JP3552732B2 - New branched cyclodextrin - Google Patents

New branched cyclodextrin Download PDF

Info

Publication number
JP3552732B2
JP3552732B2 JP10596893A JP10596893A JP3552732B2 JP 3552732 B2 JP3552732 B2 JP 3552732B2 JP 10596893 A JP10596893 A JP 10596893A JP 10596893 A JP10596893 A JP 10596893A JP 3552732 B2 JP3552732 B2 JP 3552732B2
Authority
JP
Japan
Prior art keywords
group
galactosyl
transfer product
performance liquid
high performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10596893A
Other languages
Japanese (ja)
Other versions
JPH06298806A (en
Inventor
浩司 原
寿美雄 北畑
孝輝 藤田
京子 小泉
宣洋 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ensuiko Sugar Refining Co Ltd
Original Assignee
Ensuiko Sugar Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ensuiko Sugar Refining Co Ltd filed Critical Ensuiko Sugar Refining Co Ltd
Priority to JP10596893A priority Critical patent/JP3552732B2/en
Publication of JPH06298806A publication Critical patent/JPH06298806A/en
Application granted granted Critical
Publication of JP3552732B2 publication Critical patent/JP3552732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、新規な分岐シクロデキストリンに関し、詳しくはシクロデキストリンのグルコシル基の2級水酸基、すなわち2位または3位水酸基にα結合でガラクトシル基を結合させた新規ガラクトシル−シクロデキストリンに関する。
【0002】
【従来の技術および発明が解決しようとする課題】
シクロデキストリン(以下、CDと略記する。)は、グルコースがα−1,4結合で連なった環状デキストリンで、グルコース6,7,8個より成るそれぞれα−,β−およびγ−CDが良く知られている。最近ではCDの溶解度を改善するため、これらCDにα−1,6結合でグルコシル基やマルトシル基を結合させた分岐CDが合成されている。
【0003】
これらCDおよび分岐CDには分子内部に空洞があり、しかもこの空洞内部が疏水性になっているため、包接作用があり、各種油性物質を取り込む性質を有している。CDおよび分岐CDは、このような性質をもっているため、食品工業,化粧品工業,医薬品工業などの分野で広く使用されている。
【0004】
最近、医薬品工業の分野では、薬剤の副作用を少なくするため、糖質の細胞認識性に着目して、これをドラッグ・デリバリー・システムの薬剤運搬体の標識細胞へのセンサーとして利用する研究が活発に行われている。特に、ガラクトースは肝臓組織に、マンノースは肝臓実質細胞,肝臓非実質細胞,マクロファージに強い親和性を示すことが良く知られている。
【0005】
以前、我々は上述した現状に鑑み、分岐シクロデキストリンの側鎖のグルコシル基にガラクトシル基またはマンノシル基が結合しているガラクトシル−分岐CD,マンノシル−分岐CDの開発、およびCDのグルコシル基の6位水酸基にガラクトシル基またはマンノシル基が結合しているガラクトシル−CD,マンノシル−CDの開発に成功している。
【0006】
そこで、本発明者らはCDの有する包接作用とガラクトースのこの特質を利用して、ドラッグ・デリバリー・システムに応用することを目的として、CD環のグルコシル基の2級水酸基、すなわち2位または3位水酸基に直接ガラクトシル基を転移結合させたガラクトシル−CDの合成を試みた。その結果、市販のα−ガラクトシル基転移酵素がα−ガラクトシル糖化合物からα−,β−およびγ−CDのグルコシル基の2級水酸基にα結合でガラクトシル基を転移結合させたガラクトシル−CDを合成することを見出した。特に、このうち未熟コーヒー豆由来のα−ガラクトシル基転移酵素は、α−,β−およびγ−CDのグルコシル基の2級水酸基にα結合でガラクトシル基を転移結合させたガラクトシル−CDを効率よく合成することを見出した。
【0007】
【課題を解決するための手段】
すなわち、本発明はCDのグルコシル基の2位または3位水酸基にα結合でガラクトシル基が結合している新規ガラクトシル−CDを提供するものである。
【0008】
本発明に係る新規分岐CDは、図1に示す構造式I〜III で表すことができる。
【0009】
本発明の新規な分岐CDは、CDとα−ガラクトシル糖化合物を含有する溶液に、α−ガラクトシル基転移酵素を作用させることによって得られる。
本発明において、CDとしてはα−CD,β−CDおよびγ−CDおよびこれらの分岐CDのいずれでもよく、またこれらの混合物であってもよい。
【0010】
本発明に用いるα−ガラクトシル糖化合物(以下、糖供与体と記す。)としては、例えばメリビオース,ラフィノース,フェニル−α−ガラクトシド,パラニトロフェニル−α−ガラクトシド,α−ガラクトオリゴ糖などのα−ガラクトシル基を含む配糖体やオリゴ糖あるいは多糖やその部分分解物およびそれらの混合物なども用いることができる。
【0011】
本発明に用いるα−ガラクトシル基転移酵素としては、α−ガラクトシル糖化合物とCDを含有する溶液に作用させたとき、糖供与体を分解し、そのα−ガラクトシル基をCDのグルコシル基の2級水酸基にα結合で転移させ、α−ガラクトシル−CDを合成するものであれば、いずれも使用可能である。
【0012】
本発明に用いるα−ガラクトシル基転移酵素は、自然界に広く分布しているものである。例えば、未熟コーヒー豆のような植物由来の酵素、アスペルギルス・ニガー,エスヘリチヤ・コリ,モルティエレラ・ヴィナセなどの微生物由来の酵素がよく知られている。
【0013】
本発明の反応系において、CDと糖供与体を含む溶液(水溶液または懸濁液)は、CDの濃度が約1〜50%(W/W)、糖供与体の濃度が約1〜90%(W/W)であることが望ましく、かつCDに対する糖供与体の比率(重量)は、使用する糖供与体の種類によって異なるが、0.1〜50倍の範囲、好ましくは0.3〜2倍の範囲とするのが適当である。また、水と親水性有機溶媒、例えばジメチルスルホキサイド,メタノール,アセトン等との混合液も使用可能である。
【0014】
反応液のpHは3〜10、好ましくは4〜9、温度は20〜70℃、好ましくは30〜60℃に調整して反応させることが適当である。使用酵素量は反応時間と密接な関係があるので、通常は反応が5〜100時間、好ましくは5〜20時間で終了するような酵素量とすればよいが、これらに限定されるものではない。
【0015】
以上のような方法で反応させて得られた液を、高速液体クロマトグラフィーにかけて、CDへの転移生成物を分画・分取した後、酵素分解法,FAB−MSによる分子量測定および核磁気共鳴法(NMR)により構造解析を行った結果、図1に示す構造式I〜III で表される分岐CDであることを確認した。
