JPS6327440A - Glucosylated branched cyclodextrin-containing composition - Google Patents

Glucosylated branched cyclodextrin-containing composition

Info

Publication number
JPS6327440A
JPS6327440A JP61168015A JP16801586A JPS6327440A JP S6327440 A JPS6327440 A JP S6327440A JP 61168015 A JP61168015 A JP 61168015A JP 16801586 A JP16801586 A JP 16801586A JP S6327440 A JPS6327440 A JP S6327440A
Authority
JP
Japan
Prior art keywords
water
glucosylated
cyclodextrin
branched
pharmacologically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61168015A
Other languages
Japanese (ja)
Inventor
Kyoko Koizumi
京子 小泉
Yasuyo Okada
安代 岡田
Yoko Kubota
窪田 洋子
Toshiko Utamura
宇多村 敏子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanraku Inc
Original Assignee
Sanraku Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanraku Inc filed Critical Sanraku Inc
Priority to JP61168015A priority Critical patent/JPS6327440A/en
Publication of JPS6327440A publication Critical patent/JPS6327440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

PURPOSE:A drug composition having improved water solubility of a water- insoluble or sightly water-soluble pharmacologically active substance, by incorporating the pharmacologically active substance with a glucosylated branched cyclodextrin. CONSTITUTION:(A) A water-insoluble or slightly water-soluble pharmacologically active substance such as steroid hormone agent, cardiac, neutral nervous system depressant, antibiotic or fat-soluble vitamin, etc., is incorporated with (B) a glucosylated branched cyclodextrin preferably a compound wherein 1-3 glucoses are bonded by alpha,1 6 bond to alpha-, beta- or gamma-cyclodextrin through oxygen atom of the cyclodextrin. The component B is premixed with 0.3-2.0pts.wt. water, blended with inclusion mol equivalent (usually equimolar) of the component A for 0.5 - several hours while stirring and powdered by a usually applicable drying method to give the aimed drug composition (inclusion compound).

Description

【発明の詳細な説明】 本発明は非水溶性あるいは難水溶性薬理活性化合物とグ
ルコシル化分岐シクロデキストリンを含有してなる水溶
性の改善された薬剤組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pharmaceutical composition with improved water solubility, comprising a water-insoluble or poorly water-soluble pharmacologically active compound and a glucosylated branched cyclodextrin.

従来の技術 非水溶性ある論は難水溶性薬物はその溶解速度が消化管
吸収の律速段階となることが知られている。従ってそれ
らの薬剤の溶解度を上昇させることが可能であnばその
薬剤の・々イオアペイラビリティーを向上させることが
できる。従来非水溶性あるいは難水溶性薬物の溶解性向
上には天然のα。
BACKGROUND OF THE INVENTION It is known that for poorly water-soluble drugs, the rate of dissolution is the rate-limiting step for gastrointestinal absorption. Therefore, if it is possible to increase the solubility of those drugs, it is possible to improve the bioavailability of the drugs. Natural α is used to improve the solubility of conventionally water-insoluble or poorly water-soluble drugs.

βあるいFir−シクロデキストリンが使用されて来た
〔上釜兼人、薬学雑誌101(10)、857〜873
(1981))。
β or Fir-cyclodextrin has been used [Kaneto Kamikama, Pharmaceutical Journal 101(10), 857-873
(1981)).

シクロデキストリンの中でもβ−シクロデキストリン(
以下β−CDと略記)は包接対象が広く、効果も大きい
のではあるが、β−CDそのものの溶解度が常温にて1
.85%(W/v)とかなり低く得られた包接化合物の
溶解度も必ずしも満足できるものではなかつ友。そこで
β−CDの溶解度を上昇させることを目的として種々の
誘導体が作成され、可溶化剤としての性能が調べられて
おシ、ジメチル−β−CD 、ヒドロキシグツビルーβ
−CD 。
Among cyclodextrins, β-cyclodextrin (
β-CD (hereinafter abbreviated as β-CD) has a wide range of inclusion targets and is highly effective, but the solubility of β-CD itself is 1 at room temperature.
.. The solubility of the clathrate compound, which was quite low at 85% (W/v), was not necessarily satisfactory. Therefore, various derivatives have been created with the aim of increasing the solubility of β-CD, and their performance as solubilizers has been investigated.
-CD.

β−CDの?リマーなどが有望と考え5れているしかし
ながら、これらの化学誘導体、特にジメチル−β−CD
あるいはトリメチル−β−CDは、溶血性がかなシ高く
、その安全性の面で実用上問題があった。〔大径ら第6
回生体膜と薬物の相互作用シンポジウム講演要旨、p 
50 (1983) )。
β-CD? However, these chemical derivatives, especially dimethyl-β-CD
Alternatively, trimethyl-β-CD is highly hemolytic and has a practical problem in terms of safety. [Odai et al. 6th
Abstracts of symposium on interaction between regenerative biomembranes and drugs, p.
50 (1983)).

