JPS63271431A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPS63271431A
JPS63271431A JP62107440A JP10744087A JPS63271431A JP S63271431 A JPS63271431 A JP S63271431A JP 62107440 A JP62107440 A JP 62107440A JP 10744087 A JP10744087 A JP 10744087A JP S63271431 A JPS63271431 A JP S63271431A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric
film
thin film
vinylidene fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62107440A
Other languages
Japanese (ja)
Other versions
JP2650255B2 (en
Inventor
Kuniko Kimura
邦子 木村
Yuji Shin
新 祐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62107440A priority Critical patent/JP2650255B2/en
Publication of JPS63271431A publication Critical patent/JPS63271431A/en
Application granted granted Critical
Publication of JP2650255B2 publication Critical patent/JP2650255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To improve the voltage characteristic of the title element by directly forming the thin film of a ferroelectric org. polymer on at least one electrode. CONSTITUTION:A liq. crystal 1 is enclosed between a couple of electrodes 3 and 4, the thin film 2 of a ferroelectric org. polymer is formed between one electrode 3 and the liq. crystal 1, and the driving is carried out by impressing a voltage between the electrodes. A film is formed from a vinylidene fluoride polymer and a polymer contg. a cyano group by the conventional process, the film is then uniaxially or biaxially oriented or a high electric field of more than several times the anti-electric field is impressed, and the film 2 can be obtained. By this method, the voltage characteristic can be remarkably improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、新規な駆動原理を有する液晶素子、より詳細
には強誘電性を有する右’a 1ff1分子薄膜を液晶
素子に付加することにJ:す、しきい電圧’+”:j性
が改善された液晶素子に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a liquid crystal element having a novel driving principle, more specifically, to a liquid crystal element in which a ferroelectric single molecule thin film is added to the liquid crystal element. J: Threshold voltage '+'': J This relates to a liquid crystal element with improved characteristics.

〈従来の技術〉 71〜リクス駆動方式の液晶装置の場合、従来のライス
ティドネマティック(T Nと略す)型の液晶素子では
画素聞のクロストークが問題となり、走査方向の電極数
は100本より多くすることは困難である。このTN型
の欠点を改善し、走査方向の電極数をより増やす技術と
して、現在、薄膜トランジスタを用いたアクティブマト
リクス方式や、壁面での液晶のねじれ角が270°また
は180”であるスーパーツイスト方式が研究されてい
る。しかし、アクティアマ1〜リクス方式は製作に多く
の工程を要し、欠陥のない大型素子を作るには非常にコ
スト高であり、またスーパーツイスト方式ではカラー表
示が困難であるなどの欠点がある。
<Prior art> In the case of a liquid crystal device using the 71-RIS drive method, crosstalk between pixels is a problem in the conventional Leistid nematic (abbreviated as TN) type liquid crystal element, and the number of electrodes in the scanning direction is 100. It is difficult to do more. Currently, as technologies to improve the drawbacks of the TN type and further increase the number of electrodes in the scanning direction, there are active matrix methods using thin film transistors and super twist methods in which the twist angle of the liquid crystal on the wall is 270° or 180". However, the Actiama 1-RiX method requires many steps to manufacture, and it is extremely expensive to produce large, defect-free devices, and the supertwist method is difficult to display in color. There are drawbacks such as.

また、誘電体薄膜の抵抗値が印加電圧により変化するた
めに電流がオームの法則に従わなくなる、いわゆる非線
型抵抗素子を用いた(Metal −I nsLIIa
tOr−Metal)方式の液晶表示素子(たとえば特
開昭60−241021号公報)も開発されているが、
この方式では均一な性能を1qるのがむずかしい、製作
工程がアクティブマトリクス方式よりは改善されたとは
言え、まだ復雑である等の問題がある。
In addition, we used a so-called nonlinear resistance element in which the current does not follow Ohm's law because the resistance value of the dielectric thin film changes depending on the applied voltage (Metal-InsLIIa
tOr-Metal) type liquid crystal display elements (for example, Japanese Patent Application Laid-Open No. 60-241021) have also been developed.
This method has problems such as it is difficult to achieve uniform performance, and although the manufacturing process is improved over the active matrix method, it is still complicated.

〈発明が解決しようとする問題点〉 本発明の目的は、従来技術である°「N方式、アクティ
ブマI・リクス方式、スーパーツイスト方式およびMI
M方式の持つ上記の欠点を解決し、強誘電性の高分子薄
膜を用いた新規な方式の液晶素子を提供することを目的
とする。すなわち、画素間のクロストークの少ない大容
伍のマトリックス駆動方式の液晶毒子を実現することが
本発明の目的である。
<Problems to be Solved by the Invention> It is an object of the present invention to solve the problems of the prior art.
It is an object of the present invention to solve the above-mentioned drawbacks of the M method and to provide a liquid crystal element of a new method using a ferroelectric polymer thin film. That is, it is an object of the present invention to realize a large-capacity matrix-driven liquid crystal display device with less crosstalk between pixels.

