JPS63274564A - Liquid crystal optical device - Google Patents

Liquid crystal optical device

Info

Publication number
JPS63274564A
JPS63274564A JP62110114A JP11011487A JPS63274564A JP S63274564 A JPS63274564 A JP S63274564A JP 62110114 A JP62110114 A JP 62110114A JP 11011487 A JP11011487 A JP 11011487A JP S63274564 A JPS63274564 A JP S63274564A
Authority
JP
Japan
Prior art keywords
temperature
liquid crystal
electrode
heat
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62110114A
Other languages
Japanese (ja)
Inventor
Hideki Morozumi
秀樹 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62110114A priority Critical patent/JPS63274564A/en
Publication of JPS63274564A publication Critical patent/JPS63274564A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/12Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers
    • G06K15/1238Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point
    • G06K15/1242Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line
    • G06K15/1252Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by photographic printing, e.g. by laser printers simultaneously exposing more than one point on one main scanning line using an array of light modulators, e.g. a linear array

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

PURPOSE:To minimize the dependence of liquid crystal layer temperature on an environmental temperature by incorporating a metallic electrode which is a heat-generating body in a liquid crystal panel, detecting its temperature to control energization with a temperature control circuit and keeping the temperature of the metallic electrode constant. CONSTITUTION:A liquid crystal light panel consists of a substrate 3 provided with a liquid crystal panel 1, a deflecting board 2 and a liquid crystal drive circuit, and a scanning electrode substrate 4 of the liquid crystal panel 1 is provided with metallic electrodes 6, 10 which are heat-generating bodies on the both sides. Both the sides are not opposed to a signal electrode substrate 7 because of the application of voltage to the sides. The heat-generating electrode 6 is allowed to be exposed to the exterior of the signal electrode substrate 7 after bending halfway, with a thermister 8 fixed with an adhesive member 9. The temperature of the heat-generating electrodes 6, 10 is detected by the thermister 8 and a temperature detecting means 35, and compared with a set temperature 36 through a comparison circuit 37. Energization of the heat- generating electrodes 6, 10 from a power supply 40 via an output part drive circuit 38 and an output 39 is controlled according to a deflection value of the compared temperature. Thus the set temperature can be reached in a short time and the dependability on an environmental temperature is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明の液晶光学装置は、液晶印写光学装置に使用され
るものであり、液晶パネルに発熱体としての金属電極、
 及び温度検出手段を具備した発熱体の温度制御回路を
存する液晶光学装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The liquid crystal optical device of the present invention is used in a liquid crystal printing optical device, and includes a liquid crystal panel having a metal electrode as a heating element,
The present invention also relates to a liquid crystal optical device having a temperature control circuit for a heating element equipped with a temperature detection means.

〔従来の技術〕[Conventional technology]

従来、動作温度範囲が狭い液晶は、使用環境温度の上限
より高い温度で所望の特性が得られる様に液晶の動作温
度を設定し、液晶パネルに発熱体を貼りつけることによ
り温度を液晶の動作温度範囲内に制御していた。以下第
6図を用いて説明する。発熱体101は金属性の蓄熱体
102を介して液晶パネル103に貼り付けられている
。蓄熱体102には高熱伝導性の接着材104でW熱体
内部に埋め込まれたサーミスタ105により温度を検出
し、温度@御回路を動作させ発熱体1010通電量を制
御することにより蓄熱体102を一定温度に保ち、熱伝
導で液晶パネル103を加熱している。
Conventionally, LCDs have a narrow operating temperature range, so the operating temperature of the LCD is set so that the desired characteristics can be obtained at a temperature higher than the upper limit of the operating environment temperature, and a heating element is attached to the LCD panel to adjust the temperature. The temperature was controlled within the range. This will be explained below using FIG. 6. A heating element 101 is attached to a liquid crystal panel 103 via a metallic heat storage element 102. The temperature of the heat storage body 102 is detected by a thermistor 105 embedded inside the W heat body using a highly thermally conductive adhesive 104, and the temperature control circuit is operated to control the amount of current supplied to the heat generation body 1010, thereby controlling the heat storage body 102. The temperature is kept constant and the liquid crystal panel 103 is heated by thermal conduction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、第6図に示す様な方法では下記の問題点
を仔する。1.W熱体と液晶パネルを合わせた熱容量が
大きいため、使用環境温度範囲内で液晶パネルの温度を
一定に保つために必要な電力も大きくなる。26熱容量
が大きいために熱時定数も長くなり、電源投入後から液
晶パネルが設定温度に達するまでの時間が長くかかる。
However, the method shown in FIG. 6 has the following problems. 1. Since the combined heat capacity of the W heating element and the liquid crystal panel is large, the power required to maintain the temperature of the liquid crystal panel constant within the operating environment temperature range is also large. 26 Since the heat capacity is large, the thermal time constant is also long, and it takes a long time for the liquid crystal panel to reach the set temperature after the power is turned on.

