JPS6234682A - Welding method for can stock - Google Patents

Welding method for can stock

Info

Publication number
JPS6234682A
JPS6234682A JP60174372A JP17437285A JPS6234682A JP S6234682 A JPS6234682 A JP S6234682A JP 60174372 A JP60174372 A JP 60174372A JP 17437285 A JP17437285 A JP 17437285A JP S6234682 A JPS6234682 A JP S6234682A
Authority
JP
Japan
Prior art keywords
welding
tin
electric resistance
steel
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60174372A
Other languages
Japanese (ja)
Inventor
Moriaki Ono
守章 小野
Makoto Kabasawa
樺沢 真事
Kiyokazu Nakada
清和 仲田
Shigechika Kosuge
小菅 茂義
Itaru Watanabe
渡邊 之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60174372A priority Critical patent/JPS6234682A/en
Publication of JPS6234682A publication Critical patent/JPS6234682A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To perform the electric resistance welding of various stocks for can starting with a tin free steel by irradiating a laser beam on the surface of the overlapping part of the welding zone in advance prior to the welding. CONSTITUTION:The welding is performed by irradiating a laser beam in advance on the whole part or one part of a steel sheet-steel sheet contact faces, 6, 7 and steel sheet-welding electrode contact faces 5, 8 in case of the electric resistance welding of the can stock like the tin-free steel coating with an extremely thin chrome plating on the steel sheet surface. By this laser irradiation, the chrome oxide layer 1 and metallic chrome layer 2 on the surface of the welding zone are completely removed with evaporation or alloyed with the surface material and yet the produced ultrafine powder is completely removed. The electric resistance welding for various can stocks including the tin free steel which was regarded as impossible in the past can therefore be performed easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、缶用素材の溶接方法に関し、特に電気抵抗溶
接性に劣る缶用素材の電気抵抗溶接にあたっての前処理
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for welding can materials, and particularly to a pretreatment method for electric resistance welding of can materials having poor electric resistance weldability.

〔従来の技術〕[Conventional technology]

従来より缶用素材としては、半田付は缶用ブリキ(錫付
着量2.8g/lrl″以上)及びティンフリースチー
ルが主流を占めているが、近年、錫付着量を従来の半田
付は缶用ブリキより低減した薄メツキブリキあるいはニ
ッケルを代表とする錫以外の金属をメッキした素材及び
錫と錫以外の金属とを2W1類あるいは3種類組合せて
メッキした各種の新素材が開発されている。
Traditionally, tinplate for cans (tin coating amount of 2.8 g/lrl" or more) and tin-free steel have been the mainstream materials for cans, but in recent years, the amount of tin deposited has been A variety of new materials have been developed, including thinner plated tinplate that is thinner than standard tinplate, materials plated with metals other than tin such as nickel, and materials plated with 2W1 or a combination of three types of tin and metals other than tin.

このうち、例えばティンフリースチールとは、鋼板表面
に極めて薄いクロムメッキを施したものを指し、耐食性
、塗装性が良好でかつ安価であるなめ、半田付は缶用ブ
リキ(錫付着量2.8g/m゛以上)にかわる缶用素材
として大幅に需要が増大している。しかしながら、ティ
ンフリースチールの電気抵抗溶接性が極めて悪いためそ
の適用対象が制限されており、今後、一層の用途拡大を
図るには、この問題の解決が不可欠になっている。
Among these, tin-free steel, for example, refers to a steel plate with an extremely thin chrome plating applied to the surface.It has good corrosion resistance and paintability, and is inexpensive. Demand is increasing significantly as a material for cans that can replace can materials (more than /m゛). However, the electrical resistance weldability of tin-free steel is extremely poor, which limits its applications, and in order to further expand its use in the future, it is essential to solve this problem.

すなわち、缶用素材は、耐食性、加工性、塗装性等の諸
特性に優れているとともに、電気抵抗溶接性に優れてい
ることが要求されるのである。ここで対象とする溶接法
は、近年、製缶コストの低減などの点から急速に普及し
てきた銅ワイヤシーム溶接法及び従来より使用されてい
る回転電極抵抗シーム溶接法である。
That is, can materials are required to have excellent properties such as corrosion resistance, workability, and paintability, as well as excellent electric resistance weldability. The welding methods considered here are the copper wire seam welding method, which has become rapidly popular in recent years due to reductions in can manufacturing costs, and the conventionally used rotating electrode resistance seam welding method.

