JPH02147916A - Heat generating structure of sensor - Google Patents

Heat generating structure of sensor

Info

Publication number
JPH02147916A
JPH02147916A JP63303501A JP30350188A JPH02147916A JP H02147916 A JPH02147916 A JP H02147916A JP 63303501 A JP63303501 A JP 63303501A JP 30350188 A JP30350188 A JP 30350188A JP H02147916 A JPH02147916 A JP H02147916A
Authority
JP
Japan
Prior art keywords
heat
heat generating
film body
generating film
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63303501A
Other languages
Japanese (ja)
Inventor
Shigeru Miyata
繁 宮田
Kanehisa Kitsukawa
橘川 兼久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63303501A priority Critical patent/JPH02147916A/en
Publication of JPH02147916A publication Critical patent/JPH02147916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve the response to a change in an ambient temperature by providing a detection means to detect a change in heating value at a center part of a heat generating film body formed on a substrate or providing a heating means to heat near an rim of the heat generating body formed on the substrate. CONSTITUTION:When a change in heating value is detected only with a central heat generating film body 6b at the center part of a heat generating film body 6, a ratio of a heat generating part increases with respect to a part thermally diffusing to alloy a change in heating value only by a part with better property of following a temperature change. Hence, abetter responsiveness is achieved to a change in an ambient temperature. When a heating is made near an end rim of the heat generating body 6 with a heater, a ratio of a heal generating part increases with respect to a part thermally diffusing even at the end rim thereof 6. Thus, the same heat generating conditions are achieved with the center part of the heat generating film body 6 thereby improving a responsiveness to a change in ambient temperature for the heat generating film body 6 as a whole.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、発熱量の変化により各種物理1を検出するセ
ンサのヒータ部の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a heater section of a sensor that detects various physical phenomena 1 based on changes in the amount of heat generated.

[従来技術] 従来、このようなセンサの発熱部構造、例えば流体通路
内に配置される流量測定センサのものを例にとると、本
願出願人は量産に適するようにするため基板上に温度補
償抵抗と抵抗発熱体とを形成したものを出願した(特願
昭63−49269)、すなわち、第9図に示すように
、センサ基板51上に温度補償抵抗53と抵抗発熱体5
2とを薄膜パターン形成し、この両者の温度差が一定に
なるように制御したときの供給電力値より、流体の流量
を求めるようにしている。抵抗発熱体52は、流量が大
きいほど奪われる熱量か多くなる原理により、この発熱
体の供給熱量を決定する供給電力によって流体の流量を
測定するためのもので、温度補rfi抵抗53は、上記
抵抗発熱体52の発熱粂件か流体温度によって変わるの
で、これを補償するためのものである。
[Prior Art] Conventionally, in the case of a heat generating part structure of such a sensor, for example, a flow rate measurement sensor disposed in a fluid passage, the present applicant has developed a temperature compensation structure on a substrate in order to make it suitable for mass production. An application was filed (Japanese Patent Application No. 63-49269) in which a resistor and a resistance heating element were formed, that is, as shown in FIG.
2 is formed into a thin film pattern, and the flow rate of the fluid is determined from the supplied power value when the temperature difference between the two is controlled to be constant. The resistance heating element 52 is used to measure the flow rate of the fluid based on the power supply that determines the amount of heat supplied by the heating element based on the principle that the larger the flow rate, the more heat is removed.The temperature compensation RFI resistor 53 is This is to compensate for the fact that the heat generation rate of the resistance heating element 52 changes depending on the fluid temperature.

なお、上記抵抗発熱体52の熱容量を少なくするととも
に、抵抗発熱体52と温度補償抵抗53とを断熱するた
め、両者の間に細長い断熱孔54が設けられている。ま
た、上記抵抗発熱体52に対しては、導電パターン55
を介して電力が供給され、発熱するようになっている。
Incidentally, in order to reduce the heat capacity of the resistance heating element 52 and to insulate the resistance heating element 52 and the temperature compensation resistor 53 from each other, an elongated heat insulation hole 54 is provided between the two. Further, for the resistance heating element 52, a conductive pattern 55
Power is supplied through the device, which generates heat.

[発明が解決しようとする課題] ところで、抵抗発熱体52の温度分布は抵抗発熱体52
全体で均一ではなく、第1B図に示すように、端縁の方
が温度か低くなっているものである。これは、端縁の方
が中央部分より、熱の拡散していくセンサ基板51等の
範囲が広く、それだけ熱の奪われる量が多くなるためで
ある。このことを言い換えると、熱の拡散していく部分
に対する発熱部分の比率、すなわち単位面積あたりの抵
抗発熱体52付近に対するセンサ基板51の面積の比率
が端縁はど大きくなって熱容量も大きくなり、熱拡散部
分の温度変化が発熱部分に伝わるまで時間がかかり、流
量が急変して温度が変化した時の応答性が端縁はと悪く
なるということになる。
[Problems to be Solved by the Invention] By the way, the temperature distribution of the resistance heating element 52 is
The temperature is not uniform throughout, and as shown in Figure 1B, the temperature is lower at the edges. This is because the area of the sensor substrate 51 and the like where heat is diffused is wider at the edges than at the center, and the amount of heat removed is correspondingly greater. In other words, the ratio of the heat generating part to the part where heat diffuses, that is, the ratio of the area of the sensor board 51 to the vicinity of the resistance heating element 52 per unit area becomes larger at the edge, and the heat capacity becomes larger. It takes time for the temperature change in the heat diffusion part to be transmitted to the heat generating part, and the response when the flow rate changes suddenly and the temperature changes becomes very poor at the edges.

この応答性を改良するために、センサ基板51の抵抗発
熱体52の設けられている部分を細くしたり、薄くした
りすることが考えられるが、そうすると、センサ自体の
機械的強度を低下させることになり兼ねながい。
In order to improve this response, it is conceivable to make the part of the sensor board 51 where the resistance heating element 52 is provided thinner or thinner, but this would reduce the mechanical strength of the sensor itself. It's been a long time since I've been in the middle of a long time.

本発明は、上述した課題を解決するためになされたもの
であり、温度変化に対する応答性の良い基体上の発熱部
構造を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a structure of a heat generating part on a substrate that has good responsiveness to temperature changes.

し課題を解決するための手段] 上記目的を達成するために本発明においては、基体上に
形成された発熱膜体の中央部分における発熱量の変化を
検出する検出手段を設ける構成とするか、又は基体上に
形成された発熱膜体の端縁付近を加熱する加熱手段を設
ける構成としたものである。
Means for Solving the Problem] In order to achieve the above object, the present invention includes a configuration in which a detection means for detecting a change in the amount of heat generated in the central portion of the heat generating film formed on the base is provided; Alternatively, a heating means is provided for heating the vicinity of the edge of the heat-generating film formed on the base.