3.温度制御の対策が蓄熱体であるため、蓄熱体温度と
環境温度の差が大きい低温環境下では、液晶パネル内部
で温度勾配が生じ、液晶層の温度が蓄熱体温度に対して
低下してしまう、49発熱体、蓄熱体の部品代及び組立
工数の増加を招く6以上の様なr4H点を育していた。
3. Since the temperature control measure is a heat storage body, in low-temperature environments where there is a large difference between the heat storage body temperature and the environmental temperature, a temperature gradient occurs inside the liquid crystal panel, and the temperature of the liquid crystal layer decreases relative to the heat storage body temperature. , 49, and the r4H point of 6 or more, which causes an increase in parts costs and assembly man-hours for the heating element and heat storage element.

本発明の目的は、かかる問題点を解決し、より少ない発
熱体電力で、短時間で設定温度に達し、液晶層温度の環
境温度依存性が小さく、低コストで、液晶パネルの温度
を一定に保つことができる液晶光学装置を提供するとこ
ろにある。
The purpose of the present invention is to solve these problems, reach the set temperature in a short time with less heating element power, reduce the dependence of the liquid crystal layer temperature on the environmental temperature, and maintain a constant temperature of the liquid crystal panel at low cost. The goal is to provide a liquid crystal optical device that can be maintained.

C問題点を解決するための手段〕 本発明の液晶光学装置は、N本(Nは整数)の走査電極
を備えた基板、M本(Mは整数)の信号電極を備えた基
板、前記両基板を1!極を内側にして対向させ、前記両
基板間に挾持された液晶層及び前記両基板の外側に少な
くとも1枚の偏光板を備える液晶光学装置において、前
記走査電極を備えた基板の該走査電極の両側に設けられ
た金属電極、前記金属信号電極の1部を露出させ該露出
部に設けられた温度検出手段、前記金属電極に通電を行
ない該金属電極を発熱させ、前記温度検出手段により該
金属電極の温度を検出させ、該金属電極への通電を制御
し、該金属電極の温度を一定に保つ温度制御回路を有す
ることを特徴としている。
Means for Solving Problem C] The liquid crystal optical device of the present invention comprises a substrate provided with N scanning electrodes (N is an integer), a substrate provided with M signal electrodes (M is an integer), and a substrate provided with both of the above-mentioned scanning electrodes. 1 board! In a liquid crystal optical device comprising a liquid crystal layer sandwiched between the two substrates and at least one polarizing plate on the outside of the two substrates, which face each other with their poles inside, the scanning electrode of the substrate provided with the scanning electrode is metal electrodes provided on both sides; a temperature detection means that exposes a part of the metal signal electrode; and a temperature detection means provided in the exposed portion; energization is applied to the metal electrode to cause the metal electrode to generate heat; It is characterized by having a temperature control circuit that detects the temperature of the electrode, controls energization to the metal electrode, and keeps the temperature of the metal electrode constant.

〔作用〕[Effect]

本発明によれば、発熱体を液晶パネルの内側に内蔵して
いるため、部品点数の増加なしで、低電力で立上り特性
が良く、環境温度依存性が小さい液晶光学装置が得られ
る。
According to the present invention, since the heating element is built inside the liquid crystal panel, it is possible to obtain a liquid crystal optical device with low power consumption, good start-up characteristics, and low environmental temperature dependence without increasing the number of parts.