く問題点を解決するための手段〉 本発明は、液晶、該液晶を介して対向する電極、および
該電極の少なくとも一方と該液晶との間に介在する強誘
電性有機高分子薄膜から本質的に形成されてなる液晶素
子である。
Means for Solving Problems> The present invention essentially consists of a liquid crystal, an electrode facing the liquid crystal, and a ferroelectric organic polymer thin film interposed between at least one of the electrodes and the liquid crystal. This is a liquid crystal element formed by.

本発明で用いられる液晶は、ネマチック液晶、コレステ
リック液晶、強誘電性液晶のいずれであってもよい。
The liquid crystal used in the present invention may be any of nematic liquid crystal, cholesteric liquid crystal, and ferroelectric liquid crystal.

本発明に言う強誘電性有機高分子薄膜とは、(1)その
高分子薄膜が自発分極を有し、(2)膜の両面にその膜
の物性に由来するある大きさ以上のT:1場(以下これ
を抗電場と呼ぶ)を加えることによって自発分極が電場
の方向に回転し、しかも、(J)電場を取り除いた後も
逆方向の電場を加えない限り、膜の自発分極はそのまま
保持される性質を右する高分子薄膜を意味する。従って
、強誘電性有機高分子薄膜を作製し1qる材料としては
、極性基を含む有機高分子の中で、製膜時またはその侵
の処理によって、上記(1)〜(3)の性質を有するも
のであれば特に限定されないが、具体的にはフッ化ビニ
リデンと三フッ化エヂレンの共重合体(以下、P(VD
F−TrFE)と略す)、フッ化ビニリデンと四フッ化
エチレンの共重合体(以下、P(VDF−TEFE)と
略す)に代表されるフッ化ビニリデン共重合体や、シア
ノビニリデンとビニルアセテートの共重合体およびポリ
アクリロニトリルに代表されるシアノ基を含む高分子な
どが用いられる。この他、フッ化ビニリデンや塩化ビニ
リデンの単一重合体(以下各々PVDF、PVDCと略
す)は、以下に示す特殊な処理を施すことにより、本発
明の強誘電性の有機高分子薄膜とすることができる。す
なわら、PVDF、PVDCは溶液塗布法、スピンコー
ド法、浸漬引き上げ法、流延法、真空蒸着法および溶融
製膜法等の通常の製膜処理だけでは、結品内で極性が相
殺されるいわゆるα型の結晶となり、自発分極を発生さ
せることはできないが、製膜後に薄膜を一軸または二輪
に延伸するか、または抗電場の数倍以上の高電場を印加
することによって自発分極を有する結晶型(β型結晶と
呼ぶ)に変えることができ、前記(1)〜(3)の性質
を有する強誘電性有機高分子薄膜が得られる。
The ferroelectric organic polymer thin film referred to in the present invention means that (1) the polymer thin film has spontaneous polarization, and (2) T:1 of a certain size or more derived from the physical properties of the film is formed on both sides of the film. By applying a field (hereinafter referred to as a coercive electric field), the spontaneous polarization rotates in the direction of the electric field, and (J) Even after the electric field is removed, the spontaneous polarization of the membrane remains as long as no electric field is applied in the opposite direction. It refers to a thin polymer film that determines the properties it retains. Therefore, as a material for producing a ferroelectric organic polymer thin film, among organic polymers containing polar groups, the above properties (1) to (3) can be obtained during film formation or by corrosion treatment. Although it is not particularly limited as long as it has
F-TrFE), vinylidene fluoride copolymers such as vinylidene fluoride and tetrafluoroethylene copolymers (hereinafter referred to as P(VDF-TEFE)), and cyanovinylidene and vinyl acetate copolymers. Polymers containing cyano groups, such as copolymers and polyacrylonitrile, are used. In addition, single polymers of vinylidene fluoride and vinylidene chloride (hereinafter abbreviated as PVDF and PVDC, respectively) can be made into the ferroelectric organic polymer thin film of the present invention by subjecting them to the following special treatment. can. In other words, with PVDF and PVDC, the polarity within the crystal is canceled out by normal film forming processes such as solution coating method, spin cord method, immersion pulling method, casting method, vacuum evaporation method, and melt film forming method. It becomes a so-called α-type crystal, and cannot generate spontaneous polarization, but it can be generated by stretching the thin film uniaxially or biaxially after film formation, or by applying a high electric field several times higher than the coercive electric field. A ferroelectric organic polymer thin film that can be changed into a crystal type (referred to as a β-type crystal) and has the properties (1) to (3) above can be obtained.

