JPS632713B2 - - Google Patents

Info

Publication number
JPS632713B2
JPS632713B2 JP8166783A JP8166783A JPS632713B2 JP S632713 B2 JPS632713 B2 JP S632713B2 JP 8166783 A JP8166783 A JP 8166783A JP 8166783 A JP8166783 A JP 8166783A JP S632713 B2 JPS632713 B2 JP S632713B2
Authority
JP
Japan
Prior art keywords
welded
tin
nickel
layer
electrode contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8166783A
Other languages
Japanese (ja)
Other versions
JPS59209490A (en
Inventor
Yoichi Kitamura
Hisashi Hotsuta
Makoto Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP8166783A priority Critical patent/JPS59209490A/en
Publication of JPS59209490A publication Critical patent/JPS59209490A/en
Publication of JPS632713B2 publication Critical patent/JPS632713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は溶接缶胴体に関し、さらに詳しくはニ
ツケルメツキ鋼板よりなる溶接缶胴体に関する。 最近ジユース類、コーヒー、清涼飲料水等を収
納のための缶体素材としてニツケルメツキ鋼板が
提案されている。このニツケルメツキ鋼板は両面
に電気ニツケルメツキ層(以下メツキ層とよぶ)
が形成され、そのメツキ量(片面表示)は通常
0.1〜2.0g/m2とごく薄く、さらに耐食性を向上
させるため各メツキ層の上にクロム量換算で3〜
20mg/m2のクロメート層が形成されている。本明
細書においては以上のような層構成の缶体用表面
処理低炭素鋼板(厚さは通常0.15〜0.4mm)をニ
ツケルメツキ鋼板とよぶ。 ニツケルメツキ鋼板は、缶体素材として現在最
も一般的である錫メツキ鋼板にくらべて低価格で
あり、塗料の密着性に優れているという利点を有
する。しかしながら表面電気抵抗値が錫メツキ鋼
板より大きいためと推測されるが溶接性に劣り、
溶接部の耐食性が低いという問題を有する。すな
わち溶接缶胴体は、缶胴成形体の側面重ね合せ部
を、線電極を介して一対の電極ロールにより押圧
しながら通電して、マツシユシーム抵抗溶接を行
なうことによつて製造されるが、そのさい溶接部
の電極接触面の部分のメツキ層やクロメート層
が、線電極によつて擦りとられて、局部的に地鉄
が露出したり、これらの層が残留した部分もその
厚さが薄くなつて耐食性が損われる。 本発明は以上に述べた従来技術の問題点の解消
を図ることを目的とする。 上記目的を達成するため、本発明はニツケルメ
ツキ鋼板より形成された側面重ね合せ部を有する
缶胴成形体の該側面重ね合せ部をマツシユシーム
抵抗溶接してなる溶接部を有する溶接缶胴体であ
つて、該溶接部の電極接触部の実質的に全面が錫
で覆われていることを特徴とする溶接缶胴体を提
供するものである。 以下図面を参照しながら本発明について説明す
る。 第1図において、1はニツケルメツキ鋼板3よ
り形成された缶胴成形体(第4図の8参照)の側
面重ね合せ部(第4図の9)をマツシユシーム抵
抗溶接して形成された溶接缶胴体2の溶接部であ
る。ニツケルメツキ鋼板3は、低炭素薄鋼板3の
両面に下層がニツケルメツキ層3b、上面がクロ
メート3aよりなる表面処理層3xによつて被覆
されている。4が線電極であり、5が電極接触部
である。電極接触部5の一方の端部5aは段差部
6を介して溶接缶胴体2の非溶接部と接続してい
る。段差部6は側面重ね合せ部の端面に対応する
部分であつて、通常地鉄が露出している。そして
電極接触部5の実質的に全面にわたつて、その表
面処理層3xは錫層7で覆われている。また段差
部6の電極接触部の端部5aに近接している部分
も錫7の層で覆われている。また表面処理層3x
の局部的欠脱部3x′(例えば溶接時に線電極4に
擦り落されて生成した)も錫7で覆われており、
従つて地鉄の露出がない。 以上はモデル的な電極接触部5の表面の構造を
示したものであつて、通常は第2図、又は第3図
に示される構造をしている。すなわち第2図の場
合は、表面処理層3xは溶融錫と接触して、ごく
薄いクロメート層3cは破壊され、メツキ層3b
のニツケルと溶融錫が合金化して、ニツケル―錫
よりなる合金層3x1を形成し、その中にクロメー
ト破片3c′が混在している。このようにニツケル
―錫合金層で被覆されている場合も、本明細書に
おいては錫で覆われているという。ニツケル―錫
合金は一般にニツケル単独又は錫単独より耐食性
に優れており、しかもこのニツケル―錫合金層3
x1によつて実質的に全面が覆われているので、本
発明の溶接部の電極接触部5は耐食性に優れてい
る。 第3図は供給される溶融錫の量が多い場合の例
を示したものであつて、ニツケル・錫合金層3x1
は局部的にほぼ純粋の錫7によつて覆われてい
る。この場合も電極接触部5は耐食性に優れてい
る。 ここで耐食性とは缶詰に必要な対腐食挙動の事
を意味するものである。特に溶接缶においては溶
接部で鉄が露出し易い。そしてこれは缶体にとつ
て鉄溶出、発錆、孔食などの致命的欠陥となる。
このため、これらに対する耐性を付与する事は缶
体においては重要な事であり、本発明による缶体
はこれらの欠点を改良した高耐食性の缶体とな
る。 以上のような溶接部1を有する本発明の溶接缶
胴体2は、例えば次のようにして製造される。第
4図において、8はニツケルメツキ鋼板3より形
成された円筒状の缶胴成形体であり、9は側面重
ね合せ部である。10は線電極4を支持する電極
ロールである。線電極4(通常銅線よりなる)の
表面(少なくとも側面重ね合せ部9と接触する
面)は、錫層17(通常は電気錫メツキによつて
形成される)によつて被覆されている。マツシユ
シーム抵抗溶接が行なわれるように、対向する1
対の線電極4は、重ね合せ部の両端面9a,9a
の外側まで延びている。 溶接時に重ね合せ部9は、少なくとも900℃以
上に加熱され、同時に圧縮されるのであるが、そ
のさい線電極4上の錫層17の錫が溶融して(錫
の融点は232℃)、電極接触部5の表面処理層3x
の上に移行して、第1図のように表面処理層3x
を覆うか、あるいは第2図、第3図のように表面
処理層3x中のメツキ層3bのニツケルと反応し
て耐食性に優れたニツケル―錫合金層3x1を形成
する。通常は後者の場合が多い。なお線電極4の
表面に錫層17が存在することは、線電極4と重
ね合せ部9間の接触抵抗を減少させるので、後述
の実施例に示すように、スプラツシユ(溶融鉄の
はみ出しや飛沫をいう)を実質的に発生すること
なく溶接できる溶接電流の上限を上昇させる。そ
のため線電極表面に錫層がない場合にみられるよ
うな、溶接部界面にニツケル層が顕著に残留する
(第10図a参照)というような現象が起らず、
溶接部界面が再結晶、拡散して1体化するので、
引裂強度の優れた溶接部1を得ることができると
いう利点をも有する。スプラツシユの発生は溶接
部1の塗料等による補修を困難にし、補修後も局
部的に鉄を露出させて、耐食性を損ね易い。 線電極4上の錫層17の量が約3〜22g/m2