【0016】
【実施例】
次に、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1
(1)転移反応
メリビオース1g,α−CD0.5gを0.4mlのジメチルスルホキサイドを含む50mM酢酸緩衝液(pH6.5)4.0mlに溶解させた後、未熟コーヒー豆のα−ガラクトシル基転移酵素(シグマ社製)を16単位加え、40℃にて48時間反応させた。反応液の一部を高速液体クロマトグラフィーにより分析した結果を図2に示す。
【0017】
反応終了後、酵素を熱失活させた溶液をアミノ系のカラムを用いた高速液体クロマトグラフィーにかけて転移生成物Aを分取した。単離した転移生成物AをODS系のカラムを用いた高速液体クロマトグラフィーにて分析したところ、2つのピークに分離し(図3)、それぞれを単離した結果、転移生成物A1が137mg、転移生成物A2が8mg得られた。
【0018】
(2)構造解析
上記(1)で単離された転移生成物A1は、FAB−MS分析および13C−NMR解析により、本発明者が先に見出したα−CDのCD環内のグルコシル基の6位水酸基に1分子のガラクトシル基がα結合した構造であることが分かった(特開平6−16705号公報)。また、転移生成物A2は、FAB−MS分析により、分子量は1135であることが分かった(図4)。
【0019】
また、図5に示すように、未熟コーヒー豆のα−ガラクトシダーゼにより、完全に等モルのガラクトースとα−CDに分解された。これらのことより、転移生成物A2はα−CDに1分子のガラクトシル基がα結合したものであることが分かった。さらに、転移生成物A2は、ODS系のカラムを用いた高速液体クロマトグラフィーの分析より、転移生成物A1とはリテンションタイムが異なることから、α−CDのCD環内のグルコシル基の2位または3位水酸基に1分子のガラクトシル基がα結合した構造であることが分かった。
【0020】
実施例2
(1)転移反応
メリビオース1g,β−CD0.4gを0.4mlのジメチルスルホキサイドを含む50mM酢酸緩衝液(pH6.5)4.0mlに溶解させた後、未熟コーヒー豆のα−ガラクトシル基転移酵素(シグマ社製)を16単位加え、40℃にて48時間反応させた。反応液の一部を高速液体クロマトグラフィーにより分析した結果を図6に示す。
【0021】
反応終了後、酵素を熱失活させた溶液をアミノ系のカラムを用いた高速液体クロマトグラフィーにかけて転移生成物Bを分取した。単離した転移生成物BをODS系のカラムを用いた高速液体クロマトグラフィーにて分析したところ、2つのピークに分離し(図7)、それぞれを単離した結果、転移生成物B1が105mg、転移生成物B2が6mg得られた。
【0022】
(2)構造解析
上記(1)で単離された転移生成物B1は、FAB−MS分析および13C−NMR解析により、本発明者が先に見出したβ−CDのCD環内のグルコシル基の6位水酸基に1分子のガラクトシル基がα結合した構造であることが分かった(特開平6−16705号公報)。また、転移生成物B2は、FAB−MS分析により、分子量は1297であることが分かった。
【0023】
また、図8に示すように、未熟コーヒー豆のα−ガラクトシダーゼにより、完全に等モルのガラクトースとβ−CDに分解された。これらのことより、転移生成物B2はβ−CDに1分子のガラクトシル基がα結合したものであることが分かった。さらに、転移生成物B2は、ODS系のカラムを用いた高速液体クロマトグラフィーの分析より、転移生成物B1とはリテンションタイムが異なることから、β−CDのCD環内のグルコシル基の2位または3位水酸基に1分子のガラクトシル基がα結合した構造であることが分かった。
【0024】
実施例3
(1)転移反応
メリビオース1g,γ−CD0.5gを0.4mlのジメチルスルホキサイドを含む50mM酢酸緩衝液(pH6.5)4.0mlに溶解させた後、未熟コーヒー豆由来のα−ガラクトシル基転移酵素(シグマ社製)を16単位加え、40℃にて48時間反応させた。反応液の一部を高速液体クロマトグラフィーにより分析した結果を図9に示す。
【0025】
反応終了後、酵素を熱失活させた溶液をアミノ系のカラムを用いた高速液体クロマトグラフィーにかけて転移生成物Cを分取した。単離した転移生成物CをODS系のカラムを用いた高速液体クロマトグラフィーにて分析したところ、2つのピークを分離し(図10)、それぞれを単離した結果、転移生成物C1が146mg、転移生成物C2が9mg得られた。
【0026】
(2)構造解析
上記(1)で単離された転移生成物C1は、FAB−MS分析および13C−NMR解析により、本発明者が先に見出したγ−CDのCD環内のグルコシル基の6位水酸基に1分子のガラクトシル基がα結合した構造であることが分かった(特開平6−16705号公報)。また、転移生成物C2は、FAB−MS分析により、分子量は1459であることが分かった。
【0027】
また、図11に示すように、未熟コーヒー豆のα−ガラクトシダーゼにより、完全に等モルのガラクトースとγ−CDに分解された。これらのことより、転移生成物C2はγ−CDに1分子のガラクトシル基がα結合したものであることが分かった。さらに、転移生成物C2は、ODS系のカラムを用いた高速液体クロマトグラフィーの分析より、転移生成物C1とはリテンションタイムが異なることから、γ−CDのCD環内のグルコシル基の2位または3位水酸基に1分子のガラクトシル基がα結合した構造であることが分かった。
【0028】
【発明の効果】
本発明によれば、α−ガラクトシル基転移酵素の糖転移作用を利用して、CD分子中のグルコシル基の2級水酸基、すなわち2位または3位水酸基にα結合でガラクトシル基が結合している新規な分岐CDを効率よく得ることができる。本発明の新規な分岐CDは、医薬品分野のほか食品分野,化粧品分野等における幅広い利用が期待される。
【図面の簡単な説明】
【図1】本発明により得られる分岐CDの構造を示す。
【図2】実施例1の反応液の高速液体クロマトグラムである。
【図3】実施例1の転移生成物Aの高速液体クロマトグラムである。
【図4】実施例1の転移生成物A2のFAB−MS分析である。
【図5】実施例1の転移生成物A2の酵素分解液の高速液体クロマトグラムである。
【図6】実施例2の反応液の高速液体クロマトグラムである。
【図7】実施例2の転移生成物Bの高速液体クロマトグラムである。
【図8】実施例2の転移生成物B2の酵素分解液の高速液体クロマトグラムである。
【図9】実施例3の反応液の高速液体クロマトグラムである。
【図10】実施例3の転移生成物Cの高速液体クロマトグラムである。
【図11】実施例3の転移生成物C2の酵素分解液の高速液体クロマトグラムである。
[0001]
[Industrial applications]
The present invention relates to a novel branched cyclodextrin , and more particularly, to a novel galactosyl-cyclodextrin in which a galactosyl group is bonded to a secondary hydroxyl group of a glucosyl group of cyclodextrin, that is, a hydroxyl group at the 2- or 3-position by an α bond.
[0002]
2. Description of the Related Art