本発明者らは種々の非水溶性あるいは難水溶性薬物の可
溶化に効果が高く、しかも溶血性等の毒性の低いサイク
ロデキストリン(CDと略記)を鋭意検索したところ、
澱粉のCD生成酵素による反応生成物である分岐CDは
それ自体水への溶解度が高く、非水溶性または難水溶性
薬物の水への溶解度上昇効果が顕著に認められ、しかも
溶血性等の毒性が低いことを見い出し本発明を完成した
The present inventors conducted an intensive search for cyclodextrins (abbreviated as CD) that are highly effective in solubilizing various water-insoluble or poorly water-soluble drugs and have low toxicity such as hemolytic properties.
Branched CD, which is a reaction product of starch with a CD-producing enzyme, has high solubility in water, and has been found to have a remarkable effect on increasing the solubility of water-insoluble or poorly water-soluble drugs, and is also highly toxic due to hemolytic properties. The present invention was completed by discovering that the

しかして、本発明は非水溶性あるいは難水溶性薬理活性
物質とグルコシル化分岐シクロデキストリンを共存せし
めた水溶性の向上した組成物を提供するものである。
Therefore, the present invention provides a composition with improved water solubility in which a water-insoluble or poorly water-soluble pharmacologically active substance and a glucosylated branched cyclodextrin coexist.

本発明における非水溶性あるいは難水溶性薬理活性物質
としては、それ自体はとんど水へ溶解しない脂溶性ビタ
ミン類たとえばビタミンE + K1 aK、 、 0
3等、あるいは水に対する溶解度が極めて低いステロイ
ド系ホルモン類、非ステロイド系抗炎症剤、フェノパル
ビタールやニトラゼノ々ムのような中枢神経抑制剤、ジ
ギトキシン、ジブキシン等の強心配糖体、あるいはグリ
セオフルビンの如き水不溶性の抗生物質が挙げられる。
In the present invention, water-insoluble or poorly water-soluble pharmacologically active substances include fat-soluble vitamins that are hardly soluble in water, such as vitamin E + K1 aK, , 0
3 or steroid hormones with extremely low solubility in water, non-steroidal anti-inflammatory drugs, central nervous system depressants such as phenoparbital and nitrazenome, cardiac glycosides such as digitoxin and dibuxin, or griseofulvin. Water-insoluble antibiotics such as

本発明で使用されるグルコシル化分岐シクロテキストリ
ンとは構成グルコースが6ケ、7ケあるいは8ケよ構成
るα−1β−あるいはγ−CDの構成グルコースの1ケ
、2ケあるいは3ケの6位の酸素を介してα、1→6結
合にてグルコースが結合したものを言う。通常、各種分
岐シクロデキストリンの混合物の水溶液にグルコアミラ
ーゼを働かせて、分岐グルコース鎖長をグルコース1ケ
とすることが可能である(例えば、澱粉科学30゜23
1〜239頁(1983年)。
The glucosylated branched cyclotextrin used in the present invention is α-1β- or γ-CD whose constituent glucose is composed of 6, 7 or 8 constituent glucose. Glucose is bonded through α, 1→6 bonds via oxygen at position. Normally, it is possible to make the branched glucose chain length 1 glucose by applying glucoamylase to an aqueous solution of a mixture of various branched cyclodextrins (for example, Starch Science 30°23
pp. 1-239 (1983).

就中、α−あるいはβ−CDにグルコースが1ケあるい
は2ケ、α、1→6結合したものが好適に用いられる。
Among these, those in which α- or β-CD has one or two glucose bonds, α, 1→6, are preferably used.

グルコシル化分岐シクロデキストリンの製造方法として
は通常のCD生成反応液から種々の分離方法例えば、溶
剤沈澱法、各種の樹脂担体を用いるカラム法あるいは限
外濾過法もしくは逆浸透法等によシ単離可能である。C
D生成反応液は澱粉あるいはその加水分解物にシクロデ
キストリングルカノトランスフェラーゼ(以下、CGT
aaeと略記する、E、C,2,4,1,19)を50
〜70℃、pH5〜10にて18〜72時間反応せしめ
て得られる。
Glucosylated branched cyclodextrin can be produced by isolation from the usual CD production reaction solution by various separation methods, such as solvent precipitation, column methods using various resin carriers, ultrafiltration, or reverse osmosis. It is possible. C
The D production reaction solution is a mixture of starch or its hydrolyzate with cyclodextrin glucanotransferase (hereinafter referred to as CGT).
E, C, 2, 4, 1, 19), abbreviated as aae, is 50
It is obtained by reacting at ~70°C and pH 5-10 for 18-72 hours.