まず、缶用素材の電気抵抗溶接性の評価法について説明
する。
First, a method for evaluating the electric resistance weldability of can materials will be explained.

シーム溶接部の品質は接合強度、気密性及び外観性状に
より評価される。接合強度及び気密性を満足させるため
には、接合界面で電気抵抗発熱が、ある限界値以上ある
ことが必要である。このことから、溶接電流の最小値が
決定される。つぎに、外観性状としては、パリが存在し
ないことが必要である。通常、溶接後、シーム溶接部を
補修塗料で被覆するが、パリが存在すると塗料塗布の障
害となり、また、塗料で被覆されない露出部分を生じ、
さらにこのような缶胴を使用すると、内容物がパリと反
応して変質するばかりでなく、パリが缶胴から剥離して
、内容物内に混入するおそれがあるからである。
The quality of seam welds is evaluated based on joint strength, airtightness, and appearance. In order to satisfy bonding strength and airtightness, it is necessary that electrical resistance heat generation at the bonding interface exceeds a certain limit value. From this, the minimum value of the welding current is determined. Next, as for the appearance properties, it is necessary that Paris be absent. Normally, after welding, the seam weld is coated with repair paint, but the presence of flakes can interfere with paint application, and can also result in exposed areas that are not covered with paint.
Furthermore, if such a can body is used, not only will the contents react with the powder and deteriorate, but there is also a risk that the powder will peel off from the can body and mix into the contents.

パリは溶融金属がシーム溶接部から飛散し、シー、ム溶
接部付近に付着したものである。パリが存在しないため
には、接合界面で電気抵抗発熱が、ある限界値以下であ
ることが必要である。このことから溶接電流の最大値が
決定される。このシーム溶接部の品質を評価する接合強
度、気密性及び外観性状から決定される溶接電流の最大
値及び最小値を各々下限電流値、上限電流値と定義する
と、溶接の適性電流範囲は上限電流値から下限電流値を
差し引いた値であり (ただし、適正電流範囲が負の場
合は零とする)、缶用素材の電気抵抗溶接性の良否は、
この適正電流範囲の広さによって評価されることになる
Particles are caused by molten metal scattering from the seam weld and adhering to the area near the seam weld. In order for Paris not to exist, it is necessary that electrical resistance heat generation at the bonding interface be below a certain limit value. From this, the maximum value of the welding current is determined. If we define the maximum and minimum values of the welding current, which are determined from the joint strength, airtightness, and appearance properties that evaluate the quality of the seam weld, as the lower limit current value and upper limit current value, respectively, then the appropriate current range for welding is the upper limit current. It is the value obtained by subtracting the lower limit current value from the value (however, if the appropriate current range is negative, it is zero), and the quality of the electrical resistance weldability of the material for the can is determined by
The evaluation will be based on the width of this appropriate current range.

缶用素材としては、前述の如く、従来より半田付は缶用
ブリキ(S付着量2.8g/rn’以上)及びティンフ
リースチールが一生流を占めてきたが、近年、新素材(
例えば、薄メツキブリキ及びニッケルメッキ鋼、板)が
開発されている。これらの素材を電気抵抗シーム溶接法
の対象とした場合に、半田付は缶用ブリキ及び薄メツキ
ブリキの一部(錫付着量1. Ig/rr1″以上)は
適正電流範囲が広く、溶接性は極めて良好である。しか
しながら、ある種の薄メツキブリキ(錫付着量1,1g
7m以下)及びティンフリースチールは半田付は缶用ブ
リキと比較した場合、適正電流範囲が狭く溶接性が劣る
。特にティンフリースチールは溶接の際にパリを発生し
易く、パリの生成を抑えるために溶接電流値を小とする
と接合強度、気密性が十分でなくなる。
As for the materials for cans, as mentioned above, tinplate for cans (with S adhesion of 2.8 g/rn' or more) and tin-free steel have traditionally been the most popular materials for soldering, but in recent years new materials (
For example, thin plated tinplate and nickel plated steel (plate) have been developed. When these materials are subjected to electric resistance seam welding, the appropriate current range for soldering is wide for can tin and some thin plating tin (tin coating amount 1. Ig/rr 1" or more), and weldability is low. Very good quality.However, some thin tinplates (tin coating amount 1.1g)
7m or less) and tin-free steel have a narrower appropriate current range and inferior weldability when soldering compared to tinplate for cans. In particular, tin-free steel tends to generate flashes during welding, and if the welding current value is reduced to suppress the formation of flashes, the joint strength and airtightness will not be sufficient.

