JPH08209392A - Chromium plated steel sheet excellent in high speed continuous weldability - Google Patents

Chromium plated steel sheet excellent in high speed continuous weldability

Info

Publication number
JPH08209392A
JPH08209392A JP1457095A JP1457095A JPH08209392A JP H08209392 A JPH08209392 A JP H08209392A JP 1457095 A JP1457095 A JP 1457095A JP 1457095 A JP1457095 A JP 1457095A JP H08209392 A JPH08209392 A JP H08209392A
Authority
JP
Japan
Prior art keywords
welding
steel sheet
chromium
layer
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1457095A
Other languages
Japanese (ja)
Inventor
Toshihiro Kikuchi
利裕 菊地
Kazuo Mochizuki
一雄 望月
Hideo Kukuminato
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1457095A priority Critical patent/JPH08209392A/en
Publication of JPH08209392A publication Critical patent/JPH08209392A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce a chromium plated steel sheet for cylindrical can body, excellent in high speed continuous weldability, by laminating a metallic chromium layer having projections and a chromium hydrated oxide layer on the surface of a steel sheet under respectively specified conditions. CONSTITUTION: A metallic chromium layer of (25 to 200)mg/m<2> is formed on the surface of a steel sheet, and a chromium hydrated oxide layer of (2.5 to 20)mg/m<2> expressed in terms of metallic chromium is formed on the above layer. At this time, the metallic chromium layer is applied so that it is partly formed into projections while continuously coating a substrate Fe layer, and further, the diameter of the base of a projection, the height of the projection from the base, and the existense density of the projections are regulated to 30-50nm, >=10nm, and (1×10<12> to 1×10<15> ) pieces/m<2> , respectively. Moreover, in the region from the outermost surface of the steel sheet as a plating substrate to the position at a depth of 20μm from the outermost surface, C and Mn are incorporated by 0.001-0.18% and 0.10-0.6%, respectively, by average weight percentages. By setting the heat generating velocity in the interface between the sheets at the time of welding to a desirable value, welding operations can be performed in high efficiency, at the time of forming a cylindrical can body by using the chromium plated steel sheet produced by this method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、缶胴溶接用マッシュシ
ーム溶接機等を用いて、長方形ブランクを円筒に形成し
た後、対向する2辺を重ねあわせてシーム溶接し、円筒
缶胴を成形する場合に、缶胴材料として用いられるクロ
ムめっき鋼板に係わり、特に高速連続溶接性に優れたク
ロムめっき鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention forms a cylindrical can body by forming a rectangular blank into a cylinder using a mash seam welding machine for can body welding, and then seam welding by laminating two opposite sides. In this case, the present invention relates to a chrome-plated steel sheet used as a can body material, and particularly to a chrome-plated steel sheet having excellent high-speed continuous weldability.

【0002】[0002]

【従来の技術】一般に、缶用材料の溶接性は、健全な溶
接部を得るのに必要な溶接電流値の管理範囲、即ち溶接
部過熱による溶融金属飛散いわゆるスプラッシュが発生
しない最大限界電流値と、十分な溶接強度が得られる最
低限界電流値の差で定義される溶接可能電流範囲(以下
ACRという)により表される。そして、材料の溶接抵
抗値の分散に伴う溶接条件の許容範囲をこのACRに収
める必要がある。
2. Description of the Related Art Generally, the weldability of a can material is a control range of a welding current value necessary for obtaining a sound weld, that is, a maximum limiting current value at which a so-called splash of molten metal due to overheating of the weld does not occur. , The weldable current range (hereinafter referred to as ACR) defined by the difference between the minimum limiting current values at which sufficient welding strength is obtained. Then, it is necessary to fit the allowable range of the welding condition with the dispersion of the welding resistance value of the material into this ACR.

【0003】従来、このACRについては、特公昭63−
26200 号公報において、クロムめっき層に粒状突起を形
成させ、かつクロム水和酸化物付着量を一定範囲に規制
することにより、連続溶接性を向上させる方法が公知で
ある。この技術は、通常のTFS(Tin Free
Steel)において、最表面に存在する絶縁性のクロ
ム水和酸化物層により、静的接触抵抗が高くなるがため
に溶接部が溶接電流によって過熱されて発生するスプラ
ッシュを抑制する効果を利用したものである。言い換え
れば、上記公知技術はACR拡大のために溶接上限電流
を増加させるものであった。
Conventionally, regarding this ACR, Japanese Patent Publication No. 63-
In Japanese Patent No. 26200, there is known a method of improving continuous weldability by forming granular projections on a chromium plating layer and controlling the amount of chromium hydrate oxide adhered to a certain range. This technology is used for normal TFS (Tin Free).
Steel), which utilizes the effect of suppressing the splash that occurs when the welded portion is overheated by the welding current because the static contact resistance increases due to the insulating chromium hydrated oxide layer existing on the outermost surface. Is. In other words, the above-mentioned known technique increases the welding upper limit current in order to increase the ACR.