[作用] 上記検出手段により、熱が拡散していく部分に対する発
熱部分の比率が大きく、温度変化に対する追従性の良い
発熱膜体の中央部分だけで発熱量の変化を検出できて周
囲の温度変化に対する応答性が良くなる。また、上記加
熱手段により、発熱膜体の端縁付近の発熱量を増加させ
、熱が拡散していく部分に対する発熱部分の比率を大き
くして、発熱膜体の端縁付近も発熱膜体の中央部分と同
じ発熱東件とし、やはり応答性を良くすることができる
[Function] With the above detection means, changes in the amount of heat generated can be detected only in the central part of the heat generating film body, which has a large ratio of the heat generating part to the part where heat diffuses and has good followability to temperature changes, and can detect changes in the surrounding temperature. Improves responsiveness to In addition, by using the heating means, the amount of heat generated near the edge of the heat generating film is increased, and the ratio of the heat generating portion to the portion where heat is diffused is increased, so that the heat generating portion near the edge of the heat generating film is also increased. The same heat generation as the central part can be used to improve responsiveness.

[第一実施例] 以下、本発明を具体化した第一実施例を図面を参照して
説明する。
[First Embodiment] Hereinafter, a first embodiment embodying the present invention will be described with reference to the drawings.

第2図は、熱式流量センサの製造工程を示す図であり、
センサ基板1は、数センチメートルの長さ及び幅の方形
状の板で、材質はアルミナ若しくはジルコニア等のセラ
ミックよりなるものが用いられ、1つの角のやや内側か
らセンサ基板1の長辺にそって細長い断熱孔2が打ち抜
きプレスにより形成される(第2図(1))。
FIG. 2 is a diagram showing the manufacturing process of a thermal flow sensor,
The sensor substrate 1 is a rectangular plate with a length and width of several centimeters, and is made of ceramic such as alumina or zirconia. A long and narrow heat insulating hole 2 is formed by punching and pressing (FIG. 2 (1)).

この断熱孔2とセンサ基板】の辺縁との間には、白金ベ
ーストか細長く2本印刷され、短絡ライン3.4が形成
される。1本の短絡ライン3は、断熱孔2の中央付近か
らセンサ基板1の角に向がい、角のやや内側でほぼ直角
に折れ曲がって伸び゛ている。もう1本の短絡ライン4
は、やはり断熱孔2の中央付近から上記短絡ライン3と
反対方向に伸び、断熱孔2の端部付近で湾曲している(
第2図(2))。
Between this heat insulating hole 2 and the edge of the sensor substrate, two strips of platinum base plate are printed to form a short circuit line 3.4. One short-circuit line 3 extends from near the center of the heat insulating hole 2 toward a corner of the sensor substrate 1, and is bent at a substantially right angle slightly inside the corner. Another short line 4
also extends from near the center of the heat insulating hole 2 in the opposite direction to the short circuit line 3, and curves near the end of the heat insulating hole 2 (
Figure 2 (2)).

この短絡ライン3.4の形成されたセンサ基板1は、焼
成された後、短絡ライン3.4の各端部3a、3b、4
a、4b付近を除いてガラスよりなるアンダーグレーズ
5が積層印刷され焼成される(第2図(3))。
After the sensor substrate 1 on which the short circuit line 3.4 is formed is fired, each end 3a, 3b, 4 of the short circuit line 3.4 is heated.
An underglaze 5 made of glass is laminated and printed except for the areas a and 4b and fired (FIG. 2(3)).

このアンダーグレーズ5の上の短絡ライン3.4の端部
3b、4aの間及び各外側には、有機白金ペーストが短
絡ライン3.4に沿って細長く印刷焼成され、白金の発
熱膜体6が形成される。この発熱膜体6のうち、中央部
分は中央発熱膜体6b、両側部分は端部発熱膜体6a、
6Cと呼ぶことにする。これら発熱膜体6a、6b、6
Cは」−記短絡ライン3.4の端部3b、4aに接続さ
れている。この発熱膜体6か、流i測定センサにおいて
は抵抗発熱体となる。また、センサ基板1の断熱孔2と
反対側の長辺に沿って、やはり有機白金ペーストか細長
くかつ2箇所で反転折曲した状態で印刷焼成され、白金
の温度補償抵抗7が形成さtする。これら発熱膜体6及
び温度補liK低抗7の厚さは十分の数ミクロンが望ま
しいが、これに限られるものではない、温度補償抵抗7
は上記断熱孔2によって発熱膜体6から断熱されるし、
この断熱孔2は発熱膜体6付近の熱容量を下げる役目も
している(第2図(4))。
Between the ends 3b and 4a of the short-circuit line 3.4 on the underglaze 5 and on each outer side, an organic platinum paste is printed and fired in a thin strip along the short-circuit line 3.4, and a platinum heat-generating film 6 is formed. It is formed. Of this heat generating film body 6, the central part is the central heat generating film body 6b, the side parts are the end heat generating film bodies 6a,
I'll call it 6C. These heating film bodies 6a, 6b, 6
C is connected to the ends 3b, 4a of the shorting line 3.4. This heating film body 6 serves as a resistance heating element in the flow i measurement sensor. Further, along the long side of the sensor substrate 1 opposite to the heat insulating hole 2, organic platinum paste is also printed and fired in a long and thin state inverted and bent at two places to form a platinum temperature compensation resistor 7. . The thickness of the heat generating film body 6 and the temperature compensating resistor 7 is desirably several tenths of a micron, but is not limited to this.
is insulated from the heat generating film body 6 by the heat insulating hole 2,
The heat insulating holes 2 also serve to reduce the heat capacity near the heating membrane 6 (FIG. 2 (4)).

このようにして形成される発熱膜体6及び温度補償抵抗
7に対して、第2図(5)の斜線部分には銀パラジウム
又は銀白金が印刷焼成され、導電膜体8が形成される。
Silver-palladium or silver-platinum is printed and fired in the shaded areas of FIG. 2(5) on the heating film body 6 and temperature compensation resistor 7 thus formed, thereby forming the conductive film body 8.

この導電膜体8は、上記端部発熱膜体6a、6bの外側
端部、短絡ライン31.4の端部3a、4b、温度補償
抵抗7の両端に接続されている。そして中央発熱膜体6
bと温度補償抵抗7とは短絡ライン3を介して接続され
ることになる。導電膜体8の厚さは数十ミクロンが望ま
しいが、これに限られるものではない(第2図(5))
This conductive film body 8 is connected to the outer ends of the end heating film bodies 6a, 6b, the ends 3a, 4b of the short circuit line 31.4, and both ends of the temperature compensation resistor 7. and central heating membrane body 6
b and the temperature compensation resistor 7 are connected via the short line 3. The thickness of the conductive film body 8 is preferably several tens of microns, but is not limited to this (Fig. 2 (5)).
.

上記発熱膜体6及び温度補償抵抗7は導電lIi体8に
対し、厚さが薄く断面積が小さいため抵抗値が高くなっ
ている。
The heating film body 6 and the temperature compensation resistor 7 have a higher resistance value because they are thinner and have a smaller cross-sectional area than the conductive lIi body 8.

これら発熱膜体6、温度補償抵抗7、導電膜体8を含め
たセンサ基板1上には、ガラスペーストか印刷焼成され
、オーバーグレーズ14かコーティング形成される。こ
のオーバーグレーズ14は発熱膜体6、温度補償抵抗7
、導電膜体8を塵芥から保護するオーバーコート用の膜
であり、厚さは十数ミクロンが望ましいが、これに限ら
れるものではないし、材質らガラス以外のものでも良い
On the sensor substrate 1 including the heat generating film 6, temperature compensation resistor 7, and conductive film 8, a glass paste is printed and fired, and an overglaze 14 is coated. This overglaze 14 includes a heating film body 6 and a temperature compensation resistor 7.
, is an overcoat film that protects the conductive film body 8 from dust, and preferably has a thickness of ten or more microns, but is not limited to this, and may be made of a material other than glass.