強誘電性有機高分子B膜に適用し得る上記の材料の中で
は、自発分極母の大きさおよびD−Eヒステリシス曲線
の角型比の良さから考えて、フッ化ビニリデン共重合体
が特に好ましい。フッ化ビニリデン共重合体としては、
P(VDF−TrFE) 、P (VDF−TEFE>
(1)他に、フッ化ビニリデンとフッ化ビニルとの共重
合体、またはフッ化ビニリデンとフッ素系以外のビニル
モノマとの共重合体も適用できる。上記の各共重合体に
は、さらに他の共重合性ビニルモノマが共重合成分とし
て含まれていてもよい。またこれらのフッ化ビニリデン
共重合体の2種以上のブレンド物、またはフッ化ビニリ
デン共重合体と、たとえばポリメチルメタクリレート等
の他の高分子材おIとのブレンド物を用いることもでき
る。これらのフッ化ビニリデン共重合体の中では、特に
P (VDF−TrFE)およびP (VDF−TEF
E>が好ましい。
Among the above materials that can be applied to the ferroelectric organic polymer B film, vinylidene fluoride copolymer is particularly preferred in view of the size of the spontaneous polarization matrix and the good squareness ratio of the D-E hysteresis curve. . As vinylidene fluoride copolymer,
P(VDF-TrFE), P(VDF-TEFE>
(1) In addition, a copolymer of vinylidene fluoride and vinyl fluoride, or a copolymer of vinylidene fluoride and a non-fluorine-based vinyl monomer can also be applied. Each of the above copolymers may further contain other copolymerizable vinyl monomers as a copolymerization component. It is also possible to use a blend of two or more of these vinylidene fluoride copolymers, or a blend of the vinylidene fluoride copolymer and another polymer material such as polymethyl methacrylate. Among these vinylidene fluoride copolymers, P (VDF-TrFE) and P (VDF-TEF
E> is preferred.

フッ化ビニリデン共重合体におけるフッ化ビニリデンの
共重合割合は10〜98モル%、特に55〜95モル%
が好ましい。P (VDF−TrFE)の場合はフッ化
ビニリデンの共重合割合が65〜90モル%のものが、
またP (VDF−TEFE>においては同割合が72
〜87モル%のものが特に好ましい。
The copolymerization ratio of vinylidene fluoride in the vinylidene fluoride copolymer is 10 to 98 mol%, particularly 55 to 95 mol%.
is preferred. In the case of P (VDF-TrFE), the copolymerization ratio of vinylidene fluoride is 65 to 90 mol%,
In addition, the same ratio is 72 for P (VDF-TEFE>)
Particularly preferred is ~87 mol%.

強誘電性薄膜を形成するには、フッ化ビニリデン共重合
体を用いる場合にはジメチルボルムアミド、メチルエチ
ルケ1〜ン、アセトン等の極性溶媒に溶かし、基板上に
塗布する塗付製膜法、または熱によって溶融して製膜す
る溶融製膜法によって形成することができる。塗布の具
体的手段としては、浸漬引き上げ法、スピンコード法、
流延法およびバーコーターによる塗布、印刷法などが有
効である。この場合、基板と強誘電性有機高分子薄膜と
の接着性をより向上させるために、基板上にあらかじめ
カップリング材を付加しても良い。強誘電性有機高分子
薄膜を塗布する基板としては、電極が付加されたガラス
板、電極が付加されたプラスチックパネル、電極が付加
された高分子など可撓性を有するフィルムなどが用いら
れ、またシリコン等の半導体であっても良い。
To form a ferroelectric thin film, when vinylidene fluoride copolymer is used, it can be dissolved in a polar solvent such as dimethylborumamide, methyl ethyl chloride, or acetone, and applied on a substrate using a coating method, or It can be formed by a melt film forming method in which a film is formed by melting with heat. Specific methods of coating include dipping and pulling method, spin cord method,
Casting methods, coating with a bar coater, printing methods, etc. are effective. In this case, in order to further improve the adhesion between the substrate and the ferroelectric organic polymer thin film, a coupling material may be added on the substrate in advance. The substrate on which the ferroelectric organic polymer thin film is applied may be a glass plate with electrodes, a plastic panel with electrodes, a flexible film such as a polymer with electrodes, etc. It may also be a semiconductor such as silicon.

強誘電性有機高分子簿膜の厚さに関しては特に限定はな
いが、厚ければ厚いほど液晶素子にした場合の駆動電圧
が高くなり、5μ瓦を越えるwA厚では実用には適さな
い。好ましい膜厚は0.01〜5μmrtrあり、特に
好ましくは0.05〜2μmである。
There is no particular limitation on the thickness of the ferroelectric organic polymer film, but the thicker it is, the higher the driving voltage will be when used as a liquid crystal element, and a wA thickness exceeding 5 μm is not suitable for practical use. The preferred film thickness is 0.01 to 5 μm, particularly preferably 0.05 to 2 μm.

なお、PVDF、PVDCの場合は、通常の装膜俊に薄
膜を一軸または二軸に延伸するか、または抗電場の数倍
以上の高電場を印加することによって、強誘電性有機高
分子薄膜を形成することができる。
In the case of PVDF and PVDC, a ferroelectric organic polymer thin film can be formed by uniaxially or biaxially stretching the thin film in the usual way, or by applying a high electric field several times higher than the coercive electric field. can be formed.

以上、強誘電性の有機高分子簿膜について述べたが、本
発明に係る液晶素子は第1図に示したごとき1対の電極
(少なくとも一方の電極と液晶との間には強誘電性薄膜
が形成されている)の間に液晶が封入された構成を基本
とするものであり、駆動は該電極の間に電圧を印加して
行う。
Although the ferroelectric organic polymer film has been described above, the liquid crystal element according to the present invention has a pair of electrodes as shown in FIG. The structure is based on a structure in which a liquid crystal is sealed between the electrodes (in which electrodes are formed), and driving is performed by applying a voltage between the electrodes.