【0004】しかし、実際には同一付着量、同一微細構
造のクロムめっき鋼板でも、製造ロットにより溶接電流
下限値がばらつくことを本発明者らは見い出した。すな
わち、この溶接抵抗の変化は、電極加圧力、オーバーラ
ップ幅、塗装焼付け温度および焼付け時間などの溶接条
件を揃え、かつ板厚、粗度、金属クロムおよびクロム水
和酸化物付着量、クロムめっき層微細構造等の材料条件
を揃えてもなお存在する。
However, the present inventors have found that even in the case of a chromium-plated steel sheet having the same amount of deposit and the same fine structure, the lower limit of the welding current actually varies depending on the production lot. In other words, this change in welding resistance is made possible by aligning welding conditions such as electrode pressure, overlap width, coating baking temperature and baking time, and plate thickness, roughness, metal chromium and chromium hydrate oxide adhesion amount, chromium plating. It exists even if the material conditions such as the layer microstructure are aligned.

【0005】従来は、この溶接抵抗のばらつきは不可避
的なものとして、溶接工程におけるロット変更毎の溶接
条件調査を行って、溶接電流や溶接速度を加減すること
により、健全な缶体を製造するよう対処していたが、こ
の調整に要する設備の停止は生産性を大きく阻害するも
のであった。
Conventionally, it is assumed that this variation in welding resistance is unavoidable, and by conducting a welding condition investigation for each lot change in the welding process and adjusting the welding current and welding speed, a sound can body is manufactured. However, the stoppage of the equipment required for this adjustment greatly hinders productivity.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述の、従
来は不可避的なものとされていた、クロムめっき鋼板の
溶接電流下限値のロットによるばらつきを小さくし、板
/板界面発熱速度を高め、缶胴溶接設備における溶接電
流管理を容易にすることができる、高速連続溶接性に優
れたクロムめっき鋼板を提供することを目的とするもの
である。
DISCLOSURE OF THE INVENTION The present invention reduces the variation in the lower limit of the welding current of chromium-plated steel sheets, which has been considered inevitable in the past, depending on the lot, and reduces the plate / plate interface heat generation rate. It is an object of the present invention to provide a chrome-plated steel sheet which is excellent in high-speed continuous weldability and which can enhance the control of the welding current in the can body welding equipment.

【0007】[0007]

【課題を解決するための手段】本発明は、缶胴溶接機を
用いて、重ね合わせシーム溶接により溶接缶胴に形成さ
れるクロムめっき鋼板であって、鋼板表面に25〜200mg/
m2の金属クロム層とさらにその上に金属クロム換算で2.
5 〜200mg/m2のクロム水和酸化物層を持ち、該金属クロ
ム層は下地Fe層を連続的に被覆しつつその一部が突起
しており、突起部の基底部直径30〜50nm、基底部からの
高さが10nm以上、突起部の存在密度が1×1012〜1 ×10
15個/m2であり、めっき下地としての鋼板の最表面から
深さ20μmまでの領域中の平均重量百分率としてC0.00
1 〜0.18%、Mn0.10〜0.6 %を含有することを特徴とす
る高速連続溶接性に優れたクロムめっき鋼板である。
The present invention is a chrome-plated steel sheet formed on a welded can body by lap seam welding using a can body welding machine, wherein the surface of the steel plate is 25 to 200 mg /
m 2 metallic chrome layer and further on it in terms of metallic chrome 2.
5 to 200 mg / m 2 of a hydrated chromium oxide layer, the metallic chrome layer has a part thereof protruding while continuously covering the underlying Fe layer, and the base diameter of the protruding portion is 30 to 50 nm, Height from the base is 10 nm or more, and the density of protrusions is 1 × 10 12 to 1 × 10
15 pieces / m 2, which is C0.00 as an average weight percentage in the region from the outermost surface of the steel plate as a plating base to a depth of 20 μm.
It is a chromium-plated steel sheet excellent in high-speed continuous weldability, characterized by containing 1 to 0.18% and Mn 0.10 to 0.6%.

【0008】[0008]