第1A図は発熱膜体6a、6b、6Cの断面を示すもの
で、発熱電力は導電膜体8.8を通じて各発熱膜体6a
、6b、6Cに供給されるが、発熱量の変化は短絡ライ
ン3.4を通じて中央発熱膜体6bのみで検出される。
FIG. 1A shows a cross section of the heat generating film bodies 6a, 6b, and 6C, and the generated power is transmitted through the conductive film body 8.
, 6b, and 6C, but changes in the amount of heat generated are detected only at the central heating membrane 6b through the short circuit line 3.4.

通常、熱の拡散していく部分に対する発熱部分の比率、
すなわぢ単位面積あたりの発熱膜体6に対するセンサ基
板1の面積の比率が発熱lIi体6の端縁はと大きくな
って熱容量も大きくなり、熱拡散部分の温度変化か発熱
部分に伝わるまで時間がかかり、流量が急変して温度が
変化した時の応答性が端縁はと悪くなるということにな
る。これは、第1B図に示すように、発熱膜体6の温度
分布は発熱膜体6全体で均一ではなく、端縁の方が温度
が低くなっていることにあられれている。これに対し、
本願のように発熱膜体6の中央部分の中央発熱膜体6b
だけで発熱量の変化を検出すれば、熱拡散していく部分
に対する発熱部分の比率が大きく、温度変化に対する追
従性の良い部分だけで発熱量の変化を検出できて周囲の
温度変化に対する応答性が良くなる。
Normally, the ratio of the heat generating part to the heat dissipating part,
In other words, the ratio of the area of the sensor substrate 1 to the heat-generating film 6 per unit area at the edge of the heat-generating lIi body 6 becomes large, and the heat capacity also increases, and it takes a long time for the temperature change in the heat diffusion part to be transmitted to the heat-generating part. This means that the response when the flow rate changes suddenly and the temperature changes becomes extremely poor. This is because, as shown in FIG. 1B, the temperature distribution of the heat generating film 6 is not uniform throughout the heat generating film 6, and the temperature is lower at the edges. In contrast,
As in the present application, the central heat generating film body 6b in the central part of the heat generating film body 6
If you detect changes in the amount of heat generated only by detecting changes in the amount of heat generated, the ratio of the part that generates heat to the part where heat is diffused is large, and changes in the amount of heat generated can be detected only in parts that have good followability to temperature changes, which increases responsiveness to changes in ambient temperature. gets better.

第3A図は、センサの全体回路を示すらので、上述した
発熱膜体6a、6b、6c、温度補償抵抗7以外の回路
素子は、センサ基板1に接続されるハイブリッドIC又
は回路基板上に設けられている。
Since FIG. 3A shows the entire circuit of the sensor, circuit elements other than the above-mentioned heat generating film bodies 6a, 6b, 6c and temperature compensation resistor 7 are provided on the hybrid IC or circuit board connected to the sensor board 1. It is being

グラスの直流電a9に対し、PNP型のトランジスタ1
0のエミッタが接続され、このトランジスタ10のコレ
クタに上記発熱膜体6a、6b、6C及び抵抗ROが直
列に接続され、抵抗ROの他端はアースされている。こ
の中央発熱膜体6b、端部発熱膜体6c、抵抗ROに対
し温度補償抵抗7、抵抗R2、R1、R3が並列に接続
され、端部発熱膜体6c、抵抗ROに対し抵抗R4、R
5が並列に接続されている6 そして中央発熱膜体6bと端部発熱膜#、6Cとの間の
電位はオペアンプ11の一端子に入力され、抵抗R1と
R2の間の電位はオペアンプ11の子端子に入力され、
両電位の差に比例した電圧か出力される。このオペアン
プ11の出力電圧は、上記プラスの直流電a9に対する
差電圧が抵抗R6、R7で分圧された後、上記トランジ
スタ10のベースに与えられている。
PNP type transistor 1 for glass DC current a9
The emitter of transistor 10 is connected to the emitter of transistor 10, and the heat generating film bodies 6a, 6b, 6C and resistor RO are connected in series to the collector of transistor 10, and the other end of resistor RO is grounded. A temperature compensating resistor 7, resistors R2, R1, and R3 are connected in parallel to the central heat generating film 6b, end heat generating film 6c, and resistor RO, and resistors R4, R3 are connected to the end heat generating film 6c and resistor RO in parallel.
5 are connected in parallel.The potential between the central heat generating film body 6b and the end heat generating film #, 6C is input to one terminal of the operational amplifier 11, and the potential between the resistors R1 and R2 is input to one terminal of the operational amplifier 11. input to the child terminal,
A voltage proportional to the difference between both potentials is output. The output voltage of the operational amplifier 11 is applied to the base of the transistor 10 after the differential voltage with respect to the positive DC current a9 is divided by resistors R6 and R7.

また、上記抵抗R4とR5との間の電位はらう1つのオ
ペアンプ12の子端子に入力され、上記端部発熱膜体6
Cと抵抗ROとの間の電位はオペアンプ12の一端子に
抵抗R8を介して入力され、さらにこのオペアンプ12
の出力は抵抗R9を介して一端子に・帰還入力されてい
る。このオペアンプ12の増幅率とオペアンプ12を中
心とした抵抗R3、R4、R5、R8、R9の値とを適
当に選ぶことによって、端部発熱膜体6Cの印加電圧V
cをそのまま抵抗R3に生じさせることができる。
Further, the potential between the resistors R4 and R5 is inputted to a child terminal of one operational amplifier 12, and the end heating film body 6
The potential between C and the resistor RO is input to one terminal of the operational amplifier 12 via the resistor R8, and the potential between the operational amplifier 12
The output is fed back to one terminal via a resistor R9. By appropriately selecting the amplification factor of the operational amplifier 12 and the values of the resistors R3, R4, R5, R8, and R9 around the operational amplifier 12, the voltage applied to the end heating film 6C can be adjusted to
c can be directly generated in the resistor R3.

これにより、中央発熱膜体6b、端部発熱膜体6c、抵
抗ROと温度補償抵抗7、抵抗R,2,R1、R3とで
構成されるブリッジ回路の中の上記同じ電圧Vcが印加
される端部発熱膜体6Cと抵抗R3とを除外することが
でき、さらにオペアンプ12、抵抗R4、R5、R8、
R9を省略することができ、第3A図の回路は第3B図
に示すような等価回路に置き換えることができ、中央発
熱膜体6b、温度補償抵抗7と抵抗R2,抵抗R,O1
抵抗R1でホイートストンブリッジを構成することかで
きる。
As a result, the same voltage Vc is applied to the bridge circuit composed of the central heating film 6b, the end heating film 6c, the resistor RO, the temperature compensation resistor 7, and the resistors R, 2, R1, and R3. The end heating film body 6C and the resistor R3 can be excluded, and the operational amplifier 12, the resistors R4, R5, R8,
R9 can be omitted, and the circuit of FIG. 3A can be replaced with an equivalent circuit as shown in FIG. 3B, which includes the central heating membrane 6b, temperature compensation resistor 7, resistor R2, resistor R,
A Wheatstone bridge can be constructed with the resistor R1.