あるとき、好適な電極接触部5の表面が得られ
る。約3g/m2より少ないと、線電極4による電
極接触部5の表面処理層3xの擦り落しが大で、
しかも電極接触部5への溶融錫の移行量が不十分
なため電極接触部5の耐食性が劣るからである。
一方22g/m2より多いと、溶接部と線電極間にス
リツプを生じ易く、全体として残留錫量は増える
ものの、一部に鉄露出部が生じて電極接触部の耐
食性が低下し、また逆に溶接強度の不均一ならび
にコスト高(多量の錫を用いるため)を招くから
である。 本発明のニツケルメツキ鋼板よりなる溶接缶胴
体は、マツシユシーム溶接部の電極接触部の実質
的に全面が錫で覆われているので、溶接部の電極
接触部の耐食性が優れているという効果を有す
る。 次に実施例について説明する。 実施例および比較例 ニツケルメツキ層のメツキ量が0.67g/m2(片
面表示)、クロメート層の厚さが12mg/m2(片面
表示)の厚さ0.24mmのニツケルメツキ鋼板のブラ
ンクより、側面重ね合せ部の幅0.3mmの缶胴成形
体を形成し、この缶胴成形体よりマツシユシーム
溶接部(厚さ0.36mm)を有する。内径65.3mm、高
さ161mmの溶接缶胴体を製造した。 溶接条件は次の通りである。 線電極の幅2.1mm、線電極の錫メツキ量0g/
m2、4.5g/m2、11.2g/m2、速度45m/分、加
圧力50Kg。 溶接電流を変えて、第1表に示すようにスプラ
ツシユの発生しない、かつ溶接部の引裂強度が合
格基準に達することが可能な適正溶接電流を求め
た。
The present invention relates to a welded can body, and more particularly to a welded can body made of nickel-plated steel plate. Recently, nickel plated steel sheets have been proposed as a material for can bodies for storing beverages, coffee, soft drinks, etc. This nickel-plated steel sheet has an electric nickel-plated layer (hereinafter referred to as the nickel-plated layer) on both sides.
is formed, and the amount of plating (displayed on one side) is usually
It is extremely thin at 0.1~2.0g/ m2 , and in order to further improve corrosion resistance, 3~3~3~3% chromium is added on top of each plating layer to further improve corrosion resistance.
A chromate layer of 20 mg/m 2 is formed. In this specification, a surface-treated low carbon steel sheet for can bodies (usually having a thickness of 0.15 to 0.4 mm) having the above layered structure is referred to as a nickel-plated steel sheet. Nickel-plated steel sheets have the advantage of being cheaper and having better paint adhesion than tin-plated steel sheets, which are currently the most common material for can bodies. However, the weldability is inferior, presumably because the surface electrical resistance value is higher than that of tin-plated steel sheets.
The problem is that the corrosion resistance of the welded part is low. In other words, welded can bodies are manufactured by electrifying the overlapping side surfaces of can body molded bodies while pressing them with a pair of electrode rolls via wire electrodes to perform pine seam resistance welding. The plating layer and chromate layer on the electrode contact surface of the welding part may be scraped off by the wire electrode, exposing the base metal locally, or the thickness of the areas where these layers remain may become thinner. Corrosion resistance is impaired. It is an object of the present invention to solve the problems of the prior art described above. In order to achieve the above object, the present invention provides a welded can body having a welded part formed by mating seam resistance welding of the side overlapping part of a can body molded body having a side overlapping part formed of a nickel-plated steel plate, The present invention provides a welded can body characterized in that substantially the entire surface of the electrode contact portion of the welded portion is covered with tin. The present invention will be described below with reference to the drawings. In Fig. 1, 1 is a welded can body formed by pine seam resistance welding of the overlapped side portions (9 in Fig. 4) of a can body formed body (see 8 in Fig. 4) formed from a nickel-plated steel plate 3. This is the welded part of No.2. In the nickel-plated steel plate 3, both surfaces of the low-carbon thin steel plate 3 are coated with a nickel-plated layer 3b on the lower layer and a surface treatment layer 3x made of chromate 3a on the upper surface. 