【作用】本発明者らは、クロムめっき鋼板の溶接時の板
/板界面溶接抵抗の挙動を研究することによって、鋼板
組成と界面溶接抵抗の増加速度の関係を発見し、本発明
をなすに至った。図1に、板厚0.32mm、鋼種、粗度同一
で、金属クロム付着量100mg/m2、また該金属クロム層が
下地Fe層を連続的に被覆しつつその一部が突起してお
り、突起部の平均基底部直径200nm 、基底部からの平均
高さが100nm 以上、突起部の存在密度が2 ×1013個/
m2、クロム水和酸化物付着量が金属クロム換算でそれぞ
れ2.5 mg/m2 、10mg/m2 、25 mg/
2 、原板最表層から20μm の範囲の平均組成でC:0.
02%、Mn:0.3 %のめっき鋼板について、動的接触抵
抗測定法により測定した材料の板/板界面の溶接抵抗
(動的接触抵抗)を示す。なお、動的接触抵抗の測定
は、本発明者らが日本鉄鋼協会発行の「材料とプロセ
ス」第4巻第1616頁に発表した方法に従った。具体的に
は、この測定法は、コンデンサから放電される電流をパ
ワートランジスタで制御して、極短時間の直流パルスを
得、それを溶接電流としてマイクロスポット溶接する際
の溶接抵抗の時間的変化を測定するものであり、マッシ
ュシーム溶接における単一溶接ナゲットの形成時間と同
等な時間範囲での被溶接材料の界面抵抗の変化を直接測
定でき、溶接初期抵抗と溶接完了時の抵抗の値の比較に
より材料の連続溶接性を判定できる。溶接完了抵抗より
も初期抵抗が低いほど、また溶接進行に伴う抵抗増加勾
配が緩やかなほど連続溶接性は良好である。
The present inventors discovered the relationship between the steel plate composition and the increase rate of the interfacial welding resistance by studying the behavior of the plate / plate interfacial welding resistance during welding of chrome-plated steel plates, and made the present invention. I arrived. In FIG. 1, the plate thickness is 0.32 mm, the steel type is the same, the roughness is the same, the amount of metal chromium deposited is 100 mg / m 2 , and the metal chromium layer continuously covers the underlying Fe layer, and a part of it protrudes, The average base diameter of the protrusions is 200 nm, the average height from the base is 100 nm or more, and the density of protrusions is 2 × 10 13 /
m 2 and chromium hydrate oxide adhesion amount are 2.5 mg / m 2 , 10 mg / m 2 and 25 mg / m 2 respectively in terms of metallic chromium.
m 2 and C: 0 with an average composition in the range of 20 μm from the outermost layer of the original plate.
The welding resistance (dynamic contact resistance) of the plate / plate interface of the material measured by the dynamic contact resistance measuring method for the plated steel sheet with 02% and Mn: 0.3% is shown. The dynamic contact resistance was measured according to the method disclosed by the present inventors in “Materials and Processes”, Volume 4, page 1616, published by the Iron and Steel Institute of Japan. Specifically, this measurement method controls the current discharged from the capacitor with a power transistor to obtain a DC pulse for an extremely short time, and uses it as the welding current to change the welding resistance with time when performing micro spot welding. It is possible to directly measure the change in the interfacial resistance of the material to be welded in the time range equivalent to the formation time of a single weld nugget in mash seam welding, and to measure the initial welding resistance and the resistance value at the completion of welding. The continuous weldability of materials can be determined by comparison. The continuous weldability is better as the initial resistance is lower than the welding completion resistance and the resistance increase gradient with the progress of welding is gentle.

【0009】溶接初期抵抗を見ると、クロム水和酸化物
付着量が少ないほど小さくなっている。図1の溶接終点
付近の抵抗は、溶接の完了した高温の鉄のバルク抵抗で
あり、初期抵抗は低温の材料の界面接触抵抗を示すので
あるから、この図から、実際の溶接時のローラ電極直下
の材料の接合界面の溶接ナゲット形成部付近の電気抵抗
分布を考察すると、缶胴の溶接電流は交流波であるの
で、ナゲットは間欠的に形成されるが、図1で初期抵抗
が溶接完了時の抵抗に比べて低い材料ほど、先行する一
つ前の既製ナゲットに比べて、新しくローラに噛み込ま
れた未溶接界面の方が抵抗が低くなり、その部分に溶接
電流が流れ、新しいナゲットが順次形成されていくこと
が容易に推測できる。逆に図2の溶接初期抵抗が溶接完
了時の抵抗より高ければ、実際の溶接では、溶接電流は
最も抵抗の低い先行ナゲットに流れるために、先行ナゲ
ットは過熱によりブローホールを形成し、本来新規ナゲ
ットが形成されるべき部分はコールドスポットとして残
る。さらに次の溶接電流ピークではコールドスポットと
新規噛み込み部との抵抗配分によりその間の部分に溶接
ナゲットが形成されるが、その次のピークでは上記と同
様に溶接欠陥が生じ、健全な溶接を行うことは困難であ
る。
Looking at the initial resistance of welding, the smaller the amount of hydrated chromium oxide deposited, the smaller it becomes. The resistance in the vicinity of the welding end point in FIG. 1 is the bulk resistance of high-temperature iron that has completed welding, and the initial resistance represents the interfacial contact resistance of the low-temperature material. Considering the electrical resistance distribution in the vicinity of the weld nugget formation part of the joint interface of the material immediately below, the welding current in the can body is an AC wave, so the nugget is formed intermittently, but in Figure 1 the initial resistance is welded The lower the material's resistance is, the lower the resistance of the unwelded interface that is newly bitten by the roller compared to the preceding previous nugget, and the welding current flows in that area, creating a new nugget. It can be easily inferred that the layers are sequentially formed. On the contrary, if the initial welding resistance in FIG. 2 is higher than the resistance at the time of completion of welding, in actual welding, the welding current flows to the preceding nugget with the lowest resistance, so the preceding nugget forms a blowhole due to overheating, which is originally new. The part where the nugget should be formed remains as a cold spot. At the next welding current peak, a weld nugget is formed in the area between the cold spot and the new bite due to the resistance distribution between the cold spot and the new bite portion, but at the next peak, a welding defect occurs similarly to the above, and sound welding is performed. Is difficult.