この点を更に詳しく述べると、ティンフリースチールの
表層は、第1図に示す如く鋼板素地(3)上の極めて薄
い金属クロム層(2)と、その上層の水和酸化クロムを
主体としたクロム酸化物層(1)から構成されている。
To explain this point in more detail, the surface layer of tin-free steel consists of an extremely thin metallic chromium layer (2) on a steel sheet base (3), and an upper layer of chromium mainly composed of hydrated chromium oxide, as shown in Figure 1. It is composed of an oxide layer (1).

クロム酸化物は電気絶縁物であり、かつ、下地の金属ク
ロムM(2)が極めて硬いため、電極の加圧によるクロ
ム酸化物層(1)の破壊が不十分とな咋、溶接時に電流
は局部的かつ不均一に流れることになる。このため、比
較的低い電流で溶融金属が形成される。
Chromium oxide is an electrical insulator, and the underlying metal chromium M (2) is extremely hard, so the chromium oxide layer (1) is not sufficiently destroyed by the pressure applied by the electrode. It will flow locally and unevenly. Therefore, molten metal is formed at a relatively low current.

しかしながら、高温軟化領域が十分形成されておらず、
塑性流動による形状的な溶融金属の閉じ込め効果が弱い
なめ、溶融金属が容易に飛散してパリを形成してしまう
。特に交流電流が使用される場合は、交流電流波形のピ
ーク値付近に対応する溶接部でパリが発生しゃすく、一
方、上記波形の零値付近に対応する溶接部では発熱量不
足により接合強度が不足するという傾向が顕著に現れる
However, the high temperature softening region is not sufficiently formed,
The plastic flow has a weak confinement effect on the molten metal due to its shape, so the molten metal easily scatters and forms flakes. Particularly when alternating current is used, cracks are likely to occur in welds near the peak value of the alternating current waveform, while bond strength is reduced in welds near the zero value of the above waveform due to insufficient heat generation. There is a noticeable tendency for shortages.

さらに、クロム酸化物は、熱伝導性が著しく悪い°ため
、水冷された溶接電極への伝熱が阻害され、電気抵抗発
熱時に溶接電極−鋼板界面で過熱が起こり、パリを発生
しやすいという傾向も併存していた。
Furthermore, chromium oxide has extremely poor thermal conductivity, which inhibits heat transfer to the water-cooled welding electrode, causing overheating at the welding electrode-steel plate interface when electric resistance is generated, which tends to cause sparks. also coexisted.

そこで、従来は、重ね合せ部となるべきブランク端縁部
の鋼板表面被膜をワイヤブラシ及び研摩材等の機械的手
段によって予め鉄面をほぼ全面露出させた後に電気抵抗
シーム溶接を行っていた。
Therefore, in the past, electric resistance seam welding was performed after the steel plate surface coating on the edge of the blank, which is to be the overlapping part, was exposed almost entirely in advance using mechanical means such as a wire brush and an abrasive.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような機械的手段では、溶接性を阻害する鋼板表
面被膜の完全除去は困難であり被膜の一部残留を余儀な
くされ、そのため電気抵抗溶接性も必ずしも良好とはい
えなかった。さらに、被膜を削り取るときの微粉が鋼板
表面から完全に排除されず再付着して、以後の工程に種
々の不都合を生じさせるという問題点があった。
With the above-mentioned mechanical means, it is difficult to completely remove the coating on the surface of the steel sheet that inhibits weldability, and some of the coating is forced to remain, so that electric resistance weldability cannot necessarily be said to be good. Furthermore, there is a problem in that fine powder when the coating is scraped off is not completely removed from the surface of the steel plate and re-adheres, causing various inconveniences in subsequent steps.