4 is a wire electrode, and 5 is an electrode contact portion. One end 5a of the electrode contact portion 5 is connected to a non-welded portion of the welded can body 2 via a stepped portion 6. The stepped portion 6 is a portion corresponding to the end surface of the side surface overlapping portion, and normally the base metal is exposed. The surface treatment layer 3x is covered with a tin layer 7 over substantially the entire surface of the electrode contact portion 5. Further, a portion of the stepped portion 6 that is close to the end portion 5a of the electrode contact portion is also covered with a layer of tin 7. Also surface treatment layer 3x
The local missing portion 3x' (for example, generated by being scraped off by the wire electrode 4 during welding) is also covered with tin 7,
Therefore, there is no exposure of the subway. The above shows the surface structure of the model electrode contact portion 5, which normally has the structure shown in FIG. 2 or 3. That is, in the case of FIG. 2, the surface treatment layer 3x comes into contact with molten tin, the very thin chromate layer 3c is destroyed, and the plating layer 3b
The nickel and molten tin are alloyed to form a nickel-tin alloy layer 3x1 , in which chromate fragments 3c' are mixed. In this specification, even when the material is coated with a nickel-tin alloy layer, it is referred to as being covered with tin. Nickel-tin alloy generally has better corrosion resistance than nickel alone or tin alone, and this nickel-tin alloy layer 3
Since substantially the entire surface is covered with x 1 , the electrode contact portion 5 of the welded portion of the present invention has excellent corrosion resistance. Fig. 3 shows an example where a large amount of molten tin is supplied, and the nickel/tin alloy layer 3x 1
is locally covered by almost pure tin 7. In this case as well, the electrode contact portion 5 has excellent corrosion resistance. Corrosion resistance here refers to the anti-corrosion behavior required for canned goods. Particularly in welded cans, iron is likely to be exposed at the welded part. This causes fatal defects such as iron elution, rusting, and pitting corrosion for the can body.
Therefore, it is important for the can body to be resistant to these defects, and the can body according to the present invention has a high corrosion resistance that improves these drawbacks. The welded can body 2 of the present invention having the welded portion 1 as described above is manufactured, for example, as follows. In FIG. 4, 8 is a cylindrical can body molded body made of nickel-plated steel plate 3, and 9 is a side surface overlapping portion. 10 is an electrode roll that supports the wire electrode 4. The surface of the wire electrode 4 (usually made of copper wire) (at least the surface in contact with the side overlap portion 9) is coated with a tin layer 17 (usually formed by electro-tinning). 1 facing each other so that pine seam resistance welding is done.
The pair of wire electrodes 4 have both end surfaces 9a, 9a of the overlapping portion.
extends to the outside. During welding, the overlapping portion 9 is heated to at least 900°C or higher and compressed at the same time, and the tin in the tin layer 17 on the wire electrode 4 melts (the melting point of tin is 232°C), causing the electrode to melt. Surface treatment layer 3x of contact portion 5