グリコジル化分岐シクロデキストリンはα、1→6結合
を切断する酵素、例えばイソアミラーゼ(E、C,3,
2,1,68)の逆反応を利用して製造することも可能
である。
Glycosylated branched cyclodextrins are synthesized by enzymes that cleave α, 1→6 bonds, such as isoamylases (E, C, 3,
It is also possible to produce using the reverse reaction of 2, 1, 68).

グツしコシル化分岐シクロデキストリンと非水溶性ある
いは難水溶性薬理活性物質の包接方法は通常のCDとダ
スト化合物との場合と同様にして行なうことができる。
The inclusion method of the cosylated branched cyclodextrin and the water-insoluble or poorly water-soluble pharmacologically active substance can be carried out in the same manner as in the case of conventional CD and dust compounds.

即ちグルコシル化分岐シクロテキストリンに水を0.3
〜2.0部加え予め練っておき、これに包接モル等量(
通常等モル)の非水溶性あるいは難水溶性薬理活性物質
(ダスト化合物)を添加し、0.5〜数時間攪拌混線後
、通常用いられる乾燥方法例えば凍結乾燥、スプレード
ライ、通風乾燥等によシ粉末化することによシ、目的と
する包接化合物が得られる。
That is, water is added to glucosylated branched cyclotextrin by 0.3
Add ~2.0 parts, knead in advance, and add clathrate molar equivalents (
Add a water-insoluble or poorly water-soluble pharmacologically active substance (dust compound) (usually equimolar), stir for 0.5 to several hours, and then dry by a commonly used drying method such as freeze drying, spray drying, ventilation drying, etc. By powdering, the desired clathrate compound can be obtained.

発明の効果 実験例および実施例にて本発明を更に具体的に説明する
Effects of the Invention The present invention will be explained in more detail with experimental examples and examples.

10 okgの馬鈴薯澱粉を1.0 klの水に懸濁し
、ネオスビターゼ(長潮産業)を添加し80℃にて10
分間加熱液化後120℃にて10分間滅菌した。液化液
を60℃まで冷却後、Bacillus□hbensi
s (FERM P −1990)のCGTa s s
を10 u/g−f 5tarch量添加し、60℃、
pH7,6にて40時間CD生成反応を行なった。反応
後100℃、10分間の処理にて酵素を失活させ、濃縮
缶にて反応液を2501までa縮し、10℃にて冷却、
1日間放置後晶析したβ−CDを戸別した。F液にグル
コアミラーゼ(大野製薬、GNL−2) 0.01チ(
Wt/lJ)添加し、40℃にて5時間反応させ、CD
以外のデキストリン類をグルコースにまで変換させると
伴に、グリコモル化分岐CDO長鎖の側鎖をグルコース
単位に唖で短縮化した。グルコアミラーゼ処理液を逆浸
透濾過器(ULVACサービス、RO−B :モジュー
ル: As−215)にてグルコースの除去および濃縮
を行ない、濃縮液251を得た。濃縮液251に501
のアセトンを添加し、沈澱して来るβ−CD画分を除去
後頁にアセトンを150ノ添加し、グルコシル化分岐C
D粗画分2、5 )C9を得た。分岐CD粗両分5ノを
トヨパールHW−408(東洋曹達工業(株))力2ム
クロマトグラフィーKかけ、6−0−α−D−グルコシ
ルーα−CD (以下Gα−CDと略記)2.05!y
−16−〇−α−D−グルコシルーβ−〇〇 (以下G
β−CDと略記)0.48/−および6.6#−ジー0
−α−D−グルフシルーβ−CD (以下2Gβ−CD
と略記)0.97i!−を得た。
Suspend 10 ok of potato starch in 1.0 kl of water, add Neosvitase (Nagao Sangyo), and stir at 80°C for 10 oz.
After liquefaction by heating for a minute, the mixture was sterilized at 120°C for 10 minutes. After cooling the liquefied liquid to 60°C, Bacillus□hbensi
s (FERM P-1990) CGTa s s
Added 10 u/g-f 5tarch amount, 60℃,
The CD production reaction was carried out at pH 7.6 for 40 hours. After the reaction, the enzyme was deactivated by treatment at 100°C for 10 minutes, the reaction solution was condensed to 2501 in a concentrator, and cooled at 10°C.
After one day of standing, the crystallized β-CD was distributed door to door. Add 0.01 glucoamylase (Ohno Pharmaceutical, GNL-2) to solution F (
Wt/lJ), reacted at 40°C for 5 hours, and CD
In addition to converting other dextrins to glucose, the side chains of the glycomolized branched CDO long chains were shortened to glucose units. Glucose was removed and concentrated from the glucoamylase-treated liquid using a reverse osmosis filter (ULVAC Service, RO-B: module: As-215) to obtain a concentrated liquid 251. Concentrate 251 to 501
After removing the precipitated β-CD fraction, 150 μl of acetone was added to remove the glucosylated branch C.
D crude fraction 2,5) C9 was obtained. Five crude fractions of the branched CD were subjected to Toyopearl HW-408 (Toyo Soda Kogyo Co., Ltd.) 2μ chromatography K, and 6-0-α-D-glucosyl α-CD (hereinafter abbreviated as Gα-CD)2. 05! y
-16-〇-α-D-glucosyl-β-〇〇 (hereinafter G
β-CD) 0.48/- and 6.6#-G0
-α-D-glufucyru β-CD (hereinafter referred to as 2Gβ-CD
) 0.97i! I got -.