また、表面被膜除去後の鉄露出面は耐食性がなく、外観
を損ねる等の欠点を有していた。このため、ティンフリ
ースチールは未だ飲食用缶詰等の缶用素材としては使用
されていない状況にある。
In addition, the exposed iron surface after the surface coating was removed lacked corrosion resistance and had drawbacks such as deteriorating the appearance. For this reason, tin-free steel is not yet used as a material for cans such as food and drink cans.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る缶用素材の溶接方法は、缶用素材の電気抵
抗溶接に先立って予め溶接部となるべき重ね合せ部の素
材表面にレーザビームを照射して表面被膜を蒸発させ、
しかるのちに胴ワイヤシーム溶接法又;よ回転電極抵抗
シーム溶接法による電気抵抗溶接を行うものである。
The method for welding can materials according to the present invention includes, prior to electrical resistance welding of the can materials, a laser beam is irradiated on the surface of the materials at the overlapping portion that will become the welding portion to evaporate the surface coating.
Thereafter, electric resistance welding is performed by body wire seam welding or rotating electrode resistance seam welding.

〔作 用〕[For production]

本発明方法においては、電気抵抗溶接性の劣る缶用素材
の電気抵抗溶接に先立って予め溶接部となるべき部分に
レーザビームを照射することにより、電気抵抗溶接性を
阻害するメッキ層の上層側に存在する金属酸化物を主体
とする化成処理被膜及びその下層に存在するメッキ金属
を蒸発除去させるか、あるいは、これらメッキ層と下地
の鉄とを合金化させるものである。それによって良好な
導電性及び伝熱性が得られ、電気抵抗溶接性を改善する
ことができるのである。
In the method of the present invention, prior to electric resistance welding of can materials with poor electric resistance weldability, a laser beam is irradiated in advance to the part to be welded, so that the upper layer of the plating layer that inhibits electric resistance weldability is irradiated with a laser beam. The chemical conversion coating mainly composed of metal oxides present in the coating and the plating metal present in the underlying layer are evaporated or removed, or these plating layers and the underlying iron are alloyed. As a result, good electrical conductivity and heat transfer properties can be obtained, and electric resistance weldability can be improved.

さらに、本発明について説明する。Furthermore, the present invention will be explained.

代表的加工レーザとして、CO,レーザ(波長10.6
μm) 、YAGレーザ(波長1.06μm)及びQス
イッチYAGレーザ(波長1.06μm)等がある。こ
れらのレーザを電気、抵抗溶接性の劣る缶用素材の一例
として、ティンフリースチール表層に照射した場合、照
射部の性状はレーザビームの波長、パワー及びパワー密
度によって大いに異なる。
As a typical processing laser, CO laser (wavelength 10.6
.mu.m), YAG laser (wavelength: 1.06 .mu.m), and Q-switch YAG laser (wavelength: 1.06 .mu.m). When these lasers are applied to the surface layer of tin-free steel, which is an example of a can material with poor electrical and resistance weldability, the properties of the irradiated area vary greatly depending on the wavelength, power, and power density of the laser beam.

第1に、レーザビームの波長の影響としては、レーザ吸
収率の問題がある。前述の如く、ティンフリースチール
の表層には鋼板素地上に薄い金属クロム及びその上にク
ロム酸化物の各層が存在する。波長10.6μmのCO
,レーザは、クロム酸化物には約100%と極めて高い
吸収率を示すが金属クロムに対しては吸収率が小さく、
そのほとんどは反射する。一方、波長の短いYAGレー
ザは、クロム酸化物に対する吸収率は小さいが、金属ク
ロムに対する吸収率はCO2レーザを上回る。したがっ
て、これらレーザをティンフリースチール表層に照射し
た場合次のような現象が認められた。
First, as an influence of the wavelength of the laser beam, there is a problem of laser absorption rate. As mentioned above, in the surface layer of tin-free steel, there is a thin metallic chromium layer on a steel sheet base and a layer of chromium oxide thereon. CO with a wavelength of 10.6 μm
, the laser has an extremely high absorption rate of approximately 100% for chromium oxide, but has a low absorption rate for metallic chromium.
Most of it is reflective. On the other hand, a YAG laser with a short wavelength has a small absorption rate for chromium oxide, but an absorption rate for metal chromium that exceeds that of a CO2 laser. Therefore, when the surface layer of tin-free steel was irradiated with these lasers, the following phenomenon was observed.