【0010】上述の理由により、本発明のクロム水和酸
化物量の上限は金属クロム換算で20mg/m2 に限定される
のであるが、これによりナゲットの連続溶接性は確保さ
れるが、ACRを決定する要因は、上記の抵抗分布のみ
ではない。ACRを広げるには、溶接電流の上限値を増
加させるか、下限値を引き下げるかの2つの方法があ
る。Snめっき鋼板などでは、Sn層が溶接途中で溶解した
時点で溶接電流経路断面積が増加し、溶接抵抗が減少す
ることで過熱を防止し、溶接上限電流を引き上げてい
る。これに対して、本発明者らは、溶接電流下限値を決
定する要因について鋭意研究を重ね、本発明をなすに至
った。
For the above-mentioned reason, the upper limit of the amount of hydrated chromium oxide of the present invention is limited to 20 mg / m 2 in terms of metallic chromium, which ensures the continuous weldability of the nugget, but does not increase ACR. The above-mentioned resistance distribution is not the only determining factor. There are two methods for increasing the ACR: increasing the upper limit value of the welding current or lowering the lower limit value. In Sn-plated steel sheets, the welding current path cross-sectional area increases when the Sn layer melts during welding, and the welding resistance decreases, preventing overheating and increasing the welding upper limit current. On the other hand, the present inventors have earnestly studied the factors that determine the lower limit value of the welding current, and completed the present invention.

【0011】図2に、板厚0.32mm、鋼種、粗度同一で、
金属クロム付着量100mg/m2、また該金属クロム層が下地
Fe層を連続的に被覆しつつその一部が突起しており、
突起部の平均基底部直径200nm 、基底部からの平均高さ
が100nm 以上、突起部の存在密度が2 ×1013個/m2、ク
ロム水和酸化物付着量が金属クロム換算で7mg/m2で、原
板の表面から20μm の範囲の平均組成が表1の通りのク
ロムめっき鋼板について、図1と同条件で動的接触抵抗
を測定した結果を示す。
FIG. 2 shows that the plate thickness is 0.32 mm, the steel type and the roughness are the same,
The amount of metallic chromium deposited is 100 mg / m 2 , and the metallic chromium layer continuously covers the underlying Fe layer and a part of it is protruding,
Average base diameter of protrusions is 200 nm, average height from the base is 100 nm or more, density of protrusions is 2 × 10 13 pieces / m 2 , and chromium hydrate oxide adhesion is 7 mg / m in terms of metallic chromium. In Table 2, the results of measuring the dynamic contact resistance of the chromium-plated steel sheet having an average composition in the range of 20 μm from the surface of the original sheet as shown in Table 1 under the same conditions as in FIG. 1 are shown.

【0012】[0012]

【表1】 [Table 1]

【0013】原板組成中のCおよびMnの増加に伴い、
溶接抵抗の増加勾配が大きくなることがわかる。クロム
めっき鋼板の場合、酸化膜厚および金属クロム隆起構造
が同一ならば、酸化膜破壊による溶接電流経路断面積の
変化の結果として生じる溶接抵抗の減少速度は同一とみ
なせるので、図2の溶接抵抗の増加は、めっき層のクロ
ムおよび地鉄の温度上昇に伴う抵抗増を反映していると
考えられる。これより鋼板表層のCおよびMn濃度によ
り溶接時の発熱速度を制御できることがわかる。
With the increase of C and Mn in the composition of the original plate,
It can be seen that the increasing gradient of welding resistance increases. In the case of a chrome-plated steel sheet, if the oxide film thickness and the metallic chromium ridge structure are the same, the reduction rate of the welding resistance that occurs as a result of the change in the welding current path cross-sectional area due to oxide film destruction can be regarded as the same. It is considered that the increase in γ reflects the increase in resistance due to the increase in the temperature of chromium and base iron in the plating layer. From this, it is understood that the heat generation rate during welding can be controlled by the C and Mn concentrations of the steel sheet surface layer.