得られた分岐CDの構造は種々のHPLCカラムクロマ
ドグ2フィー上の挙動、マススイクトルの7ラグメント
分析、メチル化分岐CDおよびその部分氷解物の分析、
FAB−Massス4クトル等の測定ニテ各々、6−〇
−α−D−グルコシル−α−CD、6−0−α−D−グ
ルーシルーβ−CDおよび6.6’−ジー0−α−D−
グルコシルーβ−CDであることが確認された。得られ
た各分岐CDの物理化学的性質を第1表に示す。
The structure of the obtained branched CD was determined by its behavior on various HPLC columns, chromatography, 7-fragment analysis of mass quictor, analysis of methylated branched CD and its partially melted product,
Measurement items such as FAB-Mass 4 vectors, 6-〇-α-D-glucosyl-α-CD, 6-0-α-D-glucyl-β-CD and 6.6'-di0-α-D −
It was confirmed that it was glucosyl-β-CD. Table 1 shows the physicochemical properties of each branched CD obtained.

各物質1?が何dの水に溶解するかについて調べた結果
を第2表に示す。
1 of each substance? Table 2 shows the results of investigating how many d of water dissolves in water.

α−CD              5.7β−CD
             53.3r−CD    
          3.8第2表から明らかなように
グルコシル化分岐CDはα、βおよびr −CDに比べ
て水への溶解度が極めて高いことが判明した。
α-CD 5.7β-CD
53.3r-CD
3.8 As is clear from Table 2, glucosylated branched CD was found to have extremely high solubility in water compared to α, β, and r-CD.

健常成人の志願女子よシヘパリンを含む注射器で採血し
、血液に約10倍容の生理食塩水を加え懸濁後3000
 rpmで5分間遠心分離し、上溝を捨て、同様の操作
を2度繰シ返し、得られた赤面  □球に生理食塩水を
適当量添加し、2チ赤面球浮遊液とした。2%赤赤面浮
遊液0. I WLlを各種CD溶液31rLlに加え
、37℃1時間インキュベートした。
Blood was collected from a healthy adult female volunteer using a syringe containing cyheparin, and approximately 10 times the volume of physiological saline was added to the blood and suspended for 3,000 ml.
Centrifugation was carried out at rpm for 5 minutes, the upper groove was discarded, and the same operation was repeated twice, and an appropriate amount of physiological saline was added to the resulting blush spheres to obtain a 2-chi blush sphere suspension. 2% red blush suspension 0. IWLl was added to various CD solutions 31rLl and incubated at 37°C for 1 hour.

反応後遠心分離を行ない、上清の540nmに於る吸光
度を測定した。溶血率は生理食塩水中での溶血率をOチ
、注射用蒸留水中での溶血率を100チとし、相対溶血
率で溶血性を表わした。結果を第1図に示す。
After the reaction, centrifugation was performed, and the absorbance of the supernatant at 540 nm was measured. The hemolysis rate was expressed as a relative hemolysis rate, with the hemolysis rate in physiological saline being 0 cm and the hemolysis rate in distilled water for injection being 100 cm. The results are shown in Figure 1.

第1図よシ分岐CDはメチル化誘導体とは異なシ、溶血
性はCDと同等かあるいは低いことが判明し、本物質の
安全性の高いことが示された。
As shown in Fig. 1, branched CD is different from methylated derivatives, and its hemolytic property was found to be equal to or lower than that of CD, indicating that this substance is highly safe.

1.5X10  Mの各CD溶液11Llに一定過剰量
の難水溶性薬物を加え、30℃で平衡に達するまで振と
り後、ν過し、F液中に溶解した各薬物含量を高速液体
クロマトグラフィー(HPLC) Kて測定シ、各CD
の可溶化能を調べた。第3表に結果を示す。
A fixed excess amount of poorly water-soluble drug was added to 11 L of each 1.5 x 10 M CD solution, shaken at 30°C until equilibrium was reached, passed through ν, and the content of each drug dissolved in solution F was analyzed by high-performance liquid chromatography. (HPLC) Measurement for each CD
The solubilization ability of Table 3 shows the results.