ティンフリースチールの表層部性状のみを改質すべく、
低入熱でCO□レーザを照射したものでは、クロム酸化
物の多くは蒸発し、金属クロム層は未溶融のまま留まる
ことが多かった。また、連続発振のYAGレーザを照射
した場合には、クロム酸化物の蒸発は少量であり、金属
クロム及び鋼板素地の一部が溶融し、合金化する状態が
ほとんどであった。
In order to modify only the surface layer properties of tin-free steel,
When the CO□ laser was irradiated with low heat input, most of the chromium oxide evaporated, and the metallic chromium layer often remained unmelted. Furthermore, when irradiating with a continuous wave YAG laser, only a small amount of chromium oxide evaporated, and most of the metal chromium and a portion of the steel sheet base were melted and alloyed.

第2に、レーザパワー及びパワー密度の問題がある。パ
ワー密度の点では、QスイッチYAGレーザが最も優れ
、そのピークパワー密度は109〜1012w/cjに
も達する。乙のため、このレーザを照射すると、瞬時に
溶融蒸発した。この溶融蒸発深さは、レーザパワーを調
整することにより、容易に制御でき、例えば、クロム酸
化物層のみを、また、クロム酸化物層と金属クロムの双
方を蒸発させることも可能であった。また、CO□レー
ザでもそのパワーを高めれば、金属クロム及び鋼板素地
を溶融できるが、安定した合金層を形成するには、最低
2μm以上の溶融深さを必要とした。
Second, there is the problem of laser power and power density. In terms of power density, Q-switched YAG lasers are the best, with peak power densities reaching 109 to 1012 w/cj. Therefore, when irradiated with this laser, it instantly melted and evaporated. This melting and evaporation depth can be easily controlled by adjusting the laser power, and for example, it was possible to evaporate only the chromium oxide layer or both the chromium oxide layer and metallic chromium. Furthermore, if the power of the CO□ laser is increased, it is possible to melt metal chromium and steel sheet substrates, but in order to form a stable alloy layer, a melting depth of at least 2 μm or more is required.

以°上の如く、レーザビームを照射することによってテ
ィンフリースチール表層の性状を、導電性の良好な種々
の状態に変化させることができる。
As described above, the properties of the surface layer of tin-free steel can be changed to various states with good conductivity by irradiating with a laser beam.

〔実施例〕〔Example〕

以下、本発明の実施例につき缶胴製造に適用した場合に
ついて説明する。
Hereinafter, a case where the present invention is applied to can body manufacturing will be described in accordance with an embodiment of the present invention.

溶接部となるべき部分にレーザビームを照射しi缶ブラ
ンクを用いて、従来の銅ワイヤシーム溶接機によゆ製缶
試験を行った結果、受入れままのティンフリースチール
に比較して大幅に電気抵抗溶接性が向上する実験結果を
得た。
As a result of conducting a can making test using a conventional copper wire seam welding machine by irradiating a laser beam on the part to be welded and using an i-can blank, the electrical resistance was significantly lower than that of tin-free steel as received. Experimental results showed that weldability was improved.

板厚材料が0.22閣、調質度T−4を原板としたティ
ンフリースチール(金属クロム150a@/m′、クロ
ム酸化物gomg/m)を用いて、表1に示す条件でレ
ーザビームを照射した。レーザビーム照射面を4種類、
及びパワー密度の異なる3−機種のレーザ装置を用いて
試験用缶ブランクを作製した。
A laser beam was applied under the conditions shown in Table 1 using tin-free steel (metal chromium 150a@/m', chromium oxide gomg/m) with a plate thickness of 0.22mm and a tempering degree of T-4 as an original plate. was irradiated. Four types of laser beam irradiation surfaces,
Test can blanks were produced using three types of laser devices with different power densities.