【0014】ところが、鉄鋼便覧第3版第1巻第311 頁
によれば通常鋼中の微量元素による鋼の比抵抗はρ=ρ
0 +αC{ρ0 :純物質の電気抵抗率、C:不純物の原
子百分率、α: 5.9μΩcm(Mn)}である。ここで溶接
途上の温度、例えば505.1 Kで25μΩcmの電気抵抗率を
もつ純鉄について、Mnの含有率が0.4 wt%と0.2 wt%に
変化したとしても、極微量では原子百分率≒重量百分率
とみなせるので電気抵抗率は{(5.9 ×0.2 /100 )/
25}×100 =0.047 %変化するだけであり、C濃度につ
いてもまた同様であって、到底図1の各試料の抵抗増加
率勾配の差の原因とはなり得ない。
However, according to the Iron and Steel Handbook, 3rd Edition, Volume 1, Page 311, the specific resistance of steel due to trace elements in ordinary steel is ρ = ρ
0 + αC {ρ 0 : electrical resistivity of pure substance, C: atomic percentage of impurities, α: 5.9 μΩcm (Mn)}. Here, even if the Mn content changes to 0.4 wt% and 0.2 wt% for pure iron having an electric resistivity of 25 μΩcm at the temperature during welding, for example, 505.1 K, it can be regarded as atomic percentage ≒ weight percentage in the trace amount. Therefore, the electrical resistivity is {(5.9 × 0.2 / 100) /
25} × 100 = 0.047% only, and the same applies to the C concentration, which cannot be the cause of the difference in the resistance increase rate gradient of each sample in FIG.

【0015】すなわち、本発明者らは、従来知られてい
なかった鋼中のCおよびMnの板/板界面溶接抵抗への
影響を発見したことになる。本発明者らはこの溶接抵抗
への鋼中成分の影響について調査した結果、以下の知見
を得た。即ち、溶接時の界面抵抗を上昇させるために
は、めっき下地としての鋼板の最表面から20μmまでの
領域中の平均重量百分率としてC0.001 〜0.18%、Mn0.
10〜0.6 %を含むことが必要である。鋼の平均組成とし
て上記元素が上記範囲にあっても、鋼板の最表面から深
さ20μmまでの領域中の平均重量百分率として上記範囲
を逸脱した場合は、上記の効果は得られない。鋼板の最
表面から深さ20μmまでの領域中で組成の平均が上記範
囲を満たさなければ、溶接抵抗の上昇による発熱速度上
昇は得られない。また、上記範囲を越えてもその効果は
飽和する。この現象の原因については、明らかではない
が、表面に濃化する鋼中成分により界面抵抗が変化する
ためと考えられる。いずれにしても、このことから、鋼
中のCとともにMnの含有量を制御することで、板/板界
面の溶接抵抗上昇速度即ち昇温速度の制御ができること
が分かる。
That is, the inventors of the present invention have discovered the influence of C and Mn in steel, which has not hitherto been known, on the plate / plate interface welding resistance. The present inventors have obtained the following findings as a result of investigating the influence of the components in the steel on the welding resistance. That is, in order to increase the interfacial resistance at the time of welding, C0.001 to 0.18% as the average weight percentage in the region from the outermost surface of the steel sheet as the plating base to 20 μm, Mn0.
It is necessary to contain 10 to 0.6%. Even if the above elements are in the above range as the average composition of steel, if the average weight percentage in the region from the outermost surface of the steel sheet to a depth of 20 μm deviates from the above range, the above effects cannot be obtained. If the average composition does not satisfy the above range in the region from the outermost surface of the steel sheet to a depth of 20 μm, increase in heat generation rate due to increase in welding resistance cannot be obtained. Further, even if it exceeds the above range, the effect is saturated. The cause of this phenomenon is not clear, but it is considered that the interface resistance changes due to the steel composition that concentrates on the surface. In any case, it can be seen from this that by controlling the content of Mn together with C in the steel, the rate of increase in welding resistance at the plate / plate interface, that is, the rate of temperature rise can be controlled.

【0016】本発明のクロムめっき鋼板は、従来クロム
水和酸化物付着量や金属クロムの表面微細構造の調整に
より管理されていた溶接抵抗について、従来の方法では
制御不可能とされたクロムめっき鋼板製造ロットによる
分散に着目し、めっき層付着量とめっき層構造が一定の
範囲にあるクロムめっき鋼板について、鋼板中のCおよ
びMn含有量を、一定範囲に管理することにより、一つ
の溶接ナゲットの形成に際しての界面の溶接電流抵抗値
の上昇速度を制御するものである。それにより溶接時の
板/板界面の発熱速度を望ましい値に設定できるように
なり、上述の下限電流値と上限電流値を材料設計により
設定可能になる。
The chromium-plated steel sheet of the present invention is a chromium-plated steel sheet which cannot be controlled by the conventional method with respect to the welding resistance conventionally controlled by adjusting the amount of hydrated chromium oxide and the fine surface structure of metallic chromium. Focusing on dispersion by manufacturing lot, for chromium-plated steel sheets with a coating layer adhesion amount and plating layer structure within a certain range, by controlling the C and Mn contents in the steel sheet within a certain range, one weld nugget The rate of increase in the welding current resistance value at the interface during formation is controlled. Thereby, the heat generation rate of the plate / plate interface during welding can be set to a desired value, and the above-mentioned lower limit current value and upper limit current value can be set by material design.