Transfer to the top of the surface treatment layer 3x as shown in Figure 1.
Alternatively, as shown in FIGS. 2 and 3, a nickel-tin alloy layer 3x 1 having excellent corrosion resistance is formed by reacting with the nickel of the plating layer 3b in the surface treatment layer 3x. Usually the latter is the case. The presence of the tin layer 17 on the surface of the wire electrode 4 reduces the contact resistance between the wire electrode 4 and the overlapping portion 9, so as shown in the examples below, splash ) increases the upper limit of the welding current that can be welded without substantially generating Therefore, the phenomenon that a nickel layer remains noticeably at the weld interface (see Figure 10a), which occurs when there is no tin layer on the surface of the wire electrode, does not occur.
As the weld interface recrystallizes and diffuses into a single body,
It also has the advantage that a welded part 1 with excellent tear strength can be obtained. The occurrence of splash makes it difficult to repair the welded part 1 with paint or the like, and even after repair, the iron is locally exposed, which tends to impair corrosion resistance. A suitable electrode contact 5 surface is obtained when the amount of tin layer 17 on the wire electrode 4 is about 3 to 22 g/m 2 . When it is less than about 3 g/m 2 , the surface treatment layer 3x of the electrode contact portion 5 is rubbed off by the wire electrode 4 to a large extent;
Furthermore, since the amount of molten tin transferred to the electrode contact portion 5 is insufficient, the corrosion resistance of the electrode contact portion 5 is poor.
On the other hand, if the amount is more than 22g/ m2 , slips are likely to occur between the welded part and the wire electrode, and although the amount of residual tin increases overall, iron is exposed in some areas, reducing the corrosion resistance of the electrode contact area, and vice versa. This is because this leads to non-uniform welding strength and high cost (because a large amount of tin is used). The welded can body made of nickel-plated steel plate of the present invention has the effect that the electrode contact part of the welded part has excellent corrosion resistance because substantially the entire surface of the electrode contact part of the pine seam weld is covered with tin. Next, an example will be described. Examples and Comparative Examples From blanks of nickel-plated steel sheets with a thickness of 0.24 mm, the plating amount of the nickel-plated layer is 0.67 g/m 2 (one-sided display) and the chromate layer thickness is 12 mg/m 2 (one-sided display). A can body molded body with a width of 0.3 mm is formed, and a pine seam welded part (thickness 0.36 mm) is formed from this can body molded body. A welded can body with an inner diameter of 65.3 mm and a height of 161 mm was manufactured. Welding conditions were as follows. The width of the wire electrode is 2.1mm, the amount of tin plating on the wire electrode is 0g/
m2 , 4.5g/ m2 , 11.2g/ m2 , speed 45m/min, pressing force 50Kg. By varying the welding current, as shown in Table 1, an appropriate welding current was determined that would not cause splash and would allow the tear strength of the weld to reach the acceptance criteria.