こうして、発熱膜体6の発熱量を検出するホビー1ヘス
トンブリツジの中から、周囲の温度変化に対する追従性
の悪い端部発熱膜体6a及び6Cを除外することかでき
て、周囲の温度変化に対する応答性の良い検出を行うこ
とかできる。
In this way, it is possible to exclude the end heat generating film members 6a and 6C, which have poor followability to ambient temperature changes, from the hobby 1 Heston bridge that detects the amount of heat generated by the heat generating film member 6. It is possible to perform detection with good responsiveness.

次に、上記構成のセンサの動作についてのべる6いま、
セン→ノ”上を流れる流量か増加すると、中央発熱膜体
6bをはじめとする発熱膜体6からの発熱量に対し流体
に吸収される熱量が増加し、中央発熱膜体6bの温度が
下がって、中央発熱膜体6bの抵抗値が低くくなる。す
ると、第3B図において、中央発熱膜体6bと抵抗RO
との間の8点の電位が」−がり、抵抗R2と抵抗R】と
の間のb点の電位との差が縮まって、オペアンプ11の
出力レベルが下がり、トランジスタ10のベースの電位
が下降してPNP型のトランジスタ10の導通電流か増
加し、中央発熱膜体6bをはじめとする発熱膜体6の発
熱量か増える。このトランジスタ10の導通電流の増加
により、流量の増大か検出されることになる。
Next, we will discuss the operation of the sensor with the above configuration.
When the flow rate flowing over the central heating membrane 6b increases, the amount of heat absorbed by the fluid increases relative to the amount of heat generated from the heating membrane 6, including the central heating membrane 6b, and the temperature of the central heating membrane 6b decreases. As a result, the resistance value of the central heat generating film body 6b becomes low.Then, in FIG. 3B, the central heat generating film body 6b and the resistance RO
The potential at point b between resistor R2 and resistor R decreases, the output level of operational amplifier 11 decreases, and the potential of the base of transistor 10 decreases. As a result, the conduction current of the PNP type transistor 10 increases, and the amount of heat generated by the heat generating film body 6 including the central heat generating film body 6b increases. An increase in the conduction current of the transistor 10 causes an increase in the flow rate to be detected.

また、センサーFを流れる流量か減少すると、上述の動
作と全く反対の動作が行われ、中央発熱膜体6bをはじ
めとする発熱膜体6の発熱量が減り、トランジスタ10
の導通電流か少なくなって、流iの減少か検出されるこ
とになる。
Further, when the flow rate flowing through the sensor F decreases, an operation completely opposite to the above-mentioned operation is performed, and the heat generation amount of the heat generating film body 6 including the central heat generating film body 6b decreases, and the transistor 10
The conduction current of the current i decreases, and a decrease in the current i is detected.

上記温度補償抵抗7については、センサ上を流れる流体
自体の温度変化により、温度補償抵抗7の抵抗値か変化
し、中央発熱原体6bに印加される電圧が補償されるこ
とにより、その補正が行われる0例えば、流体の温度が
上がれば、中央発熱膜体6bの抵抗値がやや大きくなっ
て中央発熱膜体6bの印加電圧が大きくなり、この結果
a点電位が下がってオペアンプ11の一人力が小さくな
るが、温度補償抵抗7の抵抗値も大きくなって温度補償
抵抗7の印加電圧も大きくなり、この結果す点電位ら下
がってオペアンプ11の十人力も小さくなるので、オペ
アンプ11の出力は変化ぜす、トランジスタ10の導通
電流も変化しない、また、流体の温度が下がれば、上述
の動作と全く反対の動作が行われ、同様にオペアンプ1
1の出力は変化せず、トランジスタ10の導通電流も変
化しない。
Regarding the temperature compensation resistor 7, the resistance value of the temperature compensation resistor 7 changes due to the temperature change of the fluid itself flowing over the sensor, and the voltage applied to the central heating element 6b is compensated, so that the correction is performed. For example, when the temperature of the fluid rises, the resistance value of the central heat generating film 6b becomes slightly larger, and the voltage applied to the central heat generating film 6b increases.As a result, the potential at point a decreases and the operational amplifier 11's power increases. becomes smaller, but the resistance value of the temperature compensation resistor 7 also increases, and the voltage applied to the temperature compensation resistor 7 also increases.As a result, the point potential decreases and the power of the operational amplifier 11 also decreases, so the output of the operational amplifier 11 becomes If the temperature of the fluid decreases, the conduction current of the transistor 10 will not change, and if the temperature of the fluid decreases, the operation exactly opposite to that described above will occur;
The output of transistor 1 does not change, and the conduction current of transistor 10 also does not change.

なお、中央発熱膜体61)に対し、温度m償抵抗7と抵
抗R2,2つの抵抗を並列に接続してホイートストンブ
リッジを楕成し、オペアンプ12を省略しても良い。
Note that the operational amplifier 12 may be omitted by connecting two resistors, the temperature m-compensating resistor 7 and the resistor R2, in parallel to the central heating film body 61) to form a Wheatstone bridge.

[第2実施例] 第5図は、熱式流量センサの第2実施例の製造工程を示
す図であり、センサ基板1は、数センチメートルの長さ
及び幅の方形状の板で、材質はアルミナ若1 <はジル
コニア等のセラミックよりなるものが用いられ、1つの
角のやや内側からセンサ基板1の長辺にそって細長い断
熱孔2が打ち抜き、プレスにより形成される(第5図(
1)>。
[Second Embodiment] FIG. 5 is a diagram showing the manufacturing process of a second embodiment of a thermal flow sensor, in which the sensor substrate 1 is a rectangular plate with a length and width of several centimeters, and is made of material. A material made of ceramic such as alumina young 1 and zirconia is used, and a long and narrow heat insulating hole 2 is punched along the long side of the sensor substrate 1 from slightly inside one corner and formed by pressing (see Fig. 5).
1)>.

この断熱孔2とセンサ基板1の辺縁との間には、白金ペ
ーストが細長く1本印刷され、加熱し−タ21.21と
導電ライン22・・・が形成される。加熱し−タ21は
極めて細くジグザグ状に折曲形成され、導電ライン22
はほぼ真っ直ぐに太い幅で形成され63つの導電ライン
22・・・の間に2つの加熱ヒータ21.21が接続す
る形となっている(第5図(2))。
A strip of platinum paste is printed between the heat insulating hole 2 and the edge of the sensor substrate 1, forming heating pads 21, 21 and conductive lines 22. The heating heater 21 is bent into an extremely thin zigzag shape, and conductive lines 22
is formed almost straight with a wide width, and two heaters 21, 21 are connected between the 63 conductive lines 22 (FIG. 5 (2)).

この加熱し−タ21、導電ライン22の形成されたセン
サ基板1は、焼成された後、両端の導電ライン22の外
側の端部22a、22b付近を除いてカラスよりなるア
ンダーグレーズ5が積層印刷され焼成される(第5図(
3>)。
After the sensor substrate 1 on which the heating heater 21 and the conductive lines 22 are formed is fired, an underglaze 5 made of glass is laminated and printed on the area except around the outer ends 22a and 22b of the conductive lines 22 at both ends. and fired (Fig. 5 (
3>).