Cyclodextrin (hereinafter abbreviated as CD) is a cyclic dextrin in which glucose is linked by α-1,4 bonds, and α-, β- and γ-CD, each consisting of 6, 7, 8 glucoses, are well known. Have been. Recently, in order to improve the solubility of CDs, branched CDs in which a glucosyl group or a maltosyl group is bonded to these CDs by α-1,6 bonds have been synthesized.
[0003]
These CDs and branched CDs have a cavity inside the molecule, and since the inside of the cavity is hydrophobic, it has an inclusion function and has a property of taking in various oily substances. Since CD and branched CD have such properties, they are widely used in the fields of food industry, cosmetics industry, pharmaceutical industry and the like.
[0004]
In recent years, in the field of the pharmaceutical industry, research has been actively conducted on the use of this as a sensor for labeled cells of drug carriers in drug delivery systems, focusing on the cell recognition of carbohydrates in order to reduce the side effects of drugs. It has been done. In particular, it is well known that galactose has a strong affinity for liver tissues, and mannose has a strong affinity for liver parenchymal cells, non-parenchymal liver cells and macrophages.
[0005]
In the past, in view of the above-mentioned situation, we have developed a galactosyl-branched CD in which a galactosyl group or a mannosyl group is bonded to a glucosyl group on the side chain of a branched cyclodextrin, and developed a mannosyl-branched CD, and the 6-position of the glucosyl group of the CD. Galactosyl-CD and mannosyl-CD in which a galactosyl group or a mannosyl group is bonded to a hydroxyl group have been successfully developed.
[0006]
Therefore, the present inventors have made use of the inclusion function of CD and this property of galactose for the purpose of applying it to a drug delivery system by using the secondary hydroxyl group of the glucosyl group of the CD ring, that is, the 2-position or 2-position. An attempt was made to synthesize galactosyl-CD in which a galactosyl group was directly transfer-bonded to the 3-position hydroxyl group. As a result, a commercially available α-galactosyltransferase synthesizes galactosyl-CD in which a galactosyl group is transfer-bonded to a secondary hydroxyl group of a glucosyl group of α-, β- and γ-CD from an α-galactosyl sugar compound by α-bonding. I found out. In particular, among them, the α-galactosyltransferase derived from immature coffee beans efficiently converts galactosyl-CD in which a galactosyl group is transfer-linked to the secondary hydroxyl group of the glucosyl group of α-, β- and γ-CD by α-bonding. It was found to be synthesized.
[0007]
[Means for Solving the Problems]
That is, the present invention provides a novel galactosyl-CD in which a galactosyl group is bonded to the hydroxyl group at the 2- or 3-position of the glucosyl group of CD by an α bond.
[0008]
The novel branched CD according to the present invention can be represented by the structural formulas I to III shown in FIG.
[0009]
The novel branched CD of the present invention can be obtained by allowing α-galactosyltransferase to act on a solution containing CD and an α-galactosyl sugar compound.
In the present invention, the CD may be any of α-CD, β-CD, γ-CD and their branched CDs, and may be a mixture thereof.
[0010]