【0017】本発明のクロムめっき鋼板は、鋼板表面に
25〜200mg/m2の金属クロム層とさらにその上に金属クロ
ム換算で2.5 〜20mg/m2 のクロム水和酸化物層を持ち、
該金属クロム層は下地Fe層を連続的に被覆しつつその
一部が突起しており、突起部の基底部直径30〜500nm 、
基底部からの高さが10nm以上、突起部の存在密度が1×1
012〜1 ×1015個/m2であり、めっき下地としての鋼板
の最表面から深さ20μmまでの領域中の平均重量百分率
としてC0.001 〜0.18%、Mn0.10〜0.6 %を含有する高
速連続溶接性に優れたクロムめっき鋼板である。
The chrome-plated steel sheet of the present invention has
25 to 200 mg / m 2 of metallic chromium layer and further reckoned as metal chromium thereon of 2.5 to 20 mg / m 2 has a hydrated chromium oxide layer,
The metal chrome layer has a part thereof protruding while continuously covering the underlying Fe layer, and the base diameter of the protruding part is 30 to 500 nm,
Height from the base is 10 nm or more, and the density of protrusions is 1 x 1
0 12 to 1 × 10 15 pieces / m 2 and contains C0.001 to 0.18% and Mn0.10 to 0.6% as an average weight percentage in the region from the outermost surface of the steel sheet as a plating base to a depth of 20 μm. It is a chrome-plated steel sheet with excellent high-speed continuous weldability.

【0018】金属クロム付着量が25 mg/m2 未満で
は、金属クロムによる下地の被覆が十分ではなく、耐錆
性、塗料密着性が不十分である。逆に200mg/m2を超えて
も、塗料密着性のさらなる改善効果は望めず、生産設備
も過大となり意味がない。クロム水和酸化物付着量が金
属クロム換算で2.5mg/m2 未満では塗料密着性が不十
分であり、20mg/m2 を超えると、溶接初期抵抗が高くな
り過ぎ、溶接性を阻害するので好ましくない。金属クロ
ムめっき層の突起部の基底部直径30nm未満でも、またそ
の高さが10nm未満でも、さらに突起部の存在密度が1 ×
1012個/m2未満でも、溶接時の酸化膜の破壊による溶接
抵抗低減効果が不十分である。基底部の直径が500nm を
超えても、また突起部の存在密度が1 ×1015個/m2を超
えても、溶接時の酸化膜の破壊による溶接抵抗低減効果
は飽和し、また、表面色調が暗くなるので好ましくな
い。
If the amount of metallic chromium deposited is less than 25 mg / m 2 , the underlying coating with metallic chromium is not sufficient, and the rust resistance and paint adhesion are insufficient. On the other hand, if it exceeds 200 mg / m 2 , further improvement in paint adhesion cannot be expected, and there is no point in producing too much production equipment. If the amount of chromium hydrate oxide adhered is less than 2.5 mg / m 2 in terms of metal chromium, the paint adhesion is insufficient, and if it exceeds 20 mg / m 2 , the initial welding resistance becomes too high and weldability is impaired. Not preferable. Even if the diameter of the base of the protrusion of the metal chromium plating layer is less than 30 nm, and the height thereof is less than 10 nm, the density of protrusions is 1 ×.
Even if it is less than 10 12 pieces / m 2 , the effect of reducing the welding resistance due to the destruction of the oxide film during welding is insufficient. Even if the diameter of the base exceeds 500 nm and the density of protrusions exceeds 1 × 10 15 pieces / m 2 , the effect of reducing the welding resistance due to the destruction of the oxide film during welding is saturated, and the surface It is not preferable because the color tone becomes dark.

【0019】鋼中のC量およびMn量は、鋼板の最表面
から深さ20μmまでの領域中の平均重量百分率としてC
0.001 〜0.18%、Mn0.10〜0.6 %に限定される。これら
の元素が下限未満では界面溶接抵抗の制御に寄与するの
に不十分である。また、これらの元素が上限を超えて
も、その溶接界面抵抗の制御効果は飽和し、通常缶用鋼
板として要求される機械的性質を付与するに際し、熱処
理時間や圧延圧下率などに制約が生じるので好ましくな
い。
The C content and Mn content in the steel are C as the average weight percentage in the region from the outermost surface of the steel sheet to a depth of 20 μm.
It is limited to 0.001 to 0.18% and Mn 0.10 to 0.6%. If these elements are less than the lower limits, they are insufficient to contribute to the control of interfacial welding resistance. Further, even if these elements exceed the upper limit, the effect of controlling the weld interface resistance is saturated, and when imparting the mechanical properties normally required for steel sheet for cans, there are restrictions on the heat treatment time, rolling reduction, etc. It is not preferable.

