水素化ほう
素ナトリウム、5醜oR/R水酸化ナトリウム混合水溶
液11)を、それぞれ15m1’/分の速度で滴下した
0反応中、溶液のpHは前記と同様に12〜13に保持
した。
After the foaming subsides, 1 mol;! /R silver potassium cyanide aqueous solution and 1,2soR/j) sodium borohydride, 5uglyoR/R sodium hydroxide mixed aqueous solution 11) were each added dropwise at a rate of 15 ml/min. The pH was maintained at 12-13 as before.

滴下が終り、発泡も止んでから、溶液を濾過し、濾過分
は2回りパルプ洗浄した後,真空乾燥器で乾燥して銀の
微粉末を得た.得られた銀の微粉末の収量は111.8
5g 、反応収率は99.7%、SEM写真による平均
粒子径は0.13μ謙、BET法により測定した比表面
積は6.60m”/gであった。
After the dropping was completed and foaming had ceased, the solution was filtered, and the filtered portion was washed twice with pulp and dried in a vacuum dryer to obtain fine silver powder. The yield of the obtained fine silver powder was 111.8
5g, the reaction yield was 99.7%, the average particle diameter as measured by SEM photograph was 0.13 μm, and the specific surface area measured by BET method was 6.60 m”/g.

[発明の効果] 以上説明した様に本発明の金属微粉末の製造法によれば
2粒度範囲の規制された所望の粒径を有し、品質が極め
て安定した不純物の少ない金属微粉末な高収率で得るこ
とができる。特に、平均粒径0.01〜1弘藻のニッケ
ル、銅およびNt−P、 Ni−[1合金を容易に11
1ることかできることの工業的価値は極めて高いもので
ある。
[Effects of the Invention] As explained above, according to the method for producing fine metal powder of the present invention, it is possible to produce fine metal powder with a desired particle size within two particle size ranges, extremely stable quality, and few impurities. It can be obtained in high yield. In particular, nickel, copper, and Nt-P, Ni-[1] alloys with average particle diameters of 0.01 to 1 can easily be 11
The industrial value of something that can be done is extremely high.

また、安価な設備で、生産性も高く、薬剤効率も100
%有効であり、使用する金属塩は100%金属微粉末に
還元され、還元剤の使用量も従来より少なくて済むので
経済性に極めて有利である。さらに1反応はゆるやかで
常に限定された濃度内で行われるために、安定した一定
品位の装量が得られる。
In addition, the equipment is inexpensive, has high productivity, and has a drug efficiency of 100%.
% effective, 100% of the metal salt used is reduced to fine metal powder, and the amount of reducing agent used can be smaller than conventional methods, so it is very economically advantageous. Furthermore, since one reaction is carried out slowly and always within a limited concentration, a stable and constant quality charge can be obtained.

本発明に係わる製造法により得られた安定した品質の金
属微粉末又は合金の微粉末は、そのまま又は更に青金属
被Tgすることにより、導電性フィラーとしで、pi料
、樹脂、ゴム、ペースト、接着剤、インキ等に混練使用
される。さらに1合金。
The stable quality fine metal powder or fine alloy powder obtained by the production method according to the present invention can be used as a conductive filler as it is or by further coating with a blue metal Tg, and can be used as a conductive filler, as a PI material, resin, rubber, paste, etc. Used for kneading in adhesives, inks, etc. One more alloy.

粉末冶金の原料としても利用することができる。It can also be used as a raw material for powder metallurgy.