上記手法により、強誘電性薄膜を形成した第1図に示す
ごとき、液晶素子の対向電極の間に電圧(V)を印加し
た場合、電圧■は液晶と強誘電性有機高分子薄膜(以下
強誘電膜と略す)に分圧され、その等価回路は第2図の
ごとく表わされる。
When a voltage (V) is applied between the opposing electrodes of a liquid crystal element as shown in Figure 1, in which a ferroelectric thin film is formed using the above method, the voltage (abbreviated as a dielectric film), and its equivalent circuit is shown in FIG.

第2図の回路において、液晶に加わる電圧(Vl)、強
誘電膜に加わる電圧(Vl)はそれぞれ次式から求まる
In the circuit shown in FIG. 2, the voltage (Vl) applied to the liquid crystal and the voltage (Vl) applied to the ferroelectric film are determined from the following equations.

Vl =V/ (1十01/C()   ■Vf=V 
 Vl         ■ここでC1、Clは、それ
ぞれ当該液晶素子における液晶および強誘電膜の静電容
Qである。■式において、■1はcl /Cfが大きけ
れば小さくなり、C1/Cy〜Oでは■1ゆVとなる。
Vl =V/ (1001/C() ■Vf=V
Vl (2) Here, C1 and Cl are the capacitances Q of the liquid crystal and ferroelectric film in the liquid crystal element, respectively. In formula (2), (1) becomes smaller as cl/Cf increases, and for C1/Cy~O, (1) becomes V.

一方、Cfは強誘電膜の厚さくd)、面積(S)および
誘電率(6丁)によって、■式のように表わされる。
On the other hand, Cf is expressed by the formula (2) using the thickness (d), area (S), and dielectric constant (6) of the ferroelectric film.

Cf−ε0εfS/d     ■ ここでε。は真空の誘電率を意味する。Cf-ε0εfS/d ■ Here ε. means the permittivity of vacuum.

強誘電体は永久分極を有するため、その電気変位りは一
般に■式で表わされ、電場Eに対してヒステリシス特性
をもつことが知られている。
Since ferroelectric materials have permanent polarization, their electric displacement is generally expressed by the equation (2), and it is known that they have hysteresis characteristics with respect to the electric field E.

D=ε ε E十P、       ■r ここでP、は永久分極、ε、電子分極による誘電率であ
る。■式を電場Eで微分することにより、永久分極まで
考慮に入れた強誘電体の誘電率εfは■式で表わされる
D=ε ε E0P, ■r Here, P is permanent polarization, and ε is the dielectric constant due to electronic polarization. By differentiating the equation (2) with respect to the electric field E, the permittivity εf of the ferroelectric material, which takes permanent polarization into consideration, is expressed by the equation (2).

εf=’9D1つE= ε ε 十つP 1つE   ■ Or      S ■式においてε。ε、は電場によらず一定であるが、永
久分極は抗電場E。以上の電場によって電場方向に回転
を起すため、EVE。の電場ではつP  /alE=o
であるが、E≧E、ではε。ε、に比べて十分大きな値
をもつ。E、境にしてCfが急増することによってC1
/Cfは急減するため、液晶に加わる電圧VlはEC@
:境にして急増し、第3図に示す様にvcを境にしてV
に対して非線型になる。従ってv=VCにおいてVl=
VThとなる様に設定することにより、電圧による液晶
の配向特性を急峻にすることができる。ここにVThは
使用した液晶が配向するためのしきい電圧を意味し、こ
れは液晶材料固有の値である。従って、液晶素子の電圧
による光透過率変化のしきい特性を鋭くすることができ
る。用いる液晶の種類はネマチック液晶に限らず、コレ
ステリック液晶、強誘電性液晶いずれでもよい。それに
ともない配向方式もTN型、ゲストホスト型等種々の方
式が適用できる。従って、配向方式によっては第1図の
上下の偏光板は必要ない。一方、VThをV。付近に設
定する方法としては、強誘電膜と液晶層の厚さを選択す
ること、またしきい電圧、誘電率が適当である液晶材料
を選択することの他に、第4図に示す様に強誘電膜の上
に△u、Cr、酸化インヂウム、酸化スズなどの金属を
用いて透明な中間電極を付加することによって、液晶と
強誘電膜の実効面積比を調節することによっても行うこ
とができる。
εf='9D 1 E= ε ε 10 P 1 E ■ Or S ■ ε in the formula. ε is constant regardless of the electric field, but permanent polarization is due to the coercive electric field E. In order to cause rotation in the direction of the electric field due to the above electric field, EVE. In the electric field of P /alE=o
However, if E≧E, then ε. It has a sufficiently large value compared to ε. E, due to the rapid increase in Cf at the border, C1
/Cf decreases rapidly, so the voltage Vl applied to the liquid crystal becomes EC@
: It increases rapidly at the border, and as shown in Figure 3, V
becomes nonlinear for . Therefore, in v=VC, Vl=
By setting the voltage to be VTh, it is possible to make the alignment characteristics of the liquid crystal depending on the voltage steep. Here, VTh means the threshold voltage for aligning the liquid crystal used, and this is a value specific to the liquid crystal material. Therefore, the threshold characteristics of the change in light transmittance due to the voltage of the liquid crystal element can be sharpened. The type of liquid crystal used is not limited to nematic liquid crystal, and may be either cholesteric liquid crystal or ferroelectric liquid crystal. Accordingly, various alignment methods such as TN type and guest-host type can be applied. Therefore, depending on the orientation method, the upper and lower polarizing plates shown in FIG. 1 are not necessary. On the other hand, VTh is V. In addition to selecting the thickness of the ferroelectric film and the liquid crystal layer, and selecting a liquid crystal material with an appropriate threshold voltage and dielectric constant, methods for setting the ferroelectric film and liquid crystal layer in the vicinity include selecting a liquid crystal material with an appropriate threshold voltage and dielectric constant. This can also be done by adjusting the effective area ratio of the liquid crystal and the ferroelectric film by adding a transparent intermediate electrode using a metal such as ΔU, Cr, indium oxide, or tin oxide on the ferroelectric film. can.