表1 注) 1)レーザビーム照射面(第2図参照)N1;両面照射
(全接触面(5)〜(8))N2.片面照射(鋼板−鋼
板接触面(61、(71)N3.片面照射(鋼板−溶接
電極接触面(5] 、 (8) )N4i交互照射(接
触面(51,(81のうちいずれかの面と接触面(6)
、(71のいずれかの面)2)レーザ機種 YAG、YAGレーザ Qスイッチ;QスイッチYAGレーザ Go、i連続発振CO2レーザ 製缶試験は、はぼ実用溶接条件に近い条件に設定した。
Table 1 Note) 1) Laser beam irradiation surface (see Figure 2) N1; Double-sided irradiation (all contact surfaces (5) to (8)) N2. Single side irradiation (steel plate-steel plate contact surface (61, (71)) N3. Single side irradiation (steel plate-welding electrode contact surface (5], (8)) N4i alternate irradiation (contact surface (51, (81)) and contact surface (6)
, (any surface of 71) 2) Laser model YAG, YAG laser Q switch; Q switch YAG laser Go, i continuous wave CO2 laser The can making test was set to conditions close to practical welding conditions.

表2に、溶接条件を、表3に、溶接試験結果をそれ、ぞ
れ示す。なお、表3には、レーザビーム照射後の表層性
状もあわせて示す。
Table 2 shows the welding conditions, and Table 3 shows the welding test results. Note that Table 3 also shows the surface layer properties after laser beam irradiation.

表2 表3 注) 1)受入れままのティンフリースチール2)冷延鋼板 3)半田付は缶用ブリキ 表3の試験結果より分かるように、受入れままのティン
フリースチール、すなわち金属クロム及びクロム酸化物
の存在する未処理のティンフリースチールに比較して、
本発明のレーザ処理ティンフリースチールは大幅に適正
電流範囲が拡大することが明らかとなった。
Table 2 Table 3 Note: 1) As-received tin-free steel 2) Cold-rolled steel plate 3) Soldering is tinplate Compared to untreated tin-free steel,
It has become clear that the laser-treated tin-free steel of the present invention has a significantly expanded appropriate current range.

これは、ティンフリースチールのメッキ層を構成する金
属り四ム及びクロム酸化物をレーザビームで蒸発除去し
、あるいは鉄−クロム合金化し、導電性を持たせること
により、溶接時に流れる電流の経路が飛躍的に増大した
ためであると考えられる。
This is achieved by evaporating the metal and chromium oxide that make up the plating layer of tin-free steel using a laser beam, or by forming an iron-chromium alloy to make it conductive. This is thought to be due to a dramatic increase.

とのレーザ処理により溶接性向上効果の程度は、レーザ
ビーム照射面及びレーザビーム照射後の表層性状にもわ
ずかながら依存することが明らかである。レーザビーム
照射面に関しては、接合面側(6,7)に照射した場合
の方が、溶接性向上効果が大きい。この理由は、受入れ
ままのティンフリースチールでは、電気抵抗による発熱
は、水冷されている溶接電極で冷却される鋼板−溶接f
s8ii界面より、接合面となる鋼板−鋼板界面の方が
大となり、溶融金属の形成、ひいてはパリの発生が起こ
りやすいためである。また、レーザビーム照射後の表層
性状に関しては、鋼板素地が露出した場合の方が、鉄−
クロム合金化した場合より、その効果はわずかに大きか
った。しかし、合金化したものでも十分良好なシーム溶
接が可能であった。
It is clear that the degree of weldability improvement effect achieved by laser treatment with laser beams slightly depends on the laser beam irradiated surface and the surface layer properties after laser beam irradiation. Regarding the laser beam irradiation surface, the effect of improving weldability is greater when the welding surface side (6, 7) is irradiated. The reason for this is that in tin-free steel as received, heat generation due to electrical resistance is caused by the steel plate being cooled by the water-cooled welding electrode.
This is because the steel plate-steel plate interface serving as a joint surface is larger than the s8ii interface, and formation of molten metal and eventually generation of paris is likely to occur. In addition, regarding the surface layer properties after laser beam irradiation, when the steel sheet base is exposed, the iron-
The effect was slightly greater than when alloyed with chromium. However, sufficiently good seam welding was possible even with alloyed materials.

また、表面のクロム酸化物層のみを除去し、金属クロム
層が露出したものは、鋼板素地が露出したものに比較し
て、適正電流範囲がやや小さいものの、安定したシーム
溶接は十分に可能であった。
In addition, when only the chromium oxide layer on the surface is removed and the metallic chromium layer is exposed, the appropriate current range is slightly smaller than when the base steel plate is exposed, but stable seam welding is still possible. there were.