Examples of the α-galactosyl sugar compound (hereinafter referred to as a sugar donor) used in the present invention include α-galactosyl such as melibiose, raffinose, phenyl-α-galactoside, paranitrophenyl-α-galactoside, and α-galacto-oligosaccharide. Glycosides, oligosaccharides, polysaccharides, partially decomposed products thereof, and mixtures thereof containing groups can also be used.
[0011]
As the α-galactosyltransferase used in the present invention, a sugar donor is decomposed when acted on a solution containing an α-galactosyl sugar compound and CD, and the α-galactosyl group is converted to a secondary glucosyl group of CD. Any one can be used as long as it transfers α-galactosyl-CD to a hydroxyl group by α-bonding.
[0012]
The α-galactosyltransferase used in the present invention is widely distributed in nature. For example, enzymes derived from plants such as immature coffee beans and enzymes derived from microorganisms such as Aspergillus niger, Escherichia coli and Mortierella vinase are well known.
[0013]
In the reaction system of the present invention, a solution (aqueous solution or suspension) containing CD and a sugar donor has a CD concentration of about 1 to 50% (W / W) and a sugar donor concentration of about 1 to 90%. (W / W), and the ratio (weight) of the sugar donor to CD varies depending on the type of the sugar donor used, but is in the range of 0.1 to 50 times, preferably 0.3 to 50 times. It is appropriate to make the range twice as large. Also, a mixed solution of water and a hydrophilic organic solvent such as dimethyl sulfoxide, methanol, acetone or the like can be used.
[0014]
It is appropriate to adjust the pH of the reaction solution to 3 to 10, preferably 4 to 9 and the temperature to 20 to 70 ° C, preferably 30 to 60 ° C, to carry out the reaction. Since the amount of the enzyme used is closely related to the reaction time, the amount of the enzyme may be such that the reaction is usually completed in 5 to 100 hours, preferably 5 to 20 hours, but is not limited thereto. .
[0015]
The liquid obtained by the reaction as described above is subjected to high performance liquid chromatography to fractionate and fractionate the transfer product to CD, followed by enzymatic decomposition, molecular weight measurement by FAB-MS, and nuclear magnetic resonance. As a result of structural analysis by the method (NMR), it was confirmed that the CD was a branched CD represented by the structural formulas I to III shown in FIG.
[0016]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Example 1
(1) Transfer Reaction After dissolving 1 g of melibiose and 0.5 g of α-CD in 4.0 ml of 50 mM acetate buffer (pH 6.5) containing 0.4 ml of dimethyl sulfoxide, the α-galactosyl group of immature coffee beans was dissolved. 16 units of a transferase (manufactured by Sigma) were added and reacted at 40 ° C. for 48 hours. FIG. 2 shows the result of analyzing a part of the reaction solution by high performance liquid chromatography.
[0017]
After the reaction was completed, the solution in which the enzyme had been inactivated by heat was subjected to high performance liquid chromatography using an amino column to separate transfer product A. The isolated transfer product A was analyzed by high performance liquid chromatography using an ODS-based column, and separated into two peaks (FIG. 3). As a result of isolation of each, 137 mg of transfer product A1 was obtained. 8 mg of the transfer product A2 were obtained.
[0018]