〔実施例〕〔Example〕

以下、 本発明の実施例を図面に従って説明する。ここ
では、液晶パネルをライトバルブとして用い感光ドラム
に層線を書込むために用いた時の液晶パネル温度制御へ
の応用に即して述べる。
Embodiments of the present invention will be described below with reference to the drawings. Here, we will discuss the application to liquid crystal panel temperature control when the liquid crystal panel is used as a light valve to write layer lines on a photosensitive drum.

第1図は、本実施例の液晶ライトバルブの構成を示す、
液晶ライトバルブは、液晶パネル1、偏光板2、 液晶
駆動回路を実装した基板3から成る。液晶パネル1の走
査電極基板4には、走査電極5の両側に発熱体としての
金属電極6、10(以下、ヒータ電8[)が設けてあり
、両端は電圧を印加するため、信号電極基板7と対向し
ない様にしである。ヒータ電極8は、温度検出素子とし
てサーミスタ8を取りつけるため、ヒータ電極を途中で
屈曲させ、信号電極基板7の外側へ露出させている。サ
ーミスタ8は接着材9によりヒータ電極の露出部に固定
している。
FIG. 1 shows the configuration of the liquid crystal light valve of this embodiment.
The liquid crystal light valve consists of a liquid crystal panel 1, a polarizing plate 2, and a substrate 3 on which a liquid crystal driving circuit is mounted. The scanning electrode substrate 4 of the liquid crystal panel 1 is provided with metal electrodes 6 and 10 (hereinafter referred to as heater electrodes 8) as heating elements on both sides of the scanning electrode 5, and in order to apply a voltage to both ends, a signal electrode substrate is provided. Make sure you don't face 7. In order to attach the thermistor 8 as a temperature detection element to the heater electrode 8, the heater electrode 8 is bent in the middle and exposed to the outside of the signal electrode substrate 7. The thermistor 8 is fixed to the exposed portion of the heater electrode with an adhesive 9.

第2図に、液晶パネルの構成を示す、(第2図は[1図
の断面A−Aである)液晶パネルば、走査電極基板4と
信号電極基板7及びスペーサ20の間に液晶組成物21
を封入しかつ、電極基板の両側に偏光板2を備えて成る
。走査電極5は、透明走査電極22と光学的に不透明な
金属走査N橿23から成り、信号電極7も透明信号電極
24と金属信号電極25から成る。走査電極及び信号電
極の表面には、液晶組成物を規則的に配向させるための
配向較26が形成され表面はラビング処理が施こされて
いる。偏光板2は、互いに偏光軸が直交するように配置
されている。走査電極基板及び信号電極基板の透明電極
は、ガラス基板上にITOI&Iをit又はスパッタ法
により約0.1μmの厚さで形成しである。透明11極
上の金1fll電極はニッケル(以下Ni)を約0.3
μmの厚さでメッキ処理した後、不必要な部分をエツチ
ング処理で除去している。ヒータ電極6は、走査電極基
板上にあるため、走査電極5と同一の工程で形成できる
。これは、ヒータ電極の形状を走査電極基板作成用のフ
ォトマスクに作り込んでおくことにより、液晶パネルの
製造工程に投入するだけでヒータ電極が得られるという
メリットがある。
FIG. 2 shows the structure of a liquid crystal panel (FIG. 2 is a cross section taken along line A-A in FIG. 21
and includes polarizing plates 2 on both sides of the electrode substrate. The scanning electrode 5 is made up of a transparent scanning electrode 22 and an optically opaque metal scanning rod 23, and the signal electrode 7 is also made up of a transparent signal electrode 24 and a metal signal electrode 25. On the surfaces of the scanning electrode and the signal electrode, an alignment plate 26 for regularly aligning the liquid crystal composition is formed, and the surfaces are subjected to a rubbing treatment. The polarizing plates 2 are arranged so that their polarization axes are perpendicular to each other. The transparent electrodes of the scanning electrode substrate and the signal electrode substrate are formed by forming ITOI&I to a thickness of about 0.1 μm on a glass substrate by IT or sputtering. The gold electrode on the transparent 11 layer contains approximately 0.3 nickel (hereinafter referred to as Ni).
After plating to a thickness of μm, unnecessary parts are removed by etching. Since the heater electrode 6 is on the scanning electrode substrate, it can be formed in the same process as the scanning electrode 5. This has the advantage that by incorporating the shape of the heater electrode into a photomask for creating the scanning electrode substrate, the heater electrode can be obtained simply by inserting it into the manufacturing process of the liquid crystal panel.