【表】 線電極の錫メツキ量が0のときは適正な溶接電
流はなく、引裂強度良の判定が得られた最低の溶
接電流は273Ampであつた。錫メツキ量が4.5
g/m2のときは、適正溶接電流は2945〜
3007Ampであつたが、11.2g/m2のときは3092
〜3287Ampと電流幅が広がつた。 よつて錫メツキ量が0のとき、錫メツキ量が
4.5g/m2のとき、および11.2g/m2のとき、
夫々溶接電流2739Amp、2945Amp、および
3092Ampで溶接を行ない、組織および耐食性試
験用の溶接缶胴体A,BおよびCを製造した。 錫メツキ量が11.2g/m2(缶胴体C)、および
0(缶胴体A)の線電極を用いて溶接を行なつた
場合の、溶接部断面の電極接触部5近傍の錫のエ
レクトロンプローブマイクロアナライザーX線像
写真を、夫々第5図および第6図に示す。なお第
7図および第8図は、夫々第5図および第6図に
対応する走査電子顕微鏡像(倍率210)である。
第5図(本発明の缶胴体Cを示す)の電極接触部
5における白色部は錫の存在を示す。比較例であ
る缶胴体Aの場合は電極接触部5に錫は検出され
ない。 各溶接缶胴体の溶接部電極接触部の塩水噴霧試
験(5%食塩水×10分)、およびフエロキシル試
験の結果を第2表に示す。
[Table] When the amount of tin plating on the wire electrode was 0, there was no appropriate welding current, and the lowest welding current at which a judgment of good tear strength was obtained was 273 Amp. Tin plating amount is 4.5
g/ m2 , the appropriate welding current is 2945 ~
It was 3007Amp, but at 11.2g/ m2 it was 3092
The current width expanded to ~3287Amp. Therefore, when the amount of tin plating is 0, the amount of tin plating is
When it is 4.5g/ m2 and when it is 11.2g/ m2 ,
Welding current 2739Amp, 2945Amp, and
Welding was performed using a 3092Amp to produce welded can bodies A, B, and C for microstructure and corrosion resistance tests. Electron probe of tin near the electrode contact part 5 of the cross section of the welded part when welding is carried out using wire electrodes with a tin plating amount of 11.2 g/m 2 (can body C) and 0 (can body A) Microanalyzer X-ray images are shown in FIGS. 5 and 6, respectively. Note that FIGS. 7 and 8 are scanning electron microscope images (magnification: 210) corresponding to FIGS. 5 and 6, respectively.
The white portion in the electrode contact portion 5 of FIG. 5 (showing the can body C of the present invention) indicates the presence of tin. In the case of can body A, which is a comparative example, no tin is detected in the electrode contact portion 5. Table 2 shows the results of the salt spray test (5% saline solution x 10 minutes) and the feroxyl test on the welded electrode contact part of each welded can body.