第3表よシ明らかなようにグルコシル化分岐CD、%に
分岐β−CD (Gβ−CD 、 2Gβ−CD)は各
種難溶性薬剤の可溶化能が高く、特に沈澱性の包接体を
生じない特性が明らかとなった。
As is clear from Table 3, glucosylated branched CD, % branched β-CD (Gβ-CD, 2Gβ-CD) has a high ability to solubilize various poorly soluble drugs, and in particular produces precipitated clathrates. It became clear that there were no characteristics.

次に実施例を示し本発明を更に具体的に説明するが、本
発明はこの実施例によシ何ら制限されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例1 実験例(1)にて調製したグツしコシル化分岐CD、G
β−CD901!9およびエストリオール20〜(モル
比にて1:1)に生理食塩水を10m1添加し、常温下
充分混合し包接操作を行なったところ、完全に透明な液
が得られた。重液を凍結乾燥後適量の乳糖を添加し、打
錠器にて製剤とした。本錠剤に蒸留水1. Q mlを
添加し充分に攪拌後、水に溶解したエストリオールをU
V吸収測定にて定量したところ2606μf/lutで
あった。別にエストリオールと乳糖にて同様に調製した
もののエストリオールの水への溶解度を測定したところ
、29μ?−/mlであシ、Gβ−CDの顕著な可溶化
効果が認められた。
Example 1 Cosylated branched CD, G prepared in Experimental Example (1)
When 10ml of physiological saline was added to β-CD901!9 and estriol 20~ (1:1 molar ratio), and the mixture was thoroughly mixed at room temperature and the inclusion operation was performed, a completely transparent liquid was obtained. . After freeze-drying the heavy liquid, an appropriate amount of lactose was added and a tablet was prepared using a tablet machine. Distilled water 1. After adding Q ml and stirring thoroughly, add the estriol dissolved in water to U.
When quantified by V absorption measurement, it was 2606 μf/lut. Separately, when the solubility of estriol in water was measured in a similar preparation using estriol and lactose, it was found to be 29μ? -/ml, a remarkable solubilizing effect of Gβ-CD was observed.

実施例2 実験例(1)にて調製したグルコシル化分岐CD、2G
β−CD901!9およびエストリオール201q(モ
ル比1:1)に生理食塩水を10−添加し、実験例1と
同様にエストリオールの水への溶解性を調べた。最初の
10dの2Gβ−CDとエストリオールを含む液は完全
に溶解し、錠剤からの溶解度試験ではエストリオールは
水へ2517μl”/It O111度が可溶化され、
2Gβ−CDもGβ−CDと同程度の可溶化能が示され
た。
Example 2 Glucosylated branched CD, 2G prepared in Experimental Example (1)
10 times of physiological saline was added to β-CD901!9 and estriol 201q (molar ratio 1:1), and the solubility of estriol in water was examined in the same manner as in Experimental Example 1. The first 10 d of liquid containing 2Gβ-CD and estriol was completely dissolved, and in the solubility test from the tablet, 2517 μl”/It O111 degrees of estriol was solubilized in water.
2Gβ-CD was also shown to have a solubilization ability comparable to that of Gβ-CD.

実施例3 実験例(1)Kて調製した分岐CD、Gβ−CD0.1
7岬とシイトキシン0.10q(モル比1:1)に生理
食塩水1.Odを添加し、常温化充分に攪拌したところ
、液は完全に透明となシ可溶化した。実施例1と同様に
得られた液を凍結乾燥後、適量の乳糖を添加し打錠し、
少量の水を用いて、本錠剤中のシイトキシンの水への溶
解度を調べたところ、5834μ、P/ゴ(25℃)で
あった。
Example 3 Experimental example (1) Branched CD prepared by K, Gβ-CD0.1
7 capes and 0.10 q of cytoxin (molar ratio 1:1) to 1.0 q of physiological saline. When Od was added and the mixture was brought to room temperature and thoroughly stirred, the liquid became completely transparent and solubilized. After freeze-drying the liquid obtained in the same manner as in Example 1, an appropriate amount of lactose was added and tableted.
The solubility of cytotoxin in this tablet in water was examined using a small amount of water and found to be 5834μ, P/G (at 25°C).

実施例4 実験例(1)にて調製した分岐CD、2Gβ−CDO6
19〜とジギトキシン0.1■を用いて実施例3と同様
の液剤および錠剤を作成した。得られた液剤は完全に透
明な液となった。錠剤からのジギトキシンの水への溶解
度は5252μIP/rlLlであった。
Example 4 Branched CD prepared in Experimental Example (1), 2Gβ-CDO6
Liquid preparations and tablets similar to those in Example 3 were prepared using Example 19 and digitoxin 0.1. The obtained liquid was completely transparent. The water solubility of digitoxin from the tablets was 5252 μIP/rlLl.