Claims (4)

【特許請求の範囲】[Claims] (1)金属イオン、還元剤および錯化剤よりなる混合水
溶液中に反応開始剤を添加して、還元反応を生ぜしめた
後、金属イオン、還元剤およびpH調整剤を添加するこ
とを特徴とする金属微粉末の製造法。
(1) A reaction initiator is added to a mixed aqueous solution consisting of a metal ion, a reducing agent, and a complexing agent to cause a reduction reaction, and then a metal ion, a reducing agent, and a pH adjuster are added. A method for producing fine metal powder.
(2)金属イオンがニッケルイオン、銅イオン又は銀イ
オンである特許請求の範囲第1項記載の金属微粉末の製
造法。
(2) The method for producing fine metal powder according to claim 1, wherein the metal ions are nickel ions, copper ions, or silver ions.
(3)還元剤が、次亜リン酸ソーダ、水素化ほう素アル
カリ、ヒドラジン又はホルマリンから選ばれたものであ
る特許請求の範囲第1項記載の金属微粉末の製造法。
(3) The method for producing fine metal powder according to claim 1, wherein the reducing agent is selected from sodium hypophosphite, alkali borohydride, hydrazine, or formalin.
(4)金属微粉末はニッケル、銅又はそれらの少なくと
も1種を含む合金の微粉末で、平均粒子径が0.05〜
1μmの範囲にある特許請求の範囲第1項乃至第4項の
いずれかの項記載の金属微粉末の製造法。
(4) The metal fine powder is a fine powder of nickel, copper, or an alloy containing at least one of them, and has an average particle size of 0.05 to
A method for producing fine metal powder according to any one of claims 1 to 4, which has a particle size in the range of 1 μm.
JP10938987A 1987-05-02 1987-05-02 Production of metallic fine powder Granted JPS63274706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10938987A JPS63274706A (en) 1987-05-02 1987-05-02 Production of metallic fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10938987A JPS63274706A (en) 1987-05-02 1987-05-02 Production of metallic fine powder

Publications (2)

Publication Number Publication Date
JPS63274706A true JPS63274706A (en) 1988-11-11
JPH0372683B2 JPH0372683B2 (en) 1991-11-19

Family

ID=14508996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10938987A Granted JPS63274706A (en) 1987-05-02 1987-05-02 Production of metallic fine powder

Country Status (1)

Country Link
JP (1) JPS63274706A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540811B2 (en) 2000-01-21 2003-04-01 Sumitomo Electric Industries, Ltd. Method of producing alloy powders, alloy powders obtained by said method, and products applying said powders
US6627118B2 (en) 2000-04-26 2003-09-30 Hitachi Metals, Ltd. Ni alloy particles and method for producing same, and anisotropic conductive film
US6632265B1 (en) 1999-11-10 2003-10-14 Mitsui Mining And Smelting Co., Ltd. Nickel powder, method for preparation thereof and conductive paste
JP2006152344A (en) * 2004-11-26 2006-06-15 Catalysts & Chem Ind Co Ltd Metal particulate and production method of metal particulate
US7166502B1 (en) * 1999-11-10 2007-01-23 Lg. Philips Lcd Co., Ltd. Method of manufacturing a thin film transistor
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
JP2008519156A (en) * 2004-10-29 2008-06-05 ナノダイナミクス,インク. Preparation of ultrafine metal powder in aqueous solution
JP2010070793A (en) * 2008-09-17 2010-04-02 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
US8048193B2 (en) 2006-06-05 2011-11-01 Tanaka Kikinzoku Kogyo K.K. Method for producing gold colloid and gold colloid
WO2012043267A1 (en) 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
CN102496404A (en) * 2011-12-27 2012-06-13 华东理工大学 Electrode silver paste used by high efficiency crystal silicon solar cell
CN104174864A (en) * 2013-05-21 2014-12-03 中国科学院理化技术研究所 Preparation method of nano or submicron silver particle powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323250A (en) * 1976-08-16 1978-03-03 Denki Kogyo Co Ltd Grounded tower double feeding system
JPS5329240A (en) * 1976-08-31 1978-03-18 Hitachi Shipbuilding Eng Co Connecting process for tig welding electrodes
JPS5754207A (en) * 1980-08-21 1982-03-31 Inco Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323250A (en) * 1976-08-16 1978-03-03 Denki Kogyo Co Ltd Grounded tower double feeding system
JPS5329240A (en) * 1976-08-31 1978-03-18 Hitachi Shipbuilding Eng Co Connecting process for tig welding electrodes
JPS5754207A (en) * 1980-08-21 1982-03-31 Inco Ltd