第3図に液晶パネルの電極パターン図を示す。FIG. 3 shows a diagram of the electrode pattern of the liquid crystal panel.

本実施例の液晶ライトバルブは、高分解能を得るために
1mm当り12個のマイクロシャブタ30を合計240
0個配置しである。しかしこのままでは、マイクロシャ
フタ30を駆動するための信号電極が2000本必要に
なり、実装上及びパネル製造上、工数、コスト増加につ
ながり好ましくない。したがって、本実施例では、時分
割数を3とすることにより、走査電極3本、信号1を極
800本とした。走査電極22.23のマイクロシャブ
タ30の部分は透明走査型t122のみで、斜線部は金
属走査電極23で覆われている。信号TR極は、透明信
号電極24の一部に金属信号F!極25を設けである。
The liquid crystal light valve of this embodiment has 12 microshafts 30 per 1 mm for a total of 240 microshafts in order to obtain high resolution.
0 pieces are arranged. However, as it is, 2000 signal electrodes are required to drive the microshafter 30, which is undesirable because it increases the number of steps and costs in terms of mounting and panel manufacturing. Therefore, in this embodiment, by setting the number of time divisions to 3, there are 3 scanning electrodes and 800 signal 1 poles. The portion of the microshaft 30 of the scanning electrodes 22 and 23 has only the transparent scanning type t122, and the shaded area is covered with the metal scanning electrode 23. The signal TR pole has a metal signal F! on a part of the transparent signal electrode 24. A pole 25 is provided.

もしこの金属電極がないと、走査?!極と信号電極を重
ね合わせた時に、走査電極及びヒータ電極のすき間から
常時漏れる光が、マイクロシャブタの透過光のコントラ
スト比を低下させる要因となる。そのため、信号電極の
一部を金属電極でマスクし、光漏れ部31が最小の面積
になるようにし、実用上問題ない程度におさえることが
できた。また、信号電極を金属電極25を残してすべて
透明電極とすることにより、走査m極基板4との組み合
わせた時の位置合わせマージンが、上下左右方向ともに
大きくとれ、組み立て時の歩留りが向上した6本施例で
は、時分割数は3としたが、時分割数は液晶の特性に合
わせて任意に選択できる。
If this metal electrode is not present, can it be scanned? ! When the pole and signal electrode are overlapped, light constantly leaking from the gap between the scanning electrode and the heater electrode becomes a factor that reduces the contrast ratio of the transmitted light of the microshaft. Therefore, a part of the signal electrode was masked with a metal electrode to minimize the area of the light leakage portion 31, and it was possible to suppress the light leakage portion 31 to a level that poses no problem in practice. In addition, by making all the signal electrodes transparent except for the metal electrodes 25, the alignment margin when combined with the scanning m-pole substrate 4 can be increased both in the vertical and horizontal directions, and the yield during assembly is improved. In this embodiment, the number of time divisions is three, but the number of time divisions can be arbitrarily selected according to the characteristics of the liquid crystal.