実施例3および4と同様にしてジギトキシンのみにて液
剤および錠剤を作成したところ、液剤ではジギトキシン
がほとんど溶解せず、錠剤からのジギトキシンの溶解度
は5.0μf/mlにすぎなかった。
When liquid preparations and tablets were prepared using only digitoxin in the same manner as in Examples 3 and 4, digitoxin was hardly dissolved in the liquid preparation, and the solubility of digitoxin from the tablets was only 5.0 μf/ml.

実施例5 実験例(1)にて調製したグルコシル化分岐CD。Example 5 Glucosylated branched CD prepared in Experimental Example (1).

Gβ−CD560Wおよびフェノパルピタール100w
9(モル比1:1)に蒸溜水IQdを添加し、常温下9
0分間充分に攪拌混練し包接した。
Gβ-CD560W and phenoparpital 100w
Distilled water IQd was added to 9 (molar ratio 1:1), and 9 was heated at room temperature.
The mixture was sufficiently stirred and kneaded for 0 minutes to achieve inclusion.

これを転結乾燥後適量の乳糖を添加し、打錠器にて錠剤
化した。本錠剤からの7エノパルビタールの水への溶解
度を実施例1と同様にして定量したところ、25℃にて
4466μ?/コであった。フェノパルビタール単独で
の水への溶解度は1350μf/vtlであシ、Gβ−
CDによる可溶化の効果が確認された。
After drying this, an appropriate amount of lactose was added, and the mixture was made into tablets using a tablet machine. The solubility of 7-enoparbital from this tablet in water was determined in the same manner as in Example 1, and was found to be 4466 μm at 25°C. / It was. The solubility of phenoparbital alone in water is 1350 μf/vtl, and Gβ-
The effect of solubilization by CD was confirmed.

実施例6 実験例(1)にて調製したグルコシル化分岐CD、Gβ
−CDI7”9およびビタミンD、  5岬(モル比1
:1)に生理食塩水10tJを添加し、常温下充分に攪
拌し包接操作を行なったところ、完全に透明に溶解した
。重液を実施例1と同様に凍結乾燥後、乳糖を適量添加
し、錠剤を作成した。本錠剤のビタミンD3の水への溶
解度を測定したところ、25℃にてs 1s AP/+
a/でありた。ビタミンD。
Example 6 Glucosylated branched CD, Gβ prepared in Experimental Example (1)
- CDI 7”9 and vitamin D, 5 capes (molar ratio 1
: 10 tJ of physiological saline was added to 1) and stirred sufficiently at room temperature to carry out an inclusion operation, resulting in a completely transparent solution. After freeze-drying the heavy liquid in the same manner as in Example 1, an appropriate amount of lactose was added to prepare tablets. When the solubility of vitamin D3 in this tablet in water was measured, it was found that s 1s AP/+ at 25°C.
It was a/. Vitamin D.

は単独では水には全く溶解しなかった。alone did not dissolve in water at all.

実施例7 実験例(1)にて調製した分岐CD、2Gβ−CD19
岬およびビタミンD35gg(モル比、1:1)を用い
て実施例6と同様に液剤および錠剤を作成した。
Example 7 Branched CD prepared in Experimental Example (1), 2Gβ-CD19
A liquid preparation and a tablet were prepared in the same manner as in Example 6 using Misaki and 35 gg of vitamin D (molar ratio, 1:1).

得られた液剤は完全に透明な液となった。錠剤からのビ
タミンD3の水への溶解度は523μp/m/でありた
O ビタミンD3は水へは全く溶解しないことがらGβ−C
Dおよび2Gβ−CDの可溶化における効果が確認でき
た。
The obtained liquid was completely transparent. The solubility of vitamin D3 from the tablet in water was 523 μp/m/O. Since vitamin D3 does not dissolve in water at all, Gβ-C
The effect on solubilization of D and 2Gβ-CD was confirmed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種シクロデキストリンの溶血性試験の結果を
示したものである。
FIG. 1 shows the results of a hemolytic test on various cyclodextrins.

Claims (1)