【0020】また、本発明では、クロムめっき鋼板のク
ロムめっき層の上に、防錆あるいは潤滑のために適宜有
機物被覆を最表層として施すこともできる。
Further, in the present invention, an organic coating may be appropriately applied as the outermost layer on the chrome-plated layer of the chrome-plated steel sheet for rust prevention or lubrication.

【0021】[0021]

【実施例】以下に本発明の具体的な実施例を、比較例と
共に示す。 〔実施例1〜4、比較例1〜4〕表2に示す板厚、粗
度、クロムめっき付着量、鋼中C、Mn量の鋼板につい
て、210 ℃×20分の熱処理の後、前述の動的接触抵抗測
定装置で動的接触抵抗を測定した。
EXAMPLES Specific examples of the present invention will be shown below together with comparative examples. [Examples 1 to 4 and Comparative Examples 1 to 4] Regarding the steel plates having the plate thickness, roughness, chrome plating adhesion amount, C in steel and Mn amount shown in Table 2, after heat treatment at 210 ° C. for 20 minutes, The dynamic contact resistance was measured with a dynamic contact resistance measuring device.

【0022】溶接電流は3kA、6msecの矩形波パルス、
電極径は1.2mm 、電極加圧力は60kgf であった。実施例
のクロムめっき鋼板はいずれも、鋼中最表層20μmの平
均Mn、C濃度を本発明の一定範囲内に制御することで、
各比較例に比べて板/板界面溶接抵抗上昇速度が大きく
なっている。
Welding current is 3kA, square wave pulse of 6msec,
The electrode diameter was 1.2 mm and the electrode pressure was 60 kgf. In each of the chrome-plated steel sheets of the examples, by controlling the average Mn and C concentrations of the outermost layer 20 μm in the steel within the fixed range of the present invention,
The plate / plate interface welding resistance increase rate is higher than that of each comparative example.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明により、缶胴溶接用マッシュシー
ム溶接機等を用いて、長方形ブランクを円筒に成形した
後、対向する2辺を重ねあわせてシーム溶接し、円筒缶
胴を成形する場合に、缶胴材料として用いられるクロム
めっき鋼板について、溶接時の板/板界面の発熱速度を
望ましい値に設定できるようになり、溶接抵抗の分散を
小さくすることで溶接電流の設定が容易になり、溶接作
業の効率化が達成される。
According to the present invention, when a rectangular blank is formed into a cylinder by using a mash seam welding machine for can body welding and the like, and two opposite sides are overlapped and seam welded to form a cylindrical can body. In addition, for chrome-plated steel sheets used as can body materials, the heat generation rate at the plate / plate interface during welding can be set to a desirable value, and the welding current can be set easily by reducing the dispersion of welding resistance. , The efficiency of welding work is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】板/板界面の動的接触抵抗の測定結果を示すグ
ラフ。
FIG. 1 is a graph showing measurement results of dynamic contact resistance at a plate / plate interface.

【図2】板/板界面の動的接触抵抗の測定結果を示すグ
ラフ。
FIG. 2 is a graph showing the measurement results of the dynamic contact resistance at the plate / plate interface.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 缶胴溶接機を用いて、重ね合わせシーム
溶接により溶接缶胴に形成されるクロムめっき鋼板であ
って、鋼板表面に25〜200mg/m2の金属クロム層とさらに
その上に金属クロム換算で2.5 〜20mg/m2 のクロム水和
酸化物層を持ち、該金属クロム層は下地Fe層を連続的
に被覆しつつその一部が突起しており、突起部の基底部
直径30〜50nm、基底部からの高さが10nm以上、突起部の
存在密度が1 ×1012〜1 ×1015個/m2であり、めっき下
地としての鋼板の最表面から深さ20μmまでの領域中の
平均重量百分率としてC0.001 〜0.18%、Mn0.10〜0.6
%を含有することを特徴とする高速連続溶接性に優れた
クロムめっき鋼板。
1. A chrome-plated steel sheet formed on a welding can body by lap seam welding using a can body welding machine, wherein a metal chrome layer of 25 to 200 mg / m 2 is formed on the surface of the steel plate, and further thereon. It has a hydrated chromium oxide layer of 2.5 to 20 mg / m 2 in terms of metallic chromium, and the metallic chromium layer continuously covers the underlying Fe layer and partially protrudes. 30 to 50 nm, the height from the base is 10 nm or more, the density of protrusions is 1 × 10 12 to 1 × 10 15 pieces / m 2 , and the depth from the outermost surface of the steel sheet as a plating base to 20 μm C0.001 to 0.18%, Mn0.10 to 0.6 as the average weight percentage in the region
%, A chrome-plated steel sheet with excellent high-speed continuous weldability.
JP1457095A 1995-01-31 1995-01-31 Chromium plated steel sheet excellent in high speed continuous weldability Pending JPH08209392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1457095A JPH08209392A (en) 1995-01-31 1995-01-31 Chromium plated steel sheet excellent in high speed continuous weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1457095A JPH08209392A (en) 1995-01-31 1995-01-31 Chromium plated steel sheet excellent in high speed continuous weldability