上記の説明から明らかな様に、本発明は第2図に示す液
晶素子の等価回路のうら、強誘電膜の静電容量の非線型
特性を利用することによって液晶・素子の光透過帯変化
のしきい特性を改善し、高デユーティ−駆動が可能な大
容量の液晶装置を実現させるものである。
As is clear from the above description, the present invention utilizes the non-linear characteristics of the capacitance of the ferroelectric film in addition to the equivalent circuit of the liquid crystal element shown in FIG. The objective is to improve the threshold characteristics and realize a large-capacity liquid crystal device capable of high-duty driving.

本発明の液晶素子は、液晶表示手段のみならず、液晶シ
ャッターやプロジェクタ−など各種の用途に応用できる
The liquid crystal element of the present invention can be applied not only to liquid crystal display means but also to various uses such as liquid crystal shutters and projectors.

く実 施 例〉 以下、本発明の液晶素子について実施例を用いて詳しく
説明する。
Examples> The liquid crystal element of the present invention will be described in detail below using examples.

実施例1 フッ化ビニリデンの共重合モル分率が80%のP (V
DF−TrFE)をジメチルホルムアミド溶液とし、金
属電極(Δ1)がイ」加されたガラス基板上にスピシコ
ートして厚さ0.5μmの強誘電性薄膜を得た。ざらに
この強誘電性8vにAuを蒸着し、中間電極とした。こ
の膜の電気変位りと電場Eの関係の実測値を第5図の(
a>に示す。
Example 1 P (V
DF-TrFE) was made into a dimethylformamide solution and spicicoated onto a glass substrate to which a metal electrode (Δ1) was added to obtain a 0.5 μm thick ferroelectric thin film. Au was roughly deposited on this ferroelectric 8V to form an intermediate electrode. The actual measured value of the relationship between the electrical displacement of this film and the electric field E is shown in Figure 5 (
Shown in a>.

抗電場(Eo=40MV/IrL)を境にして、永久分
極が回転を行うため角形比の良いヒステリシス曲線が得
られた。また、フッ化ビニリデンの共重合モル分率が6
5%、75%および86%のP(VDF−丁rFE)に
ついても、上記の方法で膜厚0.5μmの簿膜を作り、
そのD−E曲線を測定した。フッ化ビニリデンの共重合
モル分率が65%のP (VDF−TrFE)の場合は
、第5図(b)に示す結果となり、またフッ化ビニリデ
ンの共重合モル分率が75%および86%の共重合体に
おいては、第5図(a)と同一の結果が得られた。
Since the permanent polarization rotates around the coercive electric field (Eo = 40 MV/IrL), a hysteresis curve with a good squareness ratio was obtained. In addition, the copolymerization molar fraction of vinylidene fluoride is 6
For 5%, 75%, and 86% P (VDF-RFE), films with a thickness of 0.5 μm were made using the above method.
The DE curve was measured. In the case of P (VDF-TrFE) with a copolymerization molar fraction of vinylidene fluoride of 65%, the results are shown in Figure 5(b), and when the copolymerization molar fraction of vinylidene fluoride is 75% and 86%. In the case of the copolymer, the same results as in FIG. 5(a) were obtained.

また、P (VDF−TEFE)についてもフッ′ 化
ビニリデンの共重合モル分率が72%および82%の共
重合体について上記の方法で、やはり膜厚0.5μmの
薄膜を作りそのD−E曲線を測定した結果、どちらも第
5図(C)に示す結果が1qられだ。
In addition, for P (VDF-TEFE), a thin film with a thickness of 0.5 μm was made using the above method for copolymers with vinylidene fluoride copolymerization molar fractions of 72% and 82%, respectively, and the D-E As a result of measuring the curves, the results shown in Figure 5 (C) were both 1q.