【特許請求の範囲】 1、非水溶性あるいは難水溶性薬理活性物質とグルコシ
ル化分岐シクロデキストリンを共存せしめた組成物。 2、非水溶性あるいは難水溶性薬理活性物質がステロイ
ド系抗炎症剤、強心剤、中枢神経抑制剤、抗生物質また
は脂溶性ビタミン類である特許請求の範囲第1項記載の
組成物。 3、グルコシル化分岐シクロデキストリンがα−,β−
またはγ−シクロデキストリンに1乃至3個のグルコー
スが該シクロデキストリンの6位の酸素原子を介してα
,1→6結合したものである特許請求の範囲第1項また
は第2項記載の組成物。
[Scope of Claims] 1. A composition in which a water-insoluble or poorly water-soluble pharmacologically active substance and a glucosylated branched cyclodextrin coexist. 2. The composition according to claim 1, wherein the water-insoluble or poorly water-soluble pharmacologically active substance is a steroidal anti-inflammatory agent, a cardiotonic agent, a central nervous system depressant, an antibiotic, or a fat-soluble vitamin. 3. Glucosylated branched cyclodextrin is α-, β-
Or, 1 to 3 glucoses are attached to γ-cyclodextrin via the oxygen atom at the 6-position of the cyclodextrin.
, 1→6 bond.
JP61168015A 1986-07-18 1986-07-18 Glucosylated branched cyclodextrin-containing composition Pending JPS6327440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61168015A JPS6327440A (en) 1986-07-18 1986-07-18 Glucosylated branched cyclodextrin-containing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168015A JPS6327440A (en) 1986-07-18 1986-07-18 Glucosylated branched cyclodextrin-containing composition

Publications (1)

Publication Number Publication Date
JPS6327440A true JPS6327440A (en) 1988-02-05

Family

ID=15860223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168015A Pending JPS6327440A (en) 1986-07-18 1986-07-18 Glucosylated branched cyclodextrin-containing composition

Country Status (1)

Country Link
JP (1) JPS6327440A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210A (en) * 1987-12-22 1990-01-05 Glaxo Group Ltd Aqueous recipe containing pyperidinylcyclopentylpentenic acid derivative
EP0381747A1 (en) * 1988-08-15 1990-08-16 American Maize-Products Company Water soluble branched beta cyclodextrin steroid complex
US5017566A (en) * 1987-12-30 1991-05-21 University Of Florida Redox systems for brain-targeted drug delivery
US5024998A (en) * 1987-12-30 1991-06-18 University Of Florida Pharmaceutical formulations for parenteral use
EP0512050A1 (en) * 1990-01-23 1992-11-11 The University Of Kansas Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof
US5229370A (en) * 1988-08-15 1993-07-20 Ammeraal Robert N Water soluble branched beta cyclodextrin steroid complex
US5332582A (en) * 1990-06-12 1994-07-26 Insite Vision Incorporated Stabilization of aminosteroids for topical ophthalmic and other applications
JPH06321812A (en) * 1993-05-18 1994-11-22 Daiichi Rajio Isotope Kenkyusho:Kk Radioactive iodine labeled aliphatic acid-cyclodextrin complex and imaging agent containing the complex
JPH0948737A (en) * 1995-05-26 1997-02-18 Sando Yakuhin Kk Cyclodextrin composition
JPH09505832A (en) * 1994-09-22 1997-06-10 フアーマシア・アー・ベー Estramustine formulations showing improved pharmaceutical properties
US5730969A (en) * 1988-10-05 1998-03-24 Chiron Corporation Method and compositions for solubilization and stabilization of polypeptides, especially proteins
JPH10231244A (en) * 1997-02-19 1998-09-02 Newtec:Kk Hydrophilic clathration complex and its production
EP0727440B2 (en) 1995-02-16 2003-11-26 Consortium für elektrochemische Industrie GmbH Process for purifying water soluble cyclodextrin derivatives
JP2007056045A (en) * 1995-05-26 2007-03-08 Nobaruteisu Fuaama Kk Cyclodextrin composition
US20160115110A1 (en) * 2014-10-17 2016-04-28 Morinaga & Co., Ltd. Method of producing purified stilbene compounds
JP2019196340A (en) * 2018-05-10 2019-11-14 亀井 淳三 Inclusion composite of sesaminol and cyclodextrin and its production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106595A (en) * 1978-02-09 1979-08-21 Nourinshiyou Shiyokuhin Sougou Method of making branched cyclodextrine
JPS62106901A (en) * 1985-11-05 1987-05-18 Nikken Kagaku Kk Diglucosyl-beta-cyclodextrin and its production
JPS62164701A (en) * 1986-01-14 1987-07-21 Shokuhin Sangyo Baioriakutaa Syst Gijutsu Kenkyu Kumiai Diglucosyl-alpha-cyclodextrin and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106595A (en) * 1978-02-09 1979-08-21 Nourinshiyou Shiyokuhin Sougou Method of making branched cyclodextrine
JPS62106901A (en) * 1985-11-05 1987-05-18 Nikken Kagaku Kk Diglucosyl-beta-cyclodextrin and its production
JPS62164701A (en) * 1986-01-14 1987-07-21 Shokuhin Sangyo Baioriakutaa Syst Gijutsu Kenkyu Kumiai Diglucosyl-alpha-cyclodextrin and its production