第4図は、ヒータ電tieののサーミスタ8の取付部の
詳細図である。ヒータff電極6は、温度制御のための
温度検出手段であるサーミスタ8等を取りつけるため、
本実施例では、パネル中央付近で信号1!極取出部とは
反対側のヒータに露出部32を設けている。ヒーク露部
32は、電極幅がヒータ電極6の直線部のM極幅WIと
同じになるように設計されている。しかし、ヒータ露出
部eの片側を一部を屈曲させてヒータ露出部32を設け
たことにより、  2本のヒータ電極の長さに違いが生
じ、両者間で抵抗値に差が生ずる。したがって、本実施
例では、2本のヒータ電極の幅をW、、W、と変えるこ
とにより、両ヒータ電極の抵抗値をほぼ等しくすること
に成功した。ヒータ電極6の抵抗値は、R=PヨXL/
Wなる式より算出される。ここで、Rは抵抗値〔Ω)、
P、は1!橿材料のシート抵抗〔Ω/口〕、Lは電極長
(m) 、Wは電極幅(m)とする、シート抵抗は、電
極材料の厚さ及び体積抵抗により決まるものであるが本
実施例では、電極材料としてITO及びNiの2層構造
とし、厚さはITOが0.Iμms  Niが0.3μ
mとしたことにより、 シート抵抗は1.70/口が得
られた。 ヒータ電極6の長さり、は、直線部長さを2
13 m m 1それにヒータを屈曲させるのに必要な
長さ2X1を加えた長さとなる。1はヒー多幅WIを3
.E35mmとしたことにより、1〜3mmとなり、L
I=216mmとなる。ヒータ電極6の抵抗値は、10
0.6Ωが得られた。ヒータ電極10の抵抗値は、抵抗
値6と等しくするため、前述の式を、W= P x X
L/Rと変換し、Rを100.6Ω、L=213mmを
代入し、W、は3.8mmが得られた。
FIG. 4 is a detailed view of the mounting portion of the thermistor 8 of the heater electric tie. The heater ff electrode 6 is equipped with a thermistor 8, etc., which is a temperature detection means for temperature control.
In this example, the signal 1! near the center of the panel! An exposed portion 32 is provided on the heater on the opposite side from the pole extraction portion. The heat dew portion 32 is designed so that the electrode width is the same as the M pole width WI of the straight portion of the heater electrode 6. However, since the heater exposed portion 32 is provided by partially bending one side of the heater exposed portion e, a difference occurs in the length of the two heater electrodes, and a difference in resistance value occurs between the two heater electrodes. Therefore, in this example, by changing the widths of the two heater electrodes to W, , W, it was possible to make the resistance values of the two heater electrodes almost equal. The resistance value of the heater electrode 6 is R=PyoXL/
It is calculated from the formula W. Here, R is the resistance value [Ω],
P, is 1! The sheet resistance of the rod material [Ω/mouth], L is the electrode length (m), and W is the electrode width (m). The sheet resistance is determined by the thickness and volume resistance of the electrode material, but in this example Here, a two-layer structure of ITO and Ni is used as the electrode material, and the thickness of ITO is 0. Iμms Ni is 0.3μ
By setting the sheet resistance to m, a sheet resistance of 1.70/mouth was obtained. The length of the heater electrode 6 is the length of the straight part by 2.
The length is 13 mm 1 plus the length 2X1 required to bend the heater. 1 is a high width WI of 3
.. By setting E to 35 mm, it becomes 1 to 3 mm, and L
I=216mm. The resistance value of the heater electrode 6 is 10
0.6Ω was obtained. In order to make the resistance value of the heater electrode 10 equal to the resistance value 6, the above formula is changed to W=P x X
Converting to L/R, substituting 100.6Ω for R and L=213mm, W was obtained as 3.8mm.

サーミスタ8は、熱時定数の小さいチップサーミスタの
エポキシ樹脂モールY品を用い、 熱伝導性が比較的高
いエポキシ接着材9でfe−ttを行なった。本実施例
では、ヒータ電極としてNiを使用したが、クロム、金
等においても同様にヒータとして機能する。またシート
抵抗はヒータ電極に要求される抵抗値に合わせ、 電極
材料及び電極厚(0,1〜0.5μm) を適当に選ぶ
ことにより、  pt=o、t〜50Ω/口が得られる
。1度検出手段としてサーミスタを用いたが、熱電対及
び半導体温度センサ等も使用できる。更に、温度セ/す
の取付位置として、液晶パネルの中央部でヒータを露出
させているが、ヒータの端部の電極地山部近傍でも同様
に温度検出が可能である。
For the thermistor 8, an epoxy resin molded Y chip thermistor with a small thermal time constant was used, and fe-tt was performed using an epoxy adhesive 9 with relatively high thermal conductivity. In this embodiment, Ni is used as the heater electrode, but chromium, gold, or the like can also function as a heater. Further, the sheet resistance can be obtained as follows: pt=o, t~50Ω/port by appropriately selecting the electrode material and electrode thickness (0.1 to 0.5 μm) in accordance with the resistance value required for the heater electrode. Although a thermistor was used as the detection means, thermocouples, semiconductor temperature sensors, etc. can also be used. Furthermore, although the heater is exposed at the center of the liquid crystal panel as the mounting position of the temperature sensor, the temperature can also be similarly detected near the electrode base at the end of the heater.