上記3つの導電ライン22・・のうち真ん中の導電ライ
ン22」−のアンダーグレーズ5の上には、有機白金ベ
ース1−が印刷焼成され、白金の発熱膜体6が形成され
るにの発熱膜体6の大きさは、上記真ん中の導電ライン
22とほぼ同じ幅、同じ長さとなっている。当該発熱膜
体6が、流量測定センサにおいては抵抗発熱体となる。
An organic platinum base 1- is printed and fired on the underglaze 5 of the middle conductive line 22'' of the three conductive lines 22..., and a heat-generating film is formed to form a platinum heat-generating film body 6. The size of the body 6 is approximately the same width and length as the conductive line 22 in the middle. The heating film body 6 becomes a resistance heating element in the flow measurement sensor.

また、センサ基板1の断熱孔2と反対側の長辺に沿って
、やはり有機白金ベース1〜が細長くかつ2箇所で反転
折曲した状態で印刷焼成され、白金の温度補償抵抗7が
形成される。これら発熱膜体6及び温度補償抵抗7の厚
さは十分の数ミクロンが望ましいが、これに限られるも
のではない、温度補償抵抗7は上記断熱孔2によって発
熱膜体6から断熱されるし、この断熱孔2は発熱膜体6
付近の熱容量を下げる役目もしている(第5図(4))
Further, along the long side of the sensor substrate 1 opposite to the heat insulating hole 2, the organic platinum base 1~ is also printed and fired in a long and narrow state and inverted and bent at two places, thereby forming the platinum temperature compensation resistor 7. Ru. The thickness of the heat generating film body 6 and temperature compensation resistor 7 is desirably several tenths of a micron, but is not limited to this.The temperature compensation resistor 7 is insulated from the heat generating film body 6 by the heat insulating hole 2, This heat insulating hole 2 is a heat generating film body 6
It also serves to lower the heat capacity in the vicinity (Figure 5 (4))
.

このようにして形成される発熱膜体6及び温度補償抵抗
7に対して、第5図(5)の斜線部分には銀パラジウム
又は銀白金が印刷焼成され、導電膜体8が形成される。
Silver-palladium or silver-platinum is printed and fired in the shaded area in FIG. 5(5) on the heating film body 6 and temperature compensation resistor 7 thus formed, thereby forming the conductive film body 8.

この導電膜体8は、上記端部発熱膜体6の両側端部、導
電ライン22の外側端部22a、22b、温度補償抵抗
7の両端に接続されている。そして加熱し−タ21と発
熱膜体6と温度補償抵抗7とは導電膜体8を介して接続
されることになる。導電膜体8の厚さは数十ミクロンが
Uましいが、これに限られるものではない(第5図(5
))。
The conductive film body 8 is connected to both ends of the end heating film body 6, to the outer ends 22a and 22b of the conductive line 22, and to both ends of the temperature compensation resistor 7. The heater 21, the heat generating film 6, and the temperature compensating resistor 7 are connected via the conductive film 8. The thickness of the conductive film body 8 is preferably several tens of microns, but is not limited to this (see Fig. 5).
)).

上記発熱膜体6及び温度補償抵抗7は導電膜体8に対し
、厚さが薄く断面積が小さいため抵抗値が高くなってい
る。
The heating film body 6 and the temperature compensation resistor 7 have a higher resistance value because they are thinner and have a smaller cross-sectional area than the conductive film body 8.

これら発熱膜体6、温度補償抵抗7、導電膜体8を含め
たセンサ基板1上には、ガラスペーストが印刷焼成され
、オーバーグレーズ14がコーティング形成される。こ
のオーバーグレーズ14は発熱膜体6、温度補償抵抗7
、導電膜体8を塵芥から保護するオーバーコート用の膜
であり、厚さは」−数ミクロンが望ましいが、これに限
られるものではないし、材質もカラス以外のものでも良
い。
Glass paste is printed and baked on the sensor substrate 1 including the heat generating film 6, the temperature compensation resistor 7, and the conductive film 8, and an overglaze 14 is coated thereon. This overglaze 14 includes a heating film body 6 and a temperature compensation resistor 7.
This is an overcoat film that protects the conductive film body 8 from dust, and the thickness is desirably several microns, but is not limited to this, and the material may be other than glass.

第4A図は発熱膜体6及び加熱し−タ21の断面を示す
もので、加熱し−タ2m21は発熱膜体6の長手方向両
端の外側に位置し、発熱膜体6の端縁付近を加熱するよ
うになっている。
FIG. 4A shows a cross section of the heat generating film body 6 and the heating heater 21. The heating heater 2m21 is located on the outside of both longitudinal ends of the heat generating film body 6, and near the edge of the heat generating film body 6. It is designed to heat up.

通常、熱の拡散していく部分に対する発熱部分の比率、
すなわち単位面積あたりの発熱膜体6に対するセンサ基
板1の面積の比率が発熱膜体6の端縁はと大さくなって
熱容量も大きくなり、熱拡散部分の温度変化が発熱部分
に伝わるまで時間かかかり、流量が急変して温度が変化
した時の応答性が端縁はと悪くなるということになる。
Normally, the ratio of the heat generating part to the heat dissipating part,
In other words, the ratio of the area of the sensor substrate 1 to the heat generating film 6 per unit area becomes larger at the edge of the heat generating film 6, and the heat capacity also increases, and it takes longer for the temperature change in the heat diffusion part to be transmitted to the heat generating part. This means that the response when the flow rate changes suddenly and the temperature changes becomes extremely poor.

これは、第4B図(1)に示すように、発熱膜体6の温
度分布は発熱膜体6全体で均一ではなく、端縁の方が温
度が低くなっていることにあられれている。
This is because, as shown in FIG. 4B (1), the temperature distribution of the heat generating film 6 is not uniform throughout the heat generating film 6, and the temperature is lower at the edges.

これに対し、本願のように発熱膜体6の端縁付近を加熱
ヒータ21.21で加熱すれば、発熱膜体6の端縁でも
熱拡散していく部分に対する発熱部分の比率か大きくな
り、第4B図(2)に示すように、発熱膜体6の中央部
分と同じ発熱条件にできて、発熱膜体6全体として周囲
の温度変化に対する応答性が良くなる。
On the other hand, if the vicinity of the edge of the heat-generating film body 6 is heated by the heater 21.21 as in the present application, the ratio of the heat-generating portion to the portion where heat is diffused also increases even at the edge of the heat-generating film body 6. As shown in FIG. 4B (2), the same heating conditions as the central portion of the heat generating film body 6 can be achieved, and the responsiveness of the heat generating film body 6 as a whole to ambient temperature changes is improved.

第6図は、センサの全体回路を示すもので、上述した発
熱膜体6、温度補償抵抗7、加熱ヒータ21以外の回路
素子は、センサ基板1に接続されるハイブリッドIC又
は回路基板上に設けられている。
FIG. 6 shows the overall circuit of the sensor, and circuit elements other than the above-mentioned heat generating film 6, temperature compensation resistor 7, and heater 21 are installed on a hybrid IC or circuit board connected to the sensor board 1. It is being

プラスの直流電源9に対し、PNP型のトランジスタ1
0のエミッタが接続され、このトランジスタ10のコレ
クタに上記発熱膜体6及び抵抗R511が直列に接続さ
れ、抵抗R11の他端はアースされている。この発熱膜
体6、抵抗R11に対し温度補償抵抗7、抵抗R12、
R13が並列に接続されており、これら発熱膜体6、抵
抗R11、温度補償抵抗7と抵抗R12、抵抗R13で
ホイートストンブリッジが構成されている。
PNP type transistor 1 for positive DC power supply 9
The emitter of transistor 10 is connected to the emitter of transistor 10, and the heat generating film 6 and resistor R511 are connected in series to the collector of transistor 10, and the other end of resistor R11 is grounded. For this heating film body 6 and resistor R11, temperature compensation resistor 7, resistor R12,
R13 are connected in parallel, and a Wheatstone bridge is constituted by the heating film 6, the resistor R11, the temperature compensation resistor 7, the resistor R12, and the resistor R13.