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210A (en) * 1987-12-22 1990-01-05 Glaxo Group Ltd Aqueous recipe containing pyperidinylcyclopentylpentenic acid derivative
US5017566A (en) * 1987-12-30 1991-05-21 University Of Florida Redox systems for brain-targeted drug delivery
US5024998A (en) * 1987-12-30 1991-06-18 University Of Florida Pharmaceutical formulations for parenteral use
US5376641A (en) * 1988-08-15 1994-12-27 American Maize Technology, Inc. Method for making a steroid water soluble
EP0381747A1 (en) * 1988-08-15 1990-08-16 American Maize-Products Company Water soluble branched beta cyclodextrin steroid complex
US5229370A (en) * 1988-08-15 1993-07-20 Ammeraal Robert N Water soluble branched beta cyclodextrin steroid complex
US5997856A (en) * 1988-10-05 1999-12-07 Chiron Corporation Method and compositions for solubilization and stabilization of polypeptides, especially proteins
US5730969A (en) * 1988-10-05 1998-03-24 Chiron Corporation Method and compositions for solubilization and stabilization of polypeptides, especially proteins
EP0512050A1 (en) * 1990-01-23 1992-11-11 The University Of Kansas Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof
US5332582A (en) * 1990-06-12 1994-07-26 Insite Vision Incorporated Stabilization of aminosteroids for topical ophthalmic and other applications
JPH06321812A (en) * 1993-05-18 1994-11-22 Daiichi Rajio Isotope Kenkyusho:Kk Radioactive iodine labeled aliphatic acid-cyclodextrin complex and imaging agent containing the complex
JPH09505832A (en) * 1994-09-22 1997-06-10 フアーマシア・アー・ベー Estramustine formulations showing improved pharmaceutical properties
EP0727440B2 (en) 1995-02-16 2003-11-26 Consortium für elektrochemische Industrie GmbH Process for purifying water soluble cyclodextrin derivatives
JPH0948737A (en) * 1995-05-26 1997-02-18 Sando Yakuhin Kk Cyclodextrin composition
JP2007056045A (en) * 1995-05-26 2007-03-08 Nobaruteisu Fuaama Kk Cyclodextrin composition
JPH10231244A (en) * 1997-02-19 1998-09-02 Newtec:Kk Hydrophilic clathration complex and its production
US20160115110A1 (en) * 2014-10-17 2016-04-28 Morinaga & Co., Ltd. Method of producing purified stilbene compounds
US10730815B2 (en) * 2014-10-17 2020-08-04 Morinaga & Co., Ltd. Method of producing purified stilbene compounds
JP2019196340A (en) * 2018-05-10 2019-11-14 亀井 淳三 Inclusion composite of sesaminol and cyclodextrin and its production method

Similar Documents

Publication Publication Date Title
JPS6327440A (en) Glucosylated branched cyclodextrin-containing composition
Saokham et al. γ-Cyclodextrin
Okada et al. Some properties and the inclusion behavior of branched cyclodextrins
Pitha et al. Molecular encapsulation of drugs by cyclodextrins and congeners
Szejtli Past, present and futute of cyclodextrin research
Minami et al. Colon-specific drug delivery based on a cyclodextrin prodrug: release behavior of biphenylylacetic acid from its cyclodextrin conjugates in rat intestinal tracts after oral administration
US5760015A (en) Cyclodextrin compounds and methods of making and use thereof
JPS62281855A (en) Clathrate compound containing vitamin, vitamin derivative or hormone
JP6421280B1 (en) Method for producing flavonoid inclusion compound
KR870002842A (en) Containing Complexes of 7-Isopropoxy-Isoflavones Prepared from Cyclodextrins and Pharmacological Compositions and Preparations Containing the Active Ingredients
JPS63135402A (en) Cyclodextrin composition
JP3078923B2 (en) Novel branched cyclodextrin and method for producing the same
JPH0753396A (en) Cyclodextrin clathrate of taxol, its production method and use
JP3865436B2 (en) Process for producing branched cyclodextrins
JPS61236802A (en) Novel branched gamma-cyclodextrin and its preparation
Fiebrig et al. Colloidal gold and colloidal gold labelled wheat germ agglutinin as molecular probes for identification in mucin/chitosan complexes
EP0649308A1 (en) Prevention of hemolysis
JP3086076B2 (en) New galactosyl-branched cyclodextrin
EP1554316B1 (en) Lignan complexes
JPH07165616A (en) Complex composition of cyclodextrin and method for making complex
JP2863263B2 (en) Novel hetero-branched cyclodextrin in which a galactosyl group is transfer-linked to the side chain part of a branched cyclodextrin by β-bond, and method for producing the same
JP2863262B2 (en) Novel hetero-branched cyclodextrin in which a galactosyl group is transfer-bonded to the side chain portion of a branched cyclodextrin by an α-bond, and a method for producing the same
JP3122203B2 (en) Novel heterobranched cyclodextrin and method for producing the same
JPS61236801A (en) Novel branched alpha-cyclodextrin and its preparation
JP3552732B2 (en) New branched cyclodextrin