(2) Structural analysis The transfer product A1 isolated in the above (1) was analyzed by FAB-MS analysis and 13 C-NMR analysis to find a glucosyl group in the CD ring of α-CD previously found by the present inventors. Was found to have a structure in which one molecule of a galactosyl group was α-bonded to the 6-position hydroxyl group ( JP-A-6-16705 ). The transfer product A2 was found to have a molecular weight of 1135 by FAB-MS analysis (FIG. 4).
[0019]
Further, as shown in FIG. 5, i-mature coffee beans were completely decomposed into galactose and α-CD in equimolar amounts by α-galactosidase. From these facts, it was found that the transfer product A2 was one in which one molecule of a galactosyl group was α-bonded to α-CD. Further, the transfer product A2 is different from the transfer product A1 in retention time by analysis of high performance liquid chromatography using an ODS-based column, so that the 2-position of the glucosyl group in the CD ring of α-CD or It was found that the structure was such that one molecule of galactosyl group was α-bonded to the 3-position hydroxyl group.
[0020]
Example 2
(1) Transfer reaction 1 g of melibiose and 0.4 g of β-CD were dissolved in 4.0 ml of 50 mM acetate buffer (pH 6.5) containing 0.4 ml of dimethyl sulfoxide, and then α-galactosyl groups of immature coffee beans were dissolved. 16 units of a transferase (manufactured by Sigma) were added and reacted at 40 ° C. for 48 hours. FIG. 6 shows the result of analyzing a part of the reaction solution by high performance liquid chromatography.
[0021]
After the completion of the reaction, the solution in which the enzyme had been inactivated by heat was subjected to high performance liquid chromatography using an amino column to separate the transfer product B. The isolated transfer product B was analyzed by high performance liquid chromatography using an ODS column, and separated into two peaks (FIG. 7). As a result of isolation of each peak, 105 mg of the transfer product B1 was obtained. 6 mg of the transfer product B2 were obtained.
[0022]
(2) Structural analysis The transfer product B1 isolated in the above (1) was analyzed by FAB-MS analysis and 13 C-NMR analysis to find a glucosyl group in the CD ring of β-CD previously found by the present inventors. Was found to have a structure in which one molecule of a galactosyl group was α-bonded to the 6-position hydroxyl group ( JP-A-6-16705 ). The transfer product B2 was found to have a molecular weight of 1297 by FAB-MS analysis.
[0023]
In addition, as shown in FIG. 8, the immature coffee beans were completely decomposed into galactose and β-CD in equimolar amounts by α-galactosidase. From these results, it was found that the transfer product B2 was obtained by α-bonding one molecule of a galactosyl group to β-CD. Further, the transfer product B2 has a different retention time from that of the transfer product B1 as determined by high performance liquid chromatography using an ODS-based column. Therefore, the 2-position of the glucosyl group in the CD ring of β-CD or It was found that the structure was such that one molecule of galactosyl group was α-bonded to the 3-position hydroxyl group.
[0024]
Example 3
(1) Transfer reaction 1 g of melibiose and 0.5 g of γ-CD were dissolved in 4.0 ml of 50 mM acetate buffer (pH 6.5) containing 0.4 ml of dimethyl sulfoxide, and α-galactosyl derived from immature coffee beans was dissolved. Sixteen units of group-transferase (manufactured by Sigma) were added and reacted at 40 ° C. for 48 hours. FIG. 9 shows the result of analyzing a part of the reaction solution by high performance liquid chromatography.