なお、鋼板−鋼板接触面及び鋼板−溶接電極接触面の合
計4箇所の鋼板表面(5,6,7,8)のうちの任意の
鋼板表面1面にレーザビーム照射を行っても、電気抵抗
溶接性は向上した。
In addition, even if the laser beam is irradiated on any one of the four steel plate surfaces (5, 6, 7, 8) of the steel plate-steel plate contact surface and the steel plate-welding electrode contact surface, the electrical resistance will not change. Weldability has improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、缶用素材の電気
抵抗溶接に先だって行われる溶接部表面へのレーザビー
ムの照射によって、該溶接部の表面被膜を完全に蒸発除
去し、あるいは下地材と合金化するものであり、かつ、
レーザ処理により生じた超微粉を完全に払拭するもので
あるため、従来不可能とされていたティンフリースチー
ルをはじめ、各種の缶用素材の電気抵抗溶接を容易に実
施することができるものである。この結果、本発明方法
を適用することにより、飲料用及び食品用缶への適用範
囲が大幅に拡大することが期待できる。
As explained above, according to the present invention, by irradiating the surface of the welded part with a laser beam prior to electric resistance welding of can materials, the surface coating of the welded part is completely evaporated or removed, or the base material is is alloyed with, and
Because it completely wipes away the ultrafine powder produced by laser processing, it is now possible to easily perform electric resistance welding of various can materials, including tin-free steel, which was previously considered impossible. . As a result, by applying the method of the present invention, it is expected that the scope of application to beverage and food cans will be greatly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一つの適用対象たるティンフリースチ
ールのメッキ層の構成図、第2図は溶接部のレーザビー
ム照射面を示す説明図である。 (1): クロム酸化物層、(2):金属クロム層、(
3):鋼板、(4):溶接電極、(5) 、 (81:
溶接電極−鋼板接触面での鋼板表面、(61、(71:
鋼板−鋼板接触面での鋼板表面、(9):缶用素材。 代理人 弁理士  佐 藤 正 年 III  ■ 第211 □二二二云′ □7 1 + 7a紀酸aI−m7に ′   2:金屑クロ4 3I−1灰 ― 4:廂井11場 9]瀾累、4′
FIG. 1 is a configuration diagram of a plating layer of tin-free steel to which the present invention is applied, and FIG. 2 is an explanatory diagram showing a laser beam irradiation surface of a welded part. (1): Chromium oxide layer, (2): Metallic chromium layer, (
3): Steel plate, (4): Welding electrode, (5), (81:
The steel plate surface at the welding electrode-steel plate contact surface, (61, (71:
Steel plate surface at the steel plate-steel plate contact surface, (9): Can material. Agent Patent Attorney Tadashi Sato III ■ No. 211 □222 Yen' □7 1 + 7a acid aI-m7 ni' 2: Gold scraps black 4 3I-1 Ash - 4: Soi 11 scene 9] Cumulative, 4'

Claims (1)

【特許請求の範囲】[Claims] 缶用素材の電気抵抗溶接に先だって予め溶接部となるべ
き重ね合せ部の表面にレーザビームを照射することによ
り上記表面の電気抵抗溶接性を改善することを特徴とす
る缶用素材の溶接方法。
A method for welding can materials, characterized in that, prior to electric resistance welding of can materials, the surface of an overlapping portion to be a welded portion is irradiated with a laser beam to improve the electric resistance weldability of the surface.
JP60174372A 1985-08-09 1985-08-09 Welding method for can stock Pending JPS6234682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60174372A JPS6234682A (en) 1985-08-09 1985-08-09 Welding method for can stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60174372A JPS6234682A (en) 1985-08-09 1985-08-09 Welding method for can stock

Publications (1)

Publication Number Publication Date
JPS6234682A true JPS6234682A (en) 1987-02-14

Family

ID=15977459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60174372A Pending JPS6234682A (en) 1985-08-09 1985-08-09 Welding method for can stock

Country Status (1)