【表】 第9図a,bおよびcに、夫々溶接缶胴体A,
BおよびCの溶接部界面(第1図の12に対応す
る)近傍の金属顕微鏡写真(倍率250、5%ナイ
タール・エツチ)の代表例を示した。溶接電流の
小さい缶胴体Aの場合は、重ね合せ部9の上層と
下層間の界面12が明瞭に着取されるが、溶接電
流が大きい缶胴体Cの場合は界面12に対応する
部分は、熱影響を受けて、拡散の進んだ再結晶組
織部13となり、界面は消失して見えない。缶胴
体Bの場合は、界面12(缶胴体Aほど顕著でな
い)と再結晶組織部13が交互に着取される。 第10図a、および第11図aは、夫々缶胴体
Aおよび缶胴体Bの溶接部界面12近傍のニツケ
ル(Kαの線)のエレクトロンプローブマイクロ
アナライザーX線像写真を示したものである。第
10図bおよび第11図bは夫々、第10図aお
よび第11図bに対応する走査電子顕微鏡像(倍
率400)である。缶胴体Aの場合、界面12にニ
ツケル層が顕著に残留していることが分る。缶胴
体Bの場合は、界面12にニツケル層が若干残留
しているが、再結晶組織部13においてはニツケ
ル層が拡散して、消失していることが分る。缶胴
体Cの場合は、写真は省略したが、界面12に対
応する部分にニツケル層は全く見られなかつた。 缶胴体Aの場合にように、ニツケル層の顕著に
存在する界面12は、溶接部の引裂強度の低下を
招き、またビート部やフランジ部等の加工部にお
いて、内溶液の漏洩を生ずるおそれがある。
[Table] Figures 9a, b and c show welded can bodies A and 9, respectively.
A representative example of a metallurgical micrograph (250 magnification, 5% nital etch) near the weld interface of B and C (corresponding to 12 in Figure 1) is shown. In the case of the can body A, where the welding current is small, the interface 12 between the upper and lower layers of the overlapping portion 9 is clearly attached, but in the case of the can body C, where the welding current is large, the part corresponding to the interface 12 is Under the influence of heat, the recrystallized structure portion 13 becomes highly diffused, and the interface disappears and cannot be seen. In the case of the can body B, the interface 12 (not as pronounced as in the can body A) and the recrystallized structure portion 13 are attached alternately. 10a and 11a show electron probe microanalyzer X-ray images of nickel (Kα line) near the weld interface 12 of can body A and can body B, respectively. Figures 10b and 11b are scanning electron microscope images (400 magnification) corresponding to Figures 10a and 11b, respectively. In the case of can body A, it can be seen that the nickel layer remains significantly at the interface 12. In the case of can body B, it can be seen that although some nickel layer remains at the interface 12, the nickel layer has diffused and disappeared in the recrystallized structure part 13. In the case of can body C, although the photograph is omitted, no nickel layer was observed in the portion corresponding to interface 12. As in the case of can body A, the interface 12 where the nickel layer is prominently present leads to a decrease in the tear strength of the welded part, and there is also a risk of leakage of the internal solution at processed parts such as the bead and flange parts. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の溶接缶胴体を横置した場合の
溶接部近傍の例の縦断面図、第2図、第3図は本
発明の溶接缶胴体の溶接部の他の例の要部縦断面
図、第4図は本発明の溶接缶胴体を製造するため
の缶胴成形体と電極を示す縦断面図、第5図およ
び第6図は夫々、本発明および比較例の溶接缶胴
体の溶接部断面の接触部近傍の錫のエレクトロン
マイクロアナライザーX線像写真、第7図および
第8図は、夫々第5図および第6図に対応する走
査電子顕微鏡像写真、第9図aおよび第9図b,
cは夫々比較例である溶接缶胴体および本発明の
溶接缶胴体の溶接部界面近傍の金属顕微鏡写真、
第10図aおよび第11図aは夫々、第9図aに
対応する比較例である溶接缶胴体、および第9図
bに対応する本発明の缶胴体の溶接部界面近傍の
ニツケルのエレクトロンプローブマイクロアナラ
イザーX線像写真、第10図bおよび第11図b
は夫々、第10図aおよび第11図aに対応する
走査電子顕微鏡像写真である。 1……溶接部、2……溶接缶胴体、3……ニツ
ケルメツキ鋼板、5……電極接触部、7……錫、
8……缶胴成形体、9……側面重ね合せ部。
FIG. 1 is a longitudinal sectional view of an example of the vicinity of the welded part when the welded can body of the present invention is placed horizontally, and FIGS. 2 and 3 are main parts of other examples of the welded part of the welded can body of the present invention. 4 is a vertical sectional view showing a can body formed body and an electrode for manufacturing a welded can body of the present invention, and FIGS. 5 and 6 are welded can bodies of the present invention and a comparative example, respectively. The electron microanalyzer X-ray images of tin near the contact area of the cross section of the weld, FIGS. 7 and 8, are the scanning electron micrographs, FIGS. Figure 9b,
c is a metallurgical micrograph of the welded can body near the weld interface of the welded can body of the comparative example and the welded can body of the present invention, respectively;
10a and 11a show a nickel electron probe near the weld interface of a welded can body as a comparative example corresponding to FIG. 9a and a can body of the present invention corresponding to FIG. 9b, respectively. Microanalyzer X-ray image, Figures 10b and 11b
are scanning electron micrographs corresponding to FIGS. 10a and 11a, respectively. 1... Welded part, 2... Welded can body, 3... Nickel plated steel plate, 5... Electrode contact part, 7... Tin,
8... Can body molded body, 9... Side overlapping portion.