第5図は、本実施例における温度制御回路の構成を示す
、温度検出手段35により、温度が電気信号に変換され
る。 一方温度設定手段36からは、所望の設定温度に
勿ける、基準電圧信号が発生される。温度検出手段35
及び温度検出手段36から出力された信号は、比較回路
37に入力され、比較動作を行ない、出力部駆動回路3
8に結果を送る。出力部駆動回路38では、出力回路3
8を駆動できる様に信号を増幅し、出力回路39を駆動
することによりヒータ6.10を発熱させる。 電源4
0は、制御回路各部に1を源を供給する。具体的には、
 温度検出手段は、抵抗41とサーミスタ8によって構
成され、 温度設定手段は、抵抗42と、温度設定用可
変抵抗器43によって構成され、抵抗41.42.サー
ミスタ8、可変抵抗器43でブリフジを構成している。
FIG. 5 shows the configuration of the temperature control circuit in this embodiment. Temperature is converted into an electrical signal by the temperature detection means 35. On the other hand, the temperature setting means 36 generates a reference voltage signal that is sufficient to set the desired temperature. Temperature detection means 35
The signals outputted from the temperature detection means 36 are input to the comparison circuit 37, where a comparison operation is performed, and the signals are outputted from the output section drive circuit 3.
Send the results to 8. In the output section drive circuit 38, the output circuit 3
The signal is amplified to drive the output circuit 39, thereby causing the heater 6.10 to generate heat. power supply 4
0 supplies 1 to each part of the control circuit. in particular,
The temperature detection means is composed of a resistor 41 and the thermistor 8. The temperature setting means is composed of a resistor 42 and a temperature setting variable resistor 43, and the resistors 41, 42 . The thermistor 8 and variable resistor 43 constitute a bridge.