これらの強誘電性薄膜の比誘電率ε「/ε0は2QQl
lZ以下の低周波において、E、より低い電場が印加さ
れている場合には10〜20、EC以上の電場では15
0であった。第6図に厚さ0゜5umのP (VDF−
TrFE)e膜(フッ化ビニリデンの共重合モル分率が
80%のもの)の、εf/ε。の実測値を示す。
The relative permittivity of these ferroelectric thin films is ε'/ε0 is 2QQl
At low frequencies below lZ, E, 10-20 when lower electric fields are applied, and 15 for electric fields above EC.
It was 0. Figure 6 shows P (VDF-
εf/ε of the TrFE) e membrane (copolymerized mole fraction of vinylidene fluoride is 80%). The actual measured value is shown.

上記の、フッ化ビニリデンの共重合モル分率が80%の
P (VDF−TrFE>より成る強誘電性薄膜を用い
て第7図に示す構造の液晶素子を構成した。透明な基板
としてガラス基板を、透明電極として酸化インジウム/
酸化スズを用いた。液晶材料は通常のP型ネマチック液
晶(メルク社ZLI2144>を用いた。電気定数はε
、、=29、ε工=8、Vlo(10%配向するのに要
する電圧)=1.22V、V、。(90%配向するのに
要する電圧)=1.77V。
A liquid crystal element having the structure shown in FIG. 7 was constructed using the above-mentioned ferroelectric thin film made of P (VDF-TrFE) with a copolymerized mole fraction of vinylidene fluoride of 80%.A glass substrate was used as a transparent substrate. Indium oxide/
Tin oxide was used. The liquid crystal material used was a normal P-type nematic liquid crystal (Merck ZLI2144).The electric constant is ε
,,=29, ε=8, Vlo (voltage required for 10% orientation)=1.22V, V,. (Voltage required for 90% orientation) = 1.77V.

強誘電膜を液晶層の面積比(Sl /Sf )は200
とし、液晶の初期配向がTN型となるようにポリビニル
アルコールの配向膜をラビング処理した。ポリエチレン
テレフタレートのフィルムを用い、厚さ4μTnのスペ
ーサーとし、その中に液晶を封入した。
The area ratio (Sl /Sf) of the ferroelectric film to the liquid crystal layer is 200.
Then, the alignment film of polyvinyl alcohol was subjected to rubbing treatment so that the initial alignment of the liquid crystal was TN type. A polyethylene terephthalate film was used as a spacer with a thickness of 4 μTn, and a liquid crystal was sealed in the spacer.

上記液晶セルの印加電圧に対する光透過率の実測値を第
8図に示す。第8図において光透過率は21V付近で急
峻に変化し、この素子におけるV90/ V 10は1
.13である。一方、使用した液晶材おlのV9o/■
1oは1.45であるから、本発明によって液晶表示素
子のしきい特性が大幅に改善されたことになる。
FIG. 8 shows the measured values of the light transmittance of the liquid crystal cell with respect to the applied voltage. In Fig. 8, the light transmittance changes sharply around 21V, and V90/V10 in this element is 1.
.. It is 13. On the other hand, the liquid crystal material used was V9o/■
Since 1o is 1.45, this means that the threshold characteristics of the liquid crystal display element have been significantly improved by the present invention.

また、フッ化ビニリデンの共重合モル分率が65%、7
5%および86%のP (VDF−TrFE)について
も、上記と同様の方法で膜厚0.5μmの強誘電性薄膜
を作製し、それらを用いて第7図の構造の液晶素子を作
製した結果、3者とも第8図と同様の光透通帯特性が得
られた。
In addition, the copolymerization molar fraction of vinylidene fluoride is 65%, 7
For 5% and 86% P (VDF-TrFE), ferroelectric thin films with a thickness of 0.5 μm were fabricated in the same manner as above, and a liquid crystal element with the structure shown in Figure 7 was fabricated using them. As a result, light transmission band characteristics similar to those shown in FIG. 8 were obtained for all three.

また、P (VDF−TEFE)についてはフッ化ビニ
リデンの共重合モル分率が72%および82%のものに
ついて、やはり上記の方法で強誘電性薄膜を作製した。
Ferroelectric thin films of P (VDF-TEFE) with vinylidene fluoride copolymerization molar fractions of 72% and 82% were also produced by the above method.

こららは抗電場が上記本実施例で用いたP(VDF−T
rFE)に比べてやや高いことを考慮して膜厚を0.3
5μmとした。
These are the coercive electric fields of P(VDF-T used in this example)
Considering that it is slightly higher than rFE), the film thickness was set to 0.3.
It was set to 5 μm.

それらを用いて第7図の4vi造の液晶素子を作製した
結果、どちら、も第8図とほぼ同様の光透通帯特性を得
た。
As a result of fabricating a 4vi liquid crystal element shown in FIG. 7 using these materials, almost the same light transmission band characteristics as those shown in FIG. 8 were obtained in both cases.

また、上記本実施例に用いた共m合圧のP(VDF−T
rFE)およびP (VDF−TEFE)から成る膜厚
0.5μmの強誘電性薄膜について抵抗の電圧依存性を
測定した結果、どれも100MV/m以下の電場におい
ては、その抵抗値は電圧に依存せずほぼ一定であった。
In addition, P (VDF-T
As a result of measuring the voltage dependence of resistance of 0.5 μm thick ferroelectric thin films consisting of P (rFE) and P (VDF-TEFE), the resistance value is voltage dependent in both cases in an electric field of 100 MV/m or less. It remained almost constant.