Country Link
JP (1) JPS6234682A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229689A (en) * 1993-12-15 1996-09-10 Elpatronic Ag Method for welding edge of sheet
CN103962722A (en) * 2013-01-29 2014-08-06 株式会社鹭宫制作所 Manufacturing method of fluid correlation function apparatus
WO2014119493A1 (en) * 2013-01-29 2014-08-07 大日製罐株式会社 Welded can body, welded can, method for manufacturing welded can body, and method for manufacturing welded can
JP6263286B1 (en) * 2017-01-13 2018-01-17 日本特殊陶業株式会社 Manufacturing method of spark plug

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229689A (en) * 1993-12-15 1996-09-10 Elpatronic Ag Method for welding edge of sheet
TWI547337B (en) * 2013-01-29 2016-09-01 大日製罐股份有限公司 Welded can drum, welded can, manufacturing method of welded can drum and manufacturing method of welded can
WO2014119493A1 (en) * 2013-01-29 2014-08-07 大日製罐株式会社 Welded can body, welded can, method for manufacturing welded can body, and method for manufacturing welded can
JP2014144469A (en) * 2013-01-29 2014-08-14 Saginomiya Seisakusho Inc Manufacturing method of fluid-related function device
CN104936738A (en) * 2013-01-29 2015-09-23 大日制罐株式会社 Welded can body, welded can, method for manufacturing welded can body, and method for manufacturing welded can
US20150314908A1 (en) * 2013-01-29 2015-11-05 Jfe Steel Corporation Welded can body, welded can, method of manufacturing welded can body, and method of manufacturing welded can
CN103962722A (en) * 2013-01-29 2014-08-06 株式会社鹭宫制作所 Manufacturing method of fluid correlation function apparatus
JPWO2014119493A1 (en) * 2013-01-29 2017-01-26 大日製罐株式会社 Welding can body, welding can, manufacturing method of welding can body, and manufacturing method of welding can
CN104936738B (en) * 2013-01-29 2018-12-18 大日制罐株式会社 Weld the manufacturing method of tank body, welded tank, the manufacturing method for welding tank body and welded tank
JP6263286B1 (en) * 2017-01-13 2018-01-17 日本特殊陶業株式会社 Manufacturing method of spark plug
WO2018131220A1 (en) * 2017-01-13 2018-07-19 日本特殊陶業株式会社 Spark plug production method
CN110192313A (en) * 2017-01-13 2019-08-30 日本特殊陶业株式会社 The manufacturing method of spark plug
CN110192313B (en) * 2017-01-13 2020-06-30 日本特殊陶业株式会社 Method for manufacturing spark plug
US10804681B2 (en) 2017-01-13 2020-10-13 Ngk Spark Plug Co., Ltd. Method for manufacturing a spark plug that makes welded portions uniform

Similar Documents

Publication Publication Date Title
JP4818755B2 (en) Steel plate for welding can
JPS6234682A (en) Welding method for can stock
KR890003098B1 (en) Method of making welded can body
JPS6056490A (en) Production of welded can body
JP3212136B2 (en) Can body having a welding can body
JPH08209392A (en) Chromium plated steel sheet excellent in high speed continuous weldability
JPH0275473A (en) Manufacture of welded can body
JPS61147989A (en) Method for repairing thermally sprayed bead cut part of metal-coated steel pipe
JPS6030589A (en) Production of welded can body
JPH0379341A (en) Painted steel plate improved in weldability
JPH03248777A (en) Build-up welding method for al or al alloy surface
JPS63177988A (en) Production of laser welded can
JP3153001B2 (en) Can body having a welding can body
JPH02122036A (en) Resistance seam welding electrode wire and its manufacture
JPS613688A (en) Resistance welding method of metallic sheet having insulating film on surface layer
JPH0218954B2 (en)
JPS6299497A (en) Manufacture of electrolytically chromated steel sheet for welding
CA1179629A (en) Process for producing a chromium-plated steel strip having enhanced weldability
JPH0344874B2 (en)
JPH0417980A (en) Electric resistance spot welding method for aluminum alloy plates
KR20140123784A (en) Apparatus and method of resistance welding
JPS617079A (en) Production of welded can body
JP2005342771A (en) Resistance welding method
JPS63190196A (en) Aluminum and aluminum alloy sheet having superior resistance weldability
JPH03128175A (en) Arc welding method