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632265B1 (en) 1999-11-10 2003-10-14 Mitsui Mining And Smelting Co., Ltd. Nickel powder, method for preparation thereof and conductive paste
US7166502B1 (en) * 1999-11-10 2007-01-23 Lg. Philips Lcd Co., Ltd. Method of manufacturing a thin film transistor
US6540811B2 (en) 2000-01-21 2003-04-01 Sumitomo Electric Industries, Ltd. Method of producing alloy powders, alloy powders obtained by said method, and products applying said powders
US6627118B2 (en) 2000-04-26 2003-09-30 Hitachi Metals, Ltd. Ni alloy particles and method for producing same, and anisotropic conductive film
JP2008519156A (en) * 2004-10-29 2008-06-05 ナノダイナミクス,インク. Preparation of ultrafine metal powder in aqueous solution
JP2006152344A (en) * 2004-11-26 2006-06-15 Catalysts & Chem Ind Co Ltd Metal particulate and production method of metal particulate
US8048193B2 (en) 2006-06-05 2011-11-01 Tanaka Kikinzoku Kogyo K.K. Method for producing gold colloid and gold colloid
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
JP2010070793A (en) * 2008-09-17 2010-04-02 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
WO2012043267A1 (en) 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
US9248504B2 (en) 2010-09-30 2016-02-02 Dowa Electronics Materials Co., Ltd. Copper powder for conductive paste and method for producing same
CN102496404A (en) * 2011-12-27 2012-06-13 华东理工大学 Electrode silver paste used by high efficiency crystal silicon solar cell
CN104174864A (en) * 2013-05-21 2014-12-03 中国科学院理化技术研究所 Preparation method of nano or submicron silver particle powder

Also Published As

Publication number Publication date
JPH0372683B2 (en) 1991-11-19

Similar Documents

Publication Publication Date Title
US7534283B2 (en) Method of producing copper powder and copper powder
JP2638271B2 (en) Production method of copper fine powder
JPS63274706A (en) Production of metallic fine powder
JP7344550B2 (en) Method for producing iron-nickel nanowires
CN114210965A (en) Metallic silver and preparation method and application thereof
TWI508799B (en) A Method for Synthesis of Silver Powder with Adjustable Particle Size
JPH02294414A (en) Production of fine copper powder
JP3921805B2 (en) Method for producing nickel fine powder
JP2020007633A (en) Nickel coupling particle and manufacturing method therefor
CN108097949B (en) A kind of production method of tin plating nickel powder
JP5421339B2 (en) Nickel powder direct manufacturing method using hydrothermal synthesis method
CN114057242A (en) Method for preparing spherical dinitroso diammine platinum by hydrothermal method and application
JP3073732B1 (en) Nickel fine powder and method for producing the same
JPH02294415A (en) Production of fine copper powder
JPS6299406A (en) Production of copper powder
US5514202A (en) Method for producing fine silver-palladium alloy powder
CA2306319A1 (en) Process for making gold salt for use in electroplating process
CN109183093B (en) Preparation method of tetraammine palladium bicarbonate compound
JPH03180481A (en) Production of copper oxide powder by electrolysis
JPS60238406A (en) Manufacture of hyperfine metallic powder
JPH0249364B2 (en)
Chee et al. Fabrication of Sn–3.5 Ag Eutectic Alloy Powder by Annealing Sub-Micrometer Sn@ Ag Powder Prepared by Citric Acid-Assisted Ag Immersion Plating
JPH0474810A (en) Manufacture of nickel base metal fine powder
JP5416979B2 (en) Copper powder and method for producing the same
JP2002363618A (en) Copper ultrafine grain and production method therefor