温度検出信号51及び温度設定信号52は、比較器48
に入力され、温度検出信号51が温度設定信号52より
高い場合(ヒータ温度が設定温度より低い)比較器48
出力は、Lowレベルとなる。出力部駆動回路38及び
出力回路38はPNP )ランジスタ49,50をダー
リントン接続することにより得ており比較器出力がLo
wレベルでトランジスタ49,50はONし、ヒータ6
.10に電流が流れ、発熱する。 ヒータ6とサーミス
タ8は、熱的に結合されており、ヒータが加熱し、温度
検出信号51が、温度設定信号52より低く(ヒータ温
度が設定温度より高い)なると、比較器48出力は、H
igrレベルとなりトランジスタ49.50は0FFL
、  ヒータ温度は低下する。このように温度検出信号
及び温度設定信号を比較してトランジスタの0N10F
Fを制御することにより、ヒータ6.10の温度を一定
に保つことができる0本実施例では、ヒータ電pi6.
10を2本並列接続し、ヒータ電極抵抗は50Ωとなり
、 印加電圧Vを25Vとすることにより、ヒータ電力
12.5Wを得た。また、マイクロシャフタ部分におけ
る温度リフプルは、3°C1環境温度を5℃〜35°C
変化させた時の温度変化は2℃で実用上十分な性能が得
られた。il!源投大投入直後マイクロシャッタ部分が
設定温度まで到達するに必要な時間は約30秒であった
。従来の発熱体を蓄熱体に貼りつけて液晶パネルを加熱
する方法では、発熱体のヒータ電力36Wで、設定温度
に到達するまでの時間は90秒必要であったこととくら
べると、本発明の効果は歴然たるものがある。環境温度
依存性についても従来技術では4°Cだったのに対し本
発明によれば2℃に低下している。またコスト面におい
ても、液晶パネル自身がヒータを内蔵しているため、外
部の発熱体、蓄熱板が不用となり、部品費及び組立工数
の削減が可能になった。尚、以上の実施例において、偏
光板を1枚にして液晶中に染料を含存させた液晶パネル
を使用してもよい。また温度制御方式として、比例制御
、PWM制御等も適用できる。
The temperature detection signal 51 and the temperature setting signal 52 are sent to the comparator 48.
If the temperature detection signal 51 is higher than the temperature setting signal 52 (the heater temperature is lower than the set temperature), the comparator 48
The output becomes Low level. The output drive circuit 38 and the output circuit 38 are obtained by connecting PNP transistors 49 and 50 in Darlington, so that the comparator output is Low.
At W level, transistors 49 and 50 are turned on, and heater 6 is turned on.
.. Current flows through 10, generating heat. The heater 6 and thermistor 8 are thermally coupled, and when the heater heats up and the temperature detection signal 51 becomes lower than the temperature setting signal 52 (the heater temperature is higher than the setting temperature), the comparator 48 output becomes H.
igr level and transistor 49.50 is 0FFL
, the heater temperature decreases. In this way, by comparing the temperature detection signal and temperature setting signal, the transistor's 0N10F
In this embodiment, the temperature of the heater 6.10 can be kept constant by controlling the heater voltage pi6.
By connecting two 10 in parallel, the heater electrode resistance was 50Ω, and the applied voltage V was 25V, a heater power of 12.5W was obtained. In addition, the temperature rift pull in the microshaft part is 5°C to 35°C when the environmental temperature is 3°C1.
The temperature change was 2°C, and a practically sufficient performance was obtained. Il! It took about 30 seconds for the micro-shutter section to reach the set temperature immediately after the large amount of power was turned on. In the conventional method of heating a liquid crystal panel by attaching a heating element to a heat storage element, it took 90 seconds to reach the set temperature with the heating element's heater power of 36W. The effects are obvious. The environmental temperature dependence was also reduced to 2°C according to the present invention, whereas it was 4°C in the conventional technology. In terms of cost, the liquid crystal panel itself has a built-in heater, which eliminates the need for an external heating element or heat storage plate, making it possible to reduce component costs and assembly man-hours. In the above embodiments, a liquid crystal panel may be used in which a single polarizing plate is used and a dye is contained in the liquid crystal. Further, as a temperature control method, proportional control, PWM control, etc. can also be applied.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明によれば、より少ない発熱体電
力で、 短時間で設定温度に達することができ、液晶層
温度の環境温度依存性が小さく、低コストで液晶パネル
の温度制御が可能となり、液晶パネルの温度制御に達す
るという効果ををする。
As described above, according to the present invention, the set temperature can be reached in a short time with less heating element power, the dependence of the liquid crystal layer temperature on the environmental temperature is small, and the temperature of the liquid crystal panel can be controlled at low cost. This makes it possible to achieve the effect of controlling the temperature of the liquid crystal panel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の液晶光学装置に使用する液液晶パネ
ルのパターンを示す図、 1¥4図は、同じくヒータ電
極のサーミスタ取付部の詳細を示す図、第5図(a)(
b)は、同じく温度制御回路の構成を示す図、第6図は
、従来の液晶パネルの構成を示す図。 1・・・液晶パネル  2・・・偏光板3・・一液晶駆
動回路を実装した基板 4・・・走査型pi基板 5・・・走査電極 6.10・・・ヒータ電極 7・・・信号電極基板 8・・・サーミスタ 9・・・接看材 以  上 出願人 セイコーエプン/株式会社   、−1−6.
10.’ヒータジオし 第2図 第3図 第4図
Figure 1 is a diagram showing the pattern of the liquid crystal panel used in the liquid crystal optical device of the present invention, Figure 1.4 is a diagram showing details of the thermistor attachment part of the heater electrode, and Figure 5 (a) (
b) is a diagram showing the configuration of a temperature control circuit, and FIG. 6 is a diagram showing the configuration of a conventional liquid crystal panel. 1...Liquid crystal panel 2...Polarizing plate 3...Substrate mounting liquid crystal drive circuit 4...Scanning type PI board 5...Scanning electrode 6.10...Heater electrode 7...Signal Electrode substrate 8...Thermistor 9...More than contact material Applicant: Seiko Epun Co., Ltd., -1-6.
10. ' Heater Geo Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] N本(Nは整数)の走査電極を備えた基板、M本(Mは
整数)の信号電極を備えた基板、前記両基板を電極を内
側にして対向させ、前記両基板間に挾持された液晶層及
び前記両基板の外側に少なくとも1枚の偏光板を備える
液晶光学装置において、前記走査電極を備えた基板の該
走査電極の両側に設けられた金属電極、前記金属電極の
一部を露出させ該露出部に設けられた温度検出手段、前
記金属電極に通電を行ない、該金属電極を発熱させ、前
記温度検出手段により該金属電極の温度を検出させ、該
金属電極への通電を制御し、該金属電極の温度を一定に
保つ温度制御回路を有することを特徴とする液晶光学装
置。
A substrate equipped with N scanning electrodes (N is an integer), a substrate equipped with M signal electrodes (M is an integer), the two substrates facing each other with the electrodes inside, and sandwiched between the two substrates. In a liquid crystal optical device including at least one polarizing plate on the outside of a liquid crystal layer and both substrates, a metal electrode provided on both sides of the scanning electrode of the substrate provided with the scanning electrode, and a part of the metal electrode being exposed. The temperature detecting means provided at the exposed portion energizes the metal electrode to generate heat, the temperature detecting means detects the temperature of the metal electrode, and the energization to the metal electrode is controlled. , a liquid crystal optical device comprising a temperature control circuit that keeps the temperature of the metal electrode constant.
JP62110114A 1987-05-06 1987-05-06 Liquid crystal optical device Pending JPS63274564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62110114A JPS63274564A (en) 1987-05-06 1987-05-06 Liquid crystal optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62110114A JPS63274564A (en) 1987-05-06 1987-05-06 Liquid crystal optical device