そして発熱膜体6と抵抗R11との間のa点の電位はオ
ペアンプ13の一端子に入力され、抵抗R12とR,1
3の間のb点の電位はオペアンプ11の子端子に入力さ
れ、両電位の差に比例した電圧が出力される。このオペ
アンプ13の出力電圧は、上記プラスの直流電源9に対
する差電圧が抵抗R14、R,15で分圧された後、上
記トランジスタ10のベースに与えられている。
The potential at point a between the heat generating film 6 and the resistor R11 is input to one terminal of the operational amplifier 13, and the resistor R12 and R,1
The potential at point b between 3 and 3 is input to the child terminal of the operational amplifier 11, and a voltage proportional to the difference between the two potentials is output. The output voltage of the operational amplifier 13 is applied to the base of the transistor 10 after the differential voltage with respect to the positive DC power supply 9 is divided by resistors R14, R, and 15.

上記加熱ヒータ21.21は、上記発熱膜体6、抵抗R
11、温度補償抵抗7と抵抗R12、抵抗R13で構成
されるホイートストンブリッジに対し、並列に接続され
ている。
The heater 21.21 includes the heating film body 6, the resistor R
11. It is connected in parallel to a Wheatstone bridge composed of a temperature compensation resistor 7, a resistor R12, and a resistor R13.

次に、上記構成のセンサの動作についてのべる。Next, the operation of the sensor configured as described above will be described.

いま、センサ上を流れる流量が増加すると、発熱膜体6
からの発熱量に対し流体に吸収される熱量が増加し、発
熱膜体6の温度が下がって、発熱膜体6の抵抗値が低く
くなる。すると、第6図において、発熱膜体6と抵抗R
11との間のa点の電位が上かり、抵抗R12と抵抗R
13との間のb点の電位との差が縮まって、オペアンプ
11の出力レベルが下がり、)・ランジスタ10のベー
スの電位が下降しPNP型のトランジスタ10の導通性
が良くなってトランジスタ10の導通抵抗が小さくなり
、ホイートストンブリッジとその中の発熱膜体6の印加
電圧が増加して発熱膜体6の発熱量が増える。このトラ
ンジスタ10の導通抵抗の減少により、流量の増大が検
出されることになる。
Now, when the flow rate flowing over the sensor increases, the heat generating film body 6
The amount of heat absorbed by the fluid increases relative to the amount of heat generated by the fluid, the temperature of the heat generating film 6 decreases, and the resistance value of the heat generating film 6 decreases. Then, in FIG. 6, the heating film body 6 and the resistor R
11 increases, the potential at point a between resistor R12 and resistor R
13, the output level of the operational amplifier 11 decreases, and the potential of the base of the transistor 10 decreases, the conductivity of the PNP transistor 10 improves, and the output level of the operational amplifier 11 decreases. The conduction resistance becomes smaller, the voltage applied to the Wheatstone bridge and the heat generating film body 6 therein increases, and the amount of heat generated by the heat generating film body 6 increases. This decrease in conduction resistance of transistor 10 allows an increase in flow rate to be detected.

このとき、加熱ヒータ21.21の印加電圧も増加して
、加熱ヒータ21.21の発熱量も増えるので、発熱膜
体6の発熱量の増加に応じて発熱膜体6の端部加熱アッ
プがはかられ、発熱膜体6の中央部分の発熱条件と発熱
膜体6の端部の発熱条件のバランスが保たれる。
At this time, the voltage applied to the heater 21.21 also increases, and the amount of heat generated by the heater 21.21 also increases, so that the end portion of the heat generating film 6 is heated up in accordance with the increase in the amount of heat generated by the heat generating film 6. The balance between the heat generation conditions at the central portion of the heat generation film body 6 and the heat generation conditions at the end portions of the heat generation film body 6 is maintained.

また、センサ上を流れる流量が減少すると、上述の動作
と全く反対の動作が行われ、発熱膜体6の発熱量が減り
、トランジスタ10の導通抵抗が大きくなって、流量の
減少が検出されることになる。
Furthermore, when the flow rate flowing over the sensor decreases, the operation completely opposite to the above-mentioned operation is performed, the amount of heat generated by the heat generating film 6 decreases, the conduction resistance of the transistor 10 increases, and a decrease in the flow rate is detected. It turns out.

上記温度補償抵抗7については、センサ上を流れる流体
自体の温度変化により、温度補償抵抗7の抵抗値が変化
し、中央発熱膜体6bに印加される電圧が補償されるこ
とにより、その補正が行われる6例えば、流体の温度が
上がれば、発熱膜体6の抵抗値がやや大きくなって発熱
膜体6の印加電圧が大きくなり、この結果a点電位が下
がってオペアンプ13の一人力が小さくなるが、温度補
償抵抗7の抵抗値も大きくなって温度補償抵抗7の印加
電圧も大きくなり、この結果す点電位ら下がってオペア
ンプ13の十人力も小さくなるので、オペアンプ13の
出力は変化せず、トランジスタ10の導通電流も変化し
ない、また、流体の温度が下がれば、上述の動作と全く
反対の動作が行われ、同様にオペアンプ13の出力は変
化せず、トランジスタ10の導通電流も変化しない。
Regarding the temperature compensation resistor 7, the resistance value of the temperature compensation resistor 7 changes due to the temperature change of the fluid itself flowing over the sensor, and the voltage applied to the central heat generating film body 6b is compensated, so that the correction is performed. For example, when the temperature of the fluid rises, the resistance value of the heat generating film 6 becomes a little larger, and the voltage applied to the heat generating film 6 increases.As a result, the potential at point a decreases, and the single power of the operational amplifier 13 decreases. However, the resistance value of the temperature compensation resistor 7 also increases, and the voltage applied to the temperature compensation resistor 7 also increases.As a result, the potential at the point decreases and the power of the operational amplifier 13 also decreases, so the output of the operational amplifier 13 does not change. First, the conduction current of the transistor 10 does not change. Also, when the temperature of the fluid decreases, the operation that is completely opposite to the above operation is performed, and similarly, the output of the operational amplifier 13 does not change, and the conduction current of the transistor 10 also changes. do not.

第7図は上記第2実施例の変形例を示すしので、この例
ではセンサ基板1の裏側に加熱ヒータ21.21と導電
ライン22を設けたものである。この例でら加熱ヒータ
21.21からの発熱はセンサ基板1を通じて発熱膜体
6の端部に与えられ、発熱膜体6の端部の発熱条件を発
熱膜体6の中央部分の発熱条件と同じようにでき、発熱
膜体6全体として周囲の温度変化に対する応答性が良く
なる。
FIG. 7 shows a modification of the second embodiment, in which heaters 21, 21 and conductive lines 22 are provided on the back side of the sensor substrate 1. In this example, the heat generated from the heaters 21 and 21 is applied to the ends of the heat-generating film body 6 through the sensor substrate 1, and the heat-generating conditions at the ends of the heat-generating film body 6 are the heat-generating conditions at the center of the heat-generating film body 6. It can be made in the same manner, and the heat generating film body 6 as a whole has better responsiveness to changes in ambient temperature.