[0025]
After the completion of the reaction, the solution in which the enzyme had been inactivated by heat was subjected to high performance liquid chromatography using an amino column to separate transfer product C. The isolated transfer product C was analyzed by high performance liquid chromatography using an ODS-type column. As a result, two peaks were separated (FIG. 10). As a result of isolation of each peak, 146 mg of the transfer product C1 was obtained. 9 mg of the transfer product C2 were obtained.
[0026]
(2) Structural analysis The transfer product C1 isolated in (1) above was analyzed by FAB-MS analysis and 13 C-NMR analysis to find a glucosyl group in the CD ring of γ-CD previously found by the present inventors. Was found to have a structure in which one molecule of a galactosyl group was α-bonded to the 6-position hydroxyl group ( JP-A-6-16705 ). In addition, FAB-MS analysis revealed that the transfer product C2 had a molecular weight of 1,459.
[0027]
In addition, as shown in FIG. 11, immature coffee beans were completely decomposed into galactose and γ-CD in equimolar amounts by α-galactosidase. From these results, it was found that the transfer product C2 was one in which one molecule of a galactosyl group was α-bonded to γ-CD. Further, the transfer product C2 has a different retention time from the transfer product C1 as determined by high performance liquid chromatography using an ODS-based column, so that the transfer product C2 has the second position of the glucosyl group in the CD ring of γ-CD or It was found that the structure was such that one molecule of galactosyl group was α-bonded to the 3-position hydroxyl group.
[0028]
【The invention's effect】
According to the present invention, a galactosyl group is bonded to a secondary hydroxyl group of a glucosyl group in a CD molecule, that is, a hydroxyl group at the 2- or 3-position by α-bonding by utilizing the transglycosylation effect of α-galactosyltransferase. A new branched CD can be obtained efficiently. The novel branched CD of the present invention is expected to be widely used in the fields of foods, cosmetics, etc. in addition to the field of pharmaceuticals.
[Brief description of the drawings]
FIG. 1 shows the structure of a branched CD obtained according to the present invention.
FIG. 2 is a high performance liquid chromatogram of a reaction solution of Example 1.
FIG. 3 is a high performance liquid chromatogram of the transfer product A of Example 1.
FIG. 4 is a FAB-MS analysis of the transfer product A2 of Example 1.
FIG. 5 is a high-performance liquid chromatogram of an enzyme-decomposed solution of the transfer product A2 of Example 1.
FIG. 6 is a high performance liquid chromatogram of a reaction solution of Example 2.
FIG. 7 is a high performance liquid chromatogram of the transfer product B of Example 2.
FIG. 8 is a high performance liquid chromatogram of an enzymatically decomposed liquid of the transfer product B2 of Example 2.
FIG. 9 is a high performance liquid chromatogram of a reaction solution of Example 3.
FIG. 10 is a high performance liquid chromatogram of the transfer product C of Example 3.
FIG. 11 is a high performance liquid chromatogram of an enzymatic decomposition solution of the transfer product C2 of Example 3.