Publications (1)

Publication Number Publication Date
JPS63274564A true JPS63274564A (en) 1988-11-11

Family

ID=14527396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62110114A Pending JPS63274564A (en) 1987-05-06 1987-05-06 Liquid crystal optical device

Country Status (1)

Country Link
JP (1) JPS63274564A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119215A (en) * 1990-02-20 1992-06-02 Thermo-O-Disc, Incorporated LCD with self regulating PTC thermistor heating element
JP2005309424A (en) * 2004-03-25 2005-11-04 Robert Bosch Gmbh Display unit for vehicle
WO2009094381A1 (en) * 2008-01-25 2009-07-30 Eveready Battery Company, Inc. Heat dissipation in a lighting system and method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5119215A (en) * 1990-02-20 1992-06-02 Thermo-O-Disc, Incorporated LCD with self regulating PTC thermistor heating element
JP2005309424A (en) * 2004-03-25 2005-11-04 Robert Bosch Gmbh Display unit for vehicle
WO2009094381A1 (en) * 2008-01-25 2009-07-30 Eveready Battery Company, Inc. Heat dissipation in a lighting system and method thereof

Similar Documents

Publication Publication Date Title
US6727468B1 (en) Flexible heating system having high transmissivity
US6535266B1 (en) Closed loop LCD heater system
US6191839B1 (en) Patterned thermal sensor
KR101419542B1 (en) Liquid crystal lens apparatus
EP3477367A1 (en) Liquid crystal temperature control by resistive heating
WO1998029779A1 (en) Transparent temperature sensor for an active matrix liquid crystal display
JPS63274564A (en) Liquid crystal optical device
JPH0333720A (en) Matrix liquid crystal display device
US5148707A (en) Heat-sensitive flow sensor
JPH0593904A (en) Panel heater and liquid crystal display device formed by using this heater
JP2003329999A (en) Liquid crystal display device
JPH067111B2 (en) Gas detector
JP2966288B2 (en) Tunable wavelength filter
JP2536157B2 (en) Liquid crystal display
WO2022264802A1 (en) Device for controlling temperature of heater, method for controlling temperature of heater, and liquid crystal device
JPS59228290A (en) Liquid crystal display panel
JP2004239630A (en) Support device for temperature sensor
JPS60208787A (en) Surface thermal display
JPS62297827A (en) Optical switch
JP4245975B2 (en) Deformable mirror and driving method thereof
JP2558325Y2 (en) LCD panel temperature controller
JPS5583025A (en) Production of image display panel
JPS59197020A (en) Liquid crystal display device
JPH02147916A (en) Heat generating structure of sensor
JP3121110B2 (en) Fixing device