また、発熱膜体6と加熱ヒータ21.21とはセンサ基
板1を挟んで同じような位置に設けられており、発熱し
た熱を放熱する条件が同じとなり、発熱膜体6、加熱ヒ
ータ21.21の発熱量に応じた両者の間の調整、例え
ば加熱し−タ21.21に接続された抵抗の値の調整等
が不要となる。
Furthermore, the heat generating film body 6 and the heaters 21.21 are provided at the same position with the sensor substrate 1 in between, and the conditions for dissipating the generated heat are the same. There is no need for adjustment between the two according to the amount of heat generated by the heater 21, for example, adjustment of the value of the resistor connected to the heater 21.21.

第8図も上記第2実施例の変形例を示すもので、この例
では発熱膜体6、抵抗R11、温度補償抵抗7と抵抗R
12、抵抗R,13で構成されるホイートストンブリッ
ジと、トランジスタ10との間に、加熱し−タ21.2
1を設け、加熱し−タ21.21をホイートストンブリ
ッジに直列に接続したものである。この例でもセンサ上
を流れる流藍が増加すると、発熱膜体6の温度が下がっ
て、発熱膜体6の抵抗値が低くくなり、発熱膜体6と抵
抗R11との間のa点の電位が上かり、抵抗R12と抵
抗R13との間のb点の電位との差が縮まって、オペア
ンプ13の出力レベルが下がり、トランジスタ10のベ
ースの電位が下降しPNP型のトランジスタ10の導通
電流が増加して発熱膜体6の発熱量が増える。このトラ
ンジスタ10の導通電流の増加により、流量の増大が検
出されることになる。
FIG. 8 also shows a modification of the second embodiment, in which the heating film 6, the resistor R11, the temperature compensation resistor 7 and the resistor R
12, a heating element 21.2 is connected between the Wheatstone bridge composed of resistors R and 13 and the transistor 10.
1 and a heating heater 21.21 connected in series to a Wheatstone bridge. In this example as well, when the flow of indigo flowing over the sensor increases, the temperature of the heat generating film 6 decreases, the resistance value of the heat generating film 6 decreases, and the potential at point a between the heat generating film 6 and the resistor R11 increases. increases, the difference between the potential at point b between the resistors R12 and R13 decreases, the output level of the operational amplifier 13 decreases, the potential at the base of the transistor 10 decreases, and the conduction current of the PNP transistor 10 decreases. As a result, the amount of heat generated by the heat generating film body 6 increases. An increase in the flow rate is detected due to an increase in the conduction current of the transistor 10.

このとき、加熱ヒータ21.21を流れる電流ら増加し
て、加熱ヒータ21.21の発熱量も増えるので、発熱
膜体6の発熱量の増加に応じて発熱膜体6の端部加熱ア
ップがはかられ、発熱膜体6の中央部分の発熱条件と発
熱膜体6の端部の発熱条件のバランスか保たれる。
At this time, the current flowing through the heater 21.21 increases, and the amount of heat generated by the heater 21.21 also increases, so that the end portion of the heat generating film 6 is heated up in accordance with the increase in the amount of heat generated by the heat generating film 6. As a result, a balance between the heat generation conditions at the center of the heat generation film 6 and the heat generation conditions at the ends of the heat generation film 6 is maintained.

また、センサ上を流れる流量が減少すると、上述の動作
と全く反対の動作が行われ、発熱膜体6の発熱量が減り
、トランジスタ10の導通電流が減少して、流量の減少
か検出されることになる。
Furthermore, when the flow rate flowing over the sensor decreases, the operation that is completely opposite to the above-mentioned operation is performed, the amount of heat generated by the heat generating film 6 decreases, the conduction current of the transistor 10 decreases, and a decrease in the flow rate is detected. It turns out.

本発明は上記実施例に限定されず、本発明の趣旨を逸脱
しない範囲で種々変更可能である0例えば、発熱膜体6
の材質、大きさ、厚さ、形等は、発熱膜体6の中央部分
の発熱量を検出したり、発熱膜体6の端縁付近を加熱で
きれば、上述したちの以外のものでも良く、短絡ライン
3.4はセンサ基板1の裏側に設ける等どの様な位置に
、設けても良いし、加熱し−タ21は発熱膜体6の端縁
に跨がったものや端縁の内側に設けたしのでも良く、発
熱膜体6の製造方法も蒸着及びエツチング技法によるも
のでも良いし、また発熱膜体6の端縁付近を加熱すると
ともに、発熱膜体6の中央部分だけで発熱量を検出して
も良く、本発明は流量測定センサ以外の温度測定センサ
等にも適応可能である。
The present invention is not limited to the above embodiments, and can be modified in various ways without departing from the spirit of the present invention.For example, the heat generating film body 6
The material, size, thickness, shape, etc. of the heat generating film body 6 may be other than those mentioned above as long as it can detect the amount of heat generated at the center of the heat generating film body 6 or heat the vicinity of the edges of the heat generating film body 6. The short circuit line 3.4 may be provided in any position, such as on the back side of the sensor board 1, and the heating element 21 may be placed astride the edge of the heating film 6 or inside the edge. The heat-generating film body 6 may be manufactured by vapor deposition and etching techniques, and the heat-generating film body 6 may be manufactured by vapor deposition and etching techniques. The amount may be detected, and the present invention is also applicable to temperature measurement sensors other than flow rate measurement sensors.

[発明の効果] 以上詳述したように本発明によれば、基体上に形成され
た発熱膜体の中央部分における発熱量の変化を検出する
ようにしたから、熱が拡散していく部分に対する発熱部
分の比率が大きく、温度変化に対する追従性の良い発熱
膜体の中央部分だけで発熱量の変化を検出できて周囲の
温度変化に対する応答性が良くなる等の効果を奏する。
[Effects of the Invention] As detailed above, according to the present invention, since the change in the amount of heat generated in the central portion of the heat generating film formed on the base is detected, Changes in the amount of heat generated can be detected only in the central portion of the heat-generating film body, which has a large proportion of heat-generating portions and has good followability to temperature changes, resulting in improved responsiveness to changes in ambient temperature.