Claims (1)

【特許請求の範囲】[Claims] 1 ニツケルメツキ鋼板より形成された側面重ね
合せ部を有する缶胴成形体の該側面重ね合せ部を
マツシユシーム抵抗溶接してなる溶接部を有する
溶接缶胴体であつて、該溶接部の電極接触部の実
質的に全面が錫で覆われていることを特徴とする
溶接缶胴体。
1. A welded can body having a welded part formed by pine seam resistance welding of the overlapping side part of a can body molded body having an overlapping side part formed of nickel plated steel plate, wherein the substance of the electrode contact part of the welded part is A welded can body characterized by being completely covered with tin.
JP8166783A 1983-05-12 1983-05-12 Welded can body Granted JPS59209490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8166783A JPS59209490A (en) 1983-05-12 1983-05-12 Welded can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8166783A JPS59209490A (en) 1983-05-12 1983-05-12 Welded can body

Publications (2)

Publication Number Publication Date
JPS59209490A JPS59209490A (en) 1984-11-28
JPS632713B2 true JPS632713B2 (en) 1988-01-20

Family

ID=13752683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8166783A Granted JPS59209490A (en) 1983-05-12 1983-05-12 Welded can body

Country Status (1)

Country Link
JP (1) JPS59209490A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710437B2 (en) * 1986-05-21 1995-02-08 東洋製罐株式会社 Matsushimu welding can barrel

Also Published As

Publication number Publication date
JPS59209490A (en) 1984-11-28

Similar Documents

Publication Publication Date Title
JP4303629B2 (en) Resistance welding method of different materials, aluminum alloy material, and resistance welding member of different materials
US4404447A (en) Method of manufacturing a welded can body
JPS632713B2 (en)
JPH05305456A (en) Spot welding electrode excelient in continuous spotability
JP3212136B2 (en) Can body having a welding can body
JPH08209392A (en) Chromium plated steel sheet excellent in high speed continuous weldability
JP2522074B2 (en) Ultra-thin Sn-plated steel sheet for can and method for producing the same
JPH0772332B2 (en) Method for producing alloyed molten zinc plated steel sheet with excellent spot weldability
JPH07164163A (en) Wire for seam welding and seam welding method
JPS6135280B2 (en)
CA2842910C (en) Three-piece resealable can
JPS6324795B2 (en)
JPS6120396B2 (en)
JPS63134695A (en) Tin-free steel sheet for welded can and its production
JPH02156096A (en) Material for very thin welded can having superior seam weldability, adhesion to coating material and corrosion resistant after coating
JP3270731B2 (en) Surface-treated steel sheet for cans excellent in weldability and method for producing welded can using the same
KR840002191B1 (en) Method of manufacturing a welded can body
JP2784710B2 (en) Surface-treated steel sheet for cans excellent in weldability and method for producing welded can using the same
JPS6240993A (en) Wire electrode for seam welding
JPH07132380A (en) Resistance welding method of different kinds of metal and resistance welding material
JPS6318676B2 (en)
JPH02122036A (en) Resistance seam welding electrode wire and its manufacture
JPH061346A (en) Can with welded body
JPS62248575A (en) Manufacture of welding can shell
JPS6092088A (en) Electric resistance seam welding method