〈発明の効果〉 本発明に係る液晶素子は、従来のTN型の液晶素子に比
べて、少なくとも一方の電極上に強誘電性有機高分子薄
膜が直接形成されただけの極めて簡単な構成からなるに
もかかわらず、そのしぎい電圧特性は従来のTN型の素
子に比べて大きく改善される。また当該素子に用いる強
誘電体として、チタン酸ジル:1ン酸鉛に代表される強
誘電セラミクス、また強誘電体の単結晶などが考えられ
るが、どららも厚さが5μyn以下のU膜を1qること
は極めて困難である。従って、素子の動作電圧が高くな
り実用に適さない。また液晶素子においては、強誘電性
材料が光学的に透明である場合には、素子を容易に反射
型および透過型のどちらの構成にもすることができ、大
きな利点となるが、本発明の強誘電性、右機高分子を用
いる場合には、電極が形成された基板上に塗布すること
によって容易に数μmn以下の薄膜が得られ、しかも光
学的に透明であるので、基板全体に塗布されていても何
らじゃまにならない。
<Effects of the Invention> Compared to conventional TN type liquid crystal elements, the liquid crystal element according to the present invention has an extremely simple structure in which a ferroelectric organic polymer thin film is directly formed on at least one electrode. Nevertheless, its threshold voltage characteristics are greatly improved compared to conventional TN type elements. In addition, ferroelectric ceramics such as dill titanate/lead monophosphate and single crystal ferroelectric materials are conceivable as ferroelectric materials used in the device, but both are U films with a thickness of 5 μyn or less. It is extremely difficult to calculate 1q. Therefore, the operating voltage of the device becomes high, making it unsuitable for practical use. Furthermore, in a liquid crystal element, if the ferroelectric material is optically transparent, the element can be easily made into either a reflective type or a transmissive type, which is a great advantage. When using a ferroelectric polymer, a thin film of several μm or less can be easily obtained by coating it on a substrate on which an electrode is formed, and since it is optically transparent, it can be coated on the entire substrate. Even if it is done, it will not be a hindrance.

更に本発明は、液晶素子の製造コストを従来のアクティ
ブ駆動型の素子に比べて十分低く保った上で、そのしき
い電圧特性を著しく改善する効果も有する。
Furthermore, the present invention has the effect of significantly improving the threshold voltage characteristics of a liquid crystal element while keeping the manufacturing cost of the liquid crystal element sufficiently lower than that of a conventional active drive type element.

従って、本発明の素子をマトリクス駆動方式の液晶装置
に用いた場合、画素間のクロストークノイズが軽減でき
、高デユーティ−駆動が可能な大容量の液晶表示装置が
実現できる。
Therefore, when the element of the present invention is used in a matrix drive type liquid crystal device, crosstalk noise between pixels can be reduced, and a large capacity liquid crystal display device capable of high duty driving can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る液晶素子の一例の概略図である
。 第2図は、本発明に係る液晶素子の等価回路を示ず。 第3図は、液晶に加わる電圧特性を示す。 第4図は、本発明の液晶素子に中間電極を加えた場合の
概略図である。 第5図は、強誘電性有機高分子簿膜の電気変位−電場の
ヒステリシス特性を示すものであり、(a)はP (V
DF−TrFE>のフッ化ビニリデンの共重合割合が8
0モル%のもの、(b)はP (VDF−TrFE>の
同割合が65%のもの、(C)はP (VDF−TEF
E)の同割合が72%および82%のものを各々示す。 第6図は、強誘電性有機高分子薄膜の比誘電率−電圧特
性を示す。 第7図は、本発明の実施例における素子構成の概略図で
ある。 第8図は、本発明の実施例における光透過率−電圧特性
を示す。 1・・・・・・液   晶 2・・・・・・強誘電性有機高分子薄膜3・・・・・・
電極 4・・・・・・透明電極 5・・・・・・基板 6・・・・・・偏光板 7・・・・・・中間電極 8・・・・・・配向膜 特許出願人  東 し 株 式 会 社第1図 第2図 第3図 第仝図 第5図(亀) 第5図(b) 第5図(り 第6図 仁f1nセIxCV)
FIG. 1 is a schematic diagram of an example of a liquid crystal element according to the present invention. FIG. 2 does not show an equivalent circuit of the liquid crystal element according to the present invention. FIG. 3 shows the voltage characteristics applied to the liquid crystal. FIG. 4 is a schematic diagram of the liquid crystal element of the present invention in which an intermediate electrode is added. Figure 5 shows the electric displacement-electric field hysteresis characteristics of a ferroelectric organic polymer film, and (a) shows P (V
The copolymerization ratio of vinylidene fluoride in DF-TrFE> is 8
0 mol%, (b) is 65% of the same proportion of P (VDF-TrFE>, (C) is P (VDF-TEF
The same proportions of E) are shown as 72% and 82%, respectively. FIG. 6 shows the dielectric constant-voltage characteristics of a ferroelectric organic polymer thin film. FIG. 7 is a schematic diagram of an element configuration in an embodiment of the present invention. FIG. 8 shows the light transmittance-voltage characteristics in an example of the present invention. 1... Liquid crystal 2... Ferroelectric organic polymer thin film 3...
Electrode 4...Transparent electrode 5...Substrate 6...Polarizing plate 7...Intermediate electrode 8...Alignment film Patent applicant Shi Azuma Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 5 (Turtle) Figure 5 (b) Figure 5 (Figure 6 Renf1nse IxCV)

Claims (3)

【特許請求の範囲】[Claims] (1)液晶、該液晶を介して対向する電極、および該電
極の少なくとも一方と該液晶との間に介在する強誘電性
有機高分子薄膜から本質的に形成されてなる液晶素子。
(1) A liquid crystal element essentially consisting of a liquid crystal, electrodes facing each other with the liquid crystal in between, and a ferroelectric organic polymer thin film interposed between at least one of the electrodes and the liquid crystal.
(2)強誘電性有機高分子薄膜が、フッ化ビニリデン共
重合体から成るものである特許請求の範囲第(1)項記
載の液晶素子。
(2) The liquid crystal device according to claim (1), wherein the ferroelectric organic polymer thin film is made of vinylidene fluoride copolymer.
(3)強誘電性の有機高分子薄膜が、膜厚0.01〜5
μmの範囲のものである特許請求の範囲第(1)項記載
の液晶素子。
(3) The ferroelectric organic polymer thin film has a thickness of 0.01 to 5
The liquid crystal element according to claim (1), which is in the μm range.
JP62107440A 1987-04-30 1987-04-30 Liquid crystal element Expired - Lifetime JP2650255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62107440A JP2650255B2 (en) 1987-04-30 1987-04-30 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62107440A JP2650255B2 (en) 1987-04-30 1987-04-30 Liquid crystal element

Publications (2)

Publication Number Publication Date
JPS63271431A true JPS63271431A (en) 1988-11-09
JP2650255B2 JP2650255B2 (en) 1997-09-03

Family

ID=14459201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62107440A Expired - Lifetime JP2650255B2 (en) 1987-04-30 1987-04-30 Liquid crystal element

Country Status (1)

Country Link
JP (1) JP2650255B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022512A (en) * 1988-06-15 1990-01-08 Seiko Epson Corp Active device, active matrix display, and driving method for active matrix display
JPH02173728A (en) * 1988-12-27 1990-07-05 Seiko Epson Corp Active device
EP0508802A1 (en) * 1991-04-11 1992-10-14 Central Glass Company, Limited Ferroelectric film of fluoroolefin copolymer and method of forming same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159124A (en) * 1986-01-07 1987-07-15 Semiconductor Energy Lab Co Ltd Liquid crystal device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62159124A (en) * 1986-01-07 1987-07-15 Semiconductor Energy Lab Co Ltd Liquid crystal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022512A (en) * 1988-06-15 1990-01-08 Seiko Epson Corp Active device, active matrix display, and driving method for active matrix display
JPH02173728A (en) * 1988-12-27 1990-07-05 Seiko Epson Corp Active device
EP0508802A1 (en) * 1991-04-11 1992-10-14 Central Glass Company, Limited Ferroelectric film of fluoroolefin copolymer and method of forming same

Also Published As

Publication number Publication date
JP2650255B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
KR100352413B1 (en) Liquid Crystal Device
US5257122A (en) Ferroelectric liquid crystal display having gray steps or a continuous gray scale
JPH0219A (en) Liquid crystal element and composition for oriented film of liquid crystal element
JP2883941B2 (en) Optical phase plate, method of manufacturing the same, and liquid crystal display device using the optical phase plate
JP4334028B2 (en) Manufacturing method of liquid crystal display element
JP3771619B2 (en) Liquid crystal display element
JPS63271431A (en) Liquid crystal element
JPH03164713A (en) Ferrodielectric liquid crystal electrooptical device and its production
JPH04168422A (en) Liquid crystal display device
JP3471851B2 (en) Liquid crystal display
JPS61159627A (en) Liquid crystal electrooptic device
JPH09211463A (en) Manufacture of liquid crystal display device
JPH0448368B2 (en)
JPH01267516A (en) Liquid crystal optical element and its production
US5973762A (en) Ferroelectric liquid crystal cell with a monochevron structure of smectic layers
JPH06148648A (en) Feproelectric liquid crystal display element
KR102153291B1 (en) Liquid crystal aligning agent, liquid crystal display device using the same and method for manufacturing the same
JPS58102205A (en) Formation of color polarizing plate
JP3254616B2 (en) Liquid crystal device and method of manufacturing the same
JPH02272090A (en) Polymeric liquid crystal composition and polymeric liquid crystal element
JP2761581B2 (en) Liquid crystal device
JPH02232624A (en) Liquid crystal optical element
JPH07333599A (en) Liquid crystal display element
JPS6332519A (en) Liquid crystal element
JPH04118629A (en) Display element