また、基体上に形成された発熱膜体の端縁付近を加熱す
るようにしたから、発熱膜体の端縁付近の発熱量を増加
させ、熱が拡散していく部分に対する発熱部分の比率を
大きくして、発熱膜体の端縁付近も発熱膜体の中央部分
と同じ発熱条件とし、やはり応答性を良(することがで
きる等の効果を奏する。
In addition, since the area near the edge of the heat-generating film formed on the base is heated, the amount of heat generated near the edge of the heat-generating film is increased, and the ratio of the heat-generating part to the part where heat is diffused is reduced. By increasing the size, the heat generation conditions near the edges of the heat-generating film body are the same as those in the center of the heat-generating film body, resulting in effects such as improved responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第8図は本発明の実施例を示すもので、第1
図は第1実施例の発熱部の断面とその温度分布を示す図
であり、第2図は第1実施例におけるセンサの製造工程
を示す図であり、第3図は第1実施例におけるセンサの
全体回路図及びその等価回路図であり、第4図は第2実
施例の発熱部の断面とその温度分布を示す図であり、第
5図は第2実施例におけるセンサの製造工程を示す図で
あり、第6図は第2実施例におけるセンサの全体回路図
であり、第7図及び第8図は他の実施例を示す図であり
、第9図は従来例を示す図である。 1・・・センサ基板、2・・・断熱孔、3.4・・・短
絡ライン、5・・・アンダーグレーズ、6・・・発熱膜
体、6b・・・中央発熱膜体、6a、6C・・・端部発
熱膜体、7・・・温度補償抵抗、8・・・導電膜体、9
・・・直流電源、10・・・トランジスタ、11.12
.13・・・オペアンプ、14・・・オーバーグレーズ
、21・・・加、熱し−タ、22−・・導電ライン、3
a、3b、4a、4b、22a、22 b−・・端部。 特許出願人 日本特殊陶業株式会社 代 理 人 弁理士 若原誠− 第1A図 第1B図 第2 第4A図 第4B図 第5図 第3B図 (ム) 第7図
1 to 8 show embodiments of the present invention.
The figure is a diagram showing the cross section of the heat generating part and its temperature distribution in the first embodiment, FIG. 2 is a diagram showing the manufacturing process of the sensor in the first embodiment, and FIG. 3 is a diagram showing the sensor manufacturing process in the first embodiment. FIG. 4 is a diagram showing the cross section of the heat generating part and its temperature distribution in the second embodiment, and FIG. 5 is a diagram showing the manufacturing process of the sensor in the second embodiment. FIG. 6 is an overall circuit diagram of the sensor in the second embodiment, FIGS. 7 and 8 are diagrams showing other embodiments, and FIG. 9 is a diagram showing a conventional example. . DESCRIPTION OF SYMBOLS 1... Sensor board, 2... Heat insulation hole, 3.4... Short circuit line, 5... Underglaze, 6... Heat generating film body, 6b... Central heat generating film body, 6a, 6C ... End heating film body, 7... Temperature compensation resistor, 8... Conductive film body, 9
...DC power supply, 10...Transistor, 11.12
.. 13... operational amplifier, 14... overglaze, 21... heating, heater, 22-... conductive line, 3
a, 3b, 4a, 4b, 22a, 22b--end. Patent applicant: NGK Spark Plug Co., Ltd. Representative: Patent attorney Makoto Wakahara - Figure 1A Figure 1B Figure 2 Figure 4A Figure 4B Figure 5 Figure 3B (m) Figure 7

Claims (1)

【特許請求の範囲】 1、発熱量の変化により各種物理量を検出するセンサに
おいて、 基体上に形成された、熱を発する発熱膜体と、この発熱
膜体に対し発熱電力を供給する電力供給手段と、 上記発熱膜体の中央部分における発熱量の変化を検出す
る検出手段とを備えたことを特徴とする請求項1記載の
センサの発熱部構造。 2、上記検出手段は、発熱膜体の中央部分のみ構成内に
取り込み、発熱膜体の端部を構成内に取り込まない手段
であることを特徴とするセンサの発熱部構造。 3、発熱量の変化により各種物理量を検出するセンサに
おいて、 基体上に形成された、熱を発する発熱膜体と、この発熱
膜体に対し発熱電力を供給する電力供給手段と、 上記発熱膜体の端縁付近を加熱する加熱手段とを備えた
ことを特徴とするセンサの発熱部構造。 4、上記加熱手段は、上記物理量の変化に応じて加熱量
を変化させる手段であることを特徴とする請求項3記載
のセンサの発熱部構造。
[Scope of Claims] 1. A sensor that detects various physical quantities based on changes in calorific value, comprising: a heat-generating film body formed on a base that emits heat; and a power supply means for supplying heat-generating power to the heat-generating film body. The heat generating part structure of a sensor according to claim 1, further comprising: a detection means for detecting a change in the amount of heat generated in a central portion of the heat generating film body. 2. The heat generating part structure of a sensor, wherein the detection means is a means that incorporates only the central portion of the heat generating film body into the structure and does not incorporate the end portions of the heat generating film body into the structure. 3. A sensor that detects various physical quantities based on changes in calorific value, comprising: a heat-generating film body formed on a base that emits heat; a power supply means for supplying heat-generating power to the heat-generating film body; and the heat-generating film body. A heating section structure of a sensor, comprising a heating means for heating near an edge of the sensor. 4. The heat generating part structure of a sensor according to claim 3, wherein the heating means is a means for changing the amount of heating according to a change in the physical quantity.
JP63303501A 1988-11-30 1988-11-30 Heat generating structure of sensor Pending JPH02147916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63303501A JPH02147916A (en) 1988-11-30 1988-11-30 Heat generating structure of sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63303501A JPH02147916A (en) 1988-11-30 1988-11-30 Heat generating structure of sensor

Publications (1)

Publication Number Publication Date
JPH02147916A true JPH02147916A (en) 1990-06-06

Family

ID=17921729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63303501A Pending JPH02147916A (en) 1988-11-30 1988-11-30 Heat generating structure of sensor

Country Status (1)

Country Link
JP (1) JPH02147916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177911B1 (en) 1996-02-20 2001-01-23 Matsushita Electric Industrial Co., Ltd. Mobile radio antenna
JP2009156826A (en) * 2007-12-28 2009-07-16 Shinshu Univ Heat ray flow velocity sensor and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177911B1 (en) 1996-02-20 2001-01-23 Matsushita Electric Industrial Co., Ltd. Mobile radio antenna
JP2009156826A (en) * 2007-12-28 2009-07-16 Shinshu Univ Heat ray flow velocity sensor and its manufacturing method

Similar Documents

Publication Publication Date Title
US4870860A (en) Direct-heated flow measuring apparatus having improved response characteristics
JPS61170618A (en) Semiconductor sensor for detecting flow rate
JPH07111184A (en) Sheet-like heat-sensitive element, temperature sensor, temperature controller, and sheet-like heater
JPH0620974Y2 (en) Thermal flow sensor
JPH0625684B2 (en) Fluid flow rate detection sensor
JPH02147916A (en) Heat generating structure of sensor
US5148707A (en) Heat-sensitive flow sensor
JPS62263417A (en) Thermal flow rate sensor
JP2784192B2 (en) Hot film type air flow meter
US6250150B1 (en) Sensor employing heating element with low density at the center and high density at the end thereof
JPH0318935Y2 (en)
JP3764800B2 (en) Heating control circuit
JP2000227353A (en) Thermal flow rate sensor and its manufacture
JP3705875B2 (en) Heating control circuit for heating sensor
JPH06229967A (en) Multi-purpose sensor
JPH0620973Y2 (en) Thermal flow sensor
JPH0612277B2 (en) Thermal flow sensor
JPH04116464A (en) Fluid velocity sensor
JPH03261868A (en) Flow sensor
JP2646846B2 (en) Temperature-sensitive resistance element
JP2001153704A (en) Flow sensor
JPH0812097B2 (en) Flow sensor
JP2001281190A (en) Semiconductor-type gas sensor
JP2890287B2 (en) Sensor circuit
JPH08233763A (en) Combustible gas sensor