Publications (1)

Publication Number Publication Date
JPH08209392A true JPH08209392A (en) 1996-08-13

Family

ID=11864824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1457095A Pending JPH08209392A (en) 1995-01-31 1995-01-31 Chromium plated steel sheet excellent in high speed continuous weldability

Country Status (1)

Country Link
JP (1) JPH08209392A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098994A1 (en) * 2015-12-11 2017-06-15 Jfeスチール株式会社 Steel sheet for cans and production method for steel sheet for cans
WO2017098991A1 (en) * 2015-12-11 2017-06-15 Jfeスチール株式会社 Steel sheet for cans and production method for steel sheet for cans
JP2020200533A (en) * 2019-06-06 2020-12-17 Jfeスチール株式会社 Steel sheet for can and production method thereof
JP7239087B1 (en) * 2021-12-28 2023-03-14 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
WO2023127236A1 (en) * 2021-12-28 2023-07-06 Jfeスチール株式会社 Can steel sheet and method for producing same
WO2023127237A1 (en) * 2021-12-28 2023-07-06 Jfeスチール株式会社 Can steel sheet and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098994A1 (en) * 2015-12-11 2017-06-15 Jfeスチール株式会社 Steel sheet for cans and production method for steel sheet for cans
WO2017098991A1 (en) * 2015-12-11 2017-06-15 Jfeスチール株式会社 Steel sheet for cans and production method for steel sheet for cans
JPWO2017098991A1 (en) * 2015-12-11 2017-12-14 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JPWO2017098994A1 (en) * 2015-12-11 2017-12-21 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
CN108368616A (en) * 2015-12-11 2018-08-03 杰富意钢铁株式会社 Steel plate for tanks and its manufacturing method
TWI634984B (en) * 2015-12-11 2018-09-11 Jfe鋼鐵股份有限公司 Steel sheet for can and manufacturing method therefor
US10753005B2 (en) 2015-12-11 2020-08-25 Jfe Steel Corporation Steel sheet for cans and production method for steel sheet for cans
US10914016B2 (en) 2015-12-11 2021-02-09 Jfe Steel Corporation Steel sheet for cans and production method for steel sheet for cans
JP2020200533A (en) * 2019-06-06 2020-12-17 Jfeスチール株式会社 Steel sheet for can and production method thereof
JP7239087B1 (en) * 2021-12-28 2023-03-14 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
WO2023127236A1 (en) * 2021-12-28 2023-07-06 Jfeスチール株式会社 Can steel sheet and method for producing same
WO2023127237A1 (en) * 2021-12-28 2023-07-06 Jfeスチール株式会社 Can steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH08209392A (en) Chromium plated steel sheet excellent in high speed continuous weldability
WO1995013898A1 (en) Resistance welding method for steel metal plates and aluminum metal plates and material for resistance welding
JP3212136B2 (en) Can body having a welding can body
JPH08209358A (en) Surface treated steel sheet having excellent high-speed continuous weldability
JPH07164163A (en) Wire for seam welding and seam welding method
JPS6324797B2 (en)
JPH0772332B2 (en) Method for producing alloyed molten zinc plated steel sheet with excellent spot weldability
JPH08209302A (en) Tin plated steel sheet excellent in high speed continuous weldability
JPS6131198B2 (en)
JP2784710B2 (en) Surface-treated steel sheet for cans excellent in weldability and method for producing welded can using the same
JPH089104B2 (en) Resistance welding method for steel sheet
JPS6234682A (en) Welding method for can stock
JP3270731B2 (en) Surface-treated steel sheet for cans excellent in weldability and method for producing welded can using the same
Jud Joining galvanized and galvannealed steels
JPS63134695A (en) Tin-free steel sheet for welded can and its production
JP2003200269A (en) Method of spot welding of high tensile zinc electroplated steel plate
JP3225088B2 (en) Chrome plated steel plate for welding cans
JPH07197278A (en) Galvannealed steel sheet having excellent spot weldability
JP3225089B2 (en) Chrome plated steel plate for welding cans
JP3153001B2 (en) Can body having a welding can body
JPS59209490A (en) Welded can body
JPH1192989A (en) Surface treated steel sheet excellent in seam weldability
JPH07197277A (en) Galvanized steel sheet having excellent spot weldability
JPH02255282A (en) Wire for seam welding and seam welding method
JPH07258886A (en) Electrogalvannealed steel sheet excellent in spot weldability