Claims (1)

シクロデキストリンのグルコシル基の2位または3位水酸基にα結合でガラクトシル基が結合している新規ガラクトシル−シクロデキストリン。A novel galactosyl-cyclodextrin in which a galactosyl group is bonded to the hydroxyl group at the 2- or 3-position of the glucosyl group of cyclodextrin by an α bond.
JP10596893A 1993-04-09 1993-04-09 New branched cyclodextrin Expired - Fee Related JP3552732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10596893A JP3552732B2 (en) 1993-04-09 1993-04-09 New branched cyclodextrin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10596893A JP3552732B2 (en) 1993-04-09 1993-04-09 New branched cyclodextrin

Publications (2)

Publication Number Publication Date
JPH06298806A JPH06298806A (en) 1994-10-25
JP3552732B2 true JP3552732B2 (en) 2004-08-11

Family

ID=14421587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10596893A Expired - Fee Related JP3552732B2 (en) 1993-04-09 1993-04-09 New branched cyclodextrin

Country Status (1)

Country Link
JP (1) JP3552732B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4164367B2 (en) 2001-03-09 2008-10-15 株式会社林原生物化学研究所 Branched cyclic tetrasaccharide, production method and use thereof
US20070021380A1 (en) * 2005-07-22 2007-01-25 Leonard Wiebe Novel drug delivery compositions

Also Published As

Publication number Publication date
JPH06298806A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
GB2165549A (en) Branched cyclodextrins
JP3078923B2 (en) Novel branched cyclodextrin and method for producing the same
JP3865436B2 (en) Process for producing branched cyclodextrins
JP3552732B2 (en) New branched cyclodextrin
US5366879A (en) Method of preparing branched cyclodextrin
JP3122203B2 (en) Novel heterobranched cyclodextrin and method for producing the same
JP3086076B2 (en) New galactosyl-branched cyclodextrin
JP2863262B2 (en) Novel hetero-branched cyclodextrin in which a galactosyl group is transfer-bonded to the side chain portion of a branched cyclodextrin by an α-bond, and a method for producing the same
JP2863263B2 (en) Novel hetero-branched cyclodextrin in which a galactosyl group is transfer-linked to the side chain part of a branched cyclodextrin by β-bond, and method for producing the same
JP3816554B2 (en) Novel branched cyclodextrin and method for producing the same
JP3655325B2 (en) Mannosyl-cyclodextrin
JP3637086B2 (en) Mannosyl-cyclodextrin production method
JP3637085B2 (en) Method for producing mannosyl-cyclodextrin
JPH08173181A (en) Production of hetero branched cyclodextrin
JPH042237B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees