JPH02156096A - Material for very thin welded can having superior seam weldability, adhesion to coating material and corrosion resistant after coating - Google Patents

Material for very thin welded can having superior seam weldability, adhesion to coating material and corrosion resistant after coating

Info

Publication number
JPH02156096A
JPH02156096A JP31088888A JP31088888A JPH02156096A JP H02156096 A JPH02156096 A JP H02156096A JP 31088888 A JP31088888 A JP 31088888A JP 31088888 A JP31088888 A JP 31088888A JP H02156096 A JPH02156096 A JP H02156096A
Authority
JP
Japan
Prior art keywords
coating
layer
baking
treatment
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31088888A
Other languages
Japanese (ja)
Other versions
JP2583297B2 (en
Inventor
Yukinobu Higuchi
樋口 征順
Tomoya Oga
大賀 智也
Atsushi Murakami
淳 村上
Noritsugu Miyake
三宅 紀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18010589&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02156096(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63310888A priority Critical patent/JP2583297B2/en
Publication of JPH02156096A publication Critical patent/JPH02156096A/en
Application granted granted Critical
Publication of JP2583297B2 publication Critical patent/JP2583297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a material for a very thin welded can having satisfactory coatability and corrosion resistance after coating by leaving a specified amt. of unalloyed tin on each of both sides of a plated steel sheet of a specified thickness for a can corresponding to the inside and outside of the can and forming a specified amt. each of chromate coating layers. CONSTITUTION:Metallic tin unalloyed after coating and baking is left by 20-2,500mg/m<2> on one side of a plated steel sheet of 0.10-0.18mm thickness for a can corresponding to the inside of the can. Metallic tin unalloyed after coating and baking is left by 50-2,000mg/m<2> on the other side of the steel sheet corresponding to the outside of the can. Both sides of the steel sheet are then coated with chromate by 1-30mg/m<2> each (expressed in terms of Cr). A material for a very thin welded can having satisfactory coatability and corrosion resistance after coating can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシーム溶接性、塗装密着性および塗装後耐食性
に優れた被膜構成を有する板厚0.10〜0.18mn
+の極薄溶接缶用材料に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a sheet with a thickness of 0.10 to 0.18 mm that has a coating structure with excellent seam weldability, paint adhesion, and post-painting corrosion resistance.
This relates to materials for ultra-thin welded cans.

(従来の技術) 近年、スードロニツタ法に代表されるシーム溶接製缶法
の実用化が急速に進展している。この溶接製缶法は半田
製缶法や絞りしごき製缶法と異なり、より少ない錫メッ
キ量で製缶できる特徴からメッキ量の少ないSn系被覆
鋼板(以下rLTs、略す)の使用が増加している。 
LTSは耐食性を向上させるため缶内外面に焼き付け塗
装が施されて使用される。
(Prior Art) In recent years, the practical application of seam welding can manufacturing methods represented by the Sudronitsta method has rapidly progressed. This welding can-making method is different from the solder can-making method and the drawing and ironing can-making method, and because it allows cans to be made with a smaller amount of tin plating, the use of Sn-based coated steel sheets (hereinafter referred to as rLTs), which have a smaller amount of plating, has increased. There is.
LTS is used with baking paint applied to the inside and outside of the can to improve corrosion resistance.

当然のことながら、溶接缶用LTSには電気抵抗溶接法
によるシーム溶接性に優れていることが要求される。シ
ーム溶接性の向上には塗装焼き付け後に残留する金属錫
(以下’free−5n」 と称す)が最も効果が有り
、free−5n量が多ければ多いほどシーム溶接性は
良好である。塗装焼き付け時にSnメッキ層の一部がメ
ッキ原板と熱拡散によって合金化し、free−5nが
減少するためシーム溶接性は劣化する。そのため、塗装
焼き付け後にfrea−5nを充分確保し同時に良好な
耐食性、塗装性能を発揮する溶接缶用材料の開発が積極
的になされており、例えば次のような先行技術が知られ
ている。
Naturally, LTS for welded cans is required to have excellent seam weldability by electric resistance welding. Metallic tin (hereinafter referred to as 'free-5n') remaining after baking the paint is most effective in improving seam weldability, and the greater the amount of free-5n, the better the seam weldability. During paint baking, a portion of the Sn plating layer becomes alloyed with the plated original plate by thermal diffusion, and free-5n decreases, resulting in deterioration of seam weldability. Therefore, efforts are being made to develop materials for welded cans that can sufficiently secure frea-5n after baking the paint and at the same time exhibit good corrosion resistance and coating performance. For example, the following prior art is known.

■ 鋼板表面に30〜1000mg/a”のNlメッキ
層と100〜2000mg/m2のSnメッキ層を設け
、加熱溶融処理(以下「リフロー処理」と称す)を施す
あるいは施さないでCr換算量で2〜20mg/m’の
クロムメート被膜を形成せしめる方法(特開昭57−2
3091号)。
■ A Nl plating layer of 30 to 1000 mg/a" and a Sn plating layer of 100 to 2000 mg/m2 are provided on the steel plate surface, and the amount of Cr equivalent is 2 with or without heat melting treatment (hereinafter referred to as "reflow treatment"). A method for forming a chromate film of ~20 mg/m' (Japanese Unexamined Patent Publication No. 57-2
No. 3091).

■ 鋼板表面に厚さ0.001〜0.05μll1(約
8.9〜445mg/m2)のNlメッキを施し、引き
続き還元性雰囲気で熱処理を行いNiメッキ層の一部又
は全部を鋼素地中へ拡散浸透させた後、厚さ0.01〜
0.2 μm(約73〜1480mg/m’)のSnメ
ッキとりフロー処理を施した後クロメート処理を施す方
法(特開昭57−200592号)。
■ Apply Nl plating to a thickness of 0.001 to 0.05 μl1 (approximately 8.9 to 445 mg/m2) on the surface of the steel plate, then heat treat it in a reducing atmosphere to transfer part or all of the Ni plating layer into the steel base. After diffusion and penetration, the thickness is 0.01~
0.2 μm (approximately 73 to 1480 mg/m') Sn plating is removed by a flow treatment, followed by a chromate treatment (Japanese Patent Laid-Open No. 57-200592).

■ 鋼板上に重量比でNl/Nl+Fa−0,02〜0
.50の範囲の組成で厚さ10〜5000人(約8〜4
900mg/+”)のFe−Ni合金層を100〜10
00mg/m’のSnメッキ層を設け、リフロー処理を
行ってCr換算量で5〜20mg/m”のクロメート処
理層を設ける方法(特開昭60−17099号)。
■ Weight ratio of Nl/Nl+Fa-0.02~0 on steel plate
.. Thickness 10-5000 people (approximately 8-4
900mg/+”) Fe-Ni alloy layer from 100 to 10
A method of providing a Sn plating layer of 00 mg/m' and performing reflow treatment to form a chromate treatment layer of 5 to 20 mg/m'' in terms of Cr (Japanese Unexamined Patent Publication No. 17099/1983).

これらの方法はいずれも (a)メッキ原板とSnメッキ層の中間下地層に旧ある
いはNi−Fe合金層を設け、Snnメッキソリフロー
処理行い均一緻密なNi−5n−Fe合金層を形成して
、この合金層の作用とその表面のSnメッキ層との複合
効果によって耐食性と塗装後耐食性を向上せしめること
、 (b)これらの均一緻密な合金層の生成が塗装焼き付け
時にSnメッキ層と原板との加熱拡散反応を抑制するこ
とおよび溶接性を損なわない範囲のCr付着量で塗装性
能を向上せしめるクロメート被膜を設けて溶接性、塗装
性能を確保すること、 などを思想としたもので、LTS系の優れた溶接缶用材
料である。
In both of these methods, (a) an old or Ni-Fe alloy layer is provided as an intermediate base layer between the plating original plate and the Sn plating layer, and a uniform and dense Ni-5n-Fe alloy layer is formed by Snn plating soliflow treatment. (b) The formation of these uniform and dense alloy layers causes the Sn plating layer and the original plate to interact with each other during painting baking. The idea was to secure weldability and coating performance by providing a chromate film that improves coating performance by suppressing the heating diffusion reaction of Cr and by maintaining weldability and coating performance with an amount of Cr deposited within a range that does not impair weldability. It is an excellent material for welded cans.

(発明が解決しようとする課題) 近年さらにより一層の溶接製缶技術の進歩と製缶コスト
ダウンが相俟って原板素材の薄手化が要請されている。
(Problems to be Solved by the Invention) In recent years, with further progress in welding can manufacturing technology and reductions in can manufacturing costs, there has been a demand for thinner original plate materials.

即ち、現状の板厚0.20〜0.24mmから0.10
〜O,18mmの薄手材で溶接性、耐食性、塗装性能の
優れた溶接缶用材料の開発が要請されている。
In other words, the current plate thickness is 0.20 to 0.24 mm to 0.10 mm.
There is a need to develop a material for welded cans that is 18 mm thin and has excellent weldability, corrosion resistance, and coating performance.

しかし、この薄手材に前記の公知技術を適用した場合、
充分な溶接強度と良好な外観が得られる適性溶接範囲が
非常に狭くなるという問題がありた。これは、特に缶内
面側で充分な溶接強度が確保できる前に溶融金属が飛び
出しく以下「敗り」と称す)、塗装後耐食性および溶接
強度の劣化が生じるという問題である。
However, when the above-mentioned known technology is applied to this thin material,
There has been a problem in that the suitable welding range in which sufficient welding strength and good appearance can be obtained is extremely narrow. This is a problem in that the molten metal jumps out before sufficient welding strength can be secured, particularly on the inner surface of the can (hereinafter referred to as "defeat"), resulting in deterioration of corrosion resistance and welding strength after painting.

本発明はこの問題に対処するため、板厚0.10〜0.
18+aa+の極薄材を使用した場合に充分広い適性溶
接範囲を有し、かつ良好な塗装性能と塗装後耐食性を発
揮する極薄溶接缶用材料を提供せんとするものである。
In order to deal with this problem, the present invention has a plate thickness of 0.10 to 0.
It is an object of the present invention to provide a material for an ultra-thin welded can that has a sufficiently wide suitable welding range when an ultra-thin material of 18+aa+ is used, and exhibits good coating performance and corrosion resistance after coating.

(課題を解決するための手段) 発明者らは溶接缶用材料の適正な表面被膜構成について
検討した結果、板厚0.18111Q1以下の極薄材を
溶接缶用材料に適用した場合、散りの発生なく充分な溶
接強度が得られる広い適性溶接範囲を確保するためには
溶接缶用材料界面および材料/材料界面の接触抵抗を極
力低減しなくてはならないことが判明した。特に、ここ
で重要なのは缶体形状から缶内面に接触する溶接極輪の
径は缶外面に接触する溶接極輪の径に比べて極めて小径
サイズに制限されることである。溶接極輪の径が小さい
ということは極輪と材料との接触面積が小さくなり溶接
時に流れる電流の通電路が規制されるということであり
、溶接時の過電流が散りの発生の原因になり易い、この
ような溶接缶用材料間の接触面積を増大しその接触抵抗
を低減させるには、軟らかく融点の低い金属錫即ちfr
ee−5nの存在が最も効果が大きいことが判った。 
free−5nは多ければおおいほど溶接性は良好であ
るが、経済的な観点から高価な錫はできるだけ低減しな
くてはならず、缶内面と缶外面で溶接極輪との接触面積
が異なるため、各々適正なfree−5n残留量が存在
する。
(Means for Solving the Problems) As a result of the inventors' study on the appropriate surface coating composition of materials for welded cans, it was found that when an ultra-thin material with a plate thickness of 0.18111Q1 or less is applied to materials for welded cans, there is no scattering. It has been found that in order to ensure a wide suitable welding range in which sufficient welding strength can be obtained without occurrence of welding, it is necessary to reduce the contact resistance at the weld can material interface and material/material interface as much as possible. In particular, what is important here is that the diameter of the welding pole ring that contacts the inner surface of the can is limited to an extremely smaller diameter size than the diameter of the welding pole wheel that contacts the outer surface of the can due to the shape of the can body. The small diameter of the welding pole ring means that the contact area between the pole ring and the material is small, which restricts the current flow path during welding, and overcurrent during welding can cause splintering. In order to increase the contact area and reduce the contact resistance between materials for cans that are easy to weld, metal tin that is soft and has a low melting point, that is, fr.
It was found that the presence of ee-5n had the greatest effect.
The more free-5n there is, the better the weldability will be, but from an economical point of view, the amount of expensive tin must be reduced as much as possible, since the contact area with the welding pole ring is different between the inside and outside of the can. , each has an appropriate free-5n residual amount.

更に、できるだけ少ない錫メッキ量でこのようなfre
e−5n量を確保し、良好な耐食性を発揮するにはNl
系の下地処理を施すことが望ましい。Ni系の下地処理
を施すことにより緻密で均一なNi−Fe−5n系の合
金層が生成し塗装焼き付け時に錫が合金化するときのバ
リヤー層として存在すると共に耐食性にも優れた性能を
発揮する。
Furthermore, such fre
To ensure the amount of e-5n and exhibit good corrosion resistance, Nl
It is desirable to perform surface treatment for the system. By performing Ni-based surface treatment, a dense and uniform Ni-Fe-5n alloy layer is generated, which acts as a barrier layer when tin is alloyed during paint baking, and also exhibits excellent corrosion resistance. .

又、良好な塗装性能と塗装後耐食性を確保するためfr
ee−5nの上にクロメート被膜を設けなくてはならな
いが、クロメート被膜は絶縁体であり微量存在する金属
クロムは高融点のためクロメート被膜は溶接性にはマイ
ナス要因である。そのためクロメート被膜は良好な塗装
性能と塗装後耐食性を確保できる最小必要量に規制する
必要がある。
In addition, to ensure good painting performance and corrosion resistance after painting, fr
A chromate film must be provided on ee-5n, but since the chromate film is an insulator and the small amount of metallic chromium present has a high melting point, the chromate film is a negative factor for weldability. Therefore, the amount of chromate film needs to be regulated to the minimum necessary amount to ensure good coating performance and post-coating corrosion resistance.

本発明者らはこれらの考え方をベースに詳細に検討した
結果、板厚0.10〜0.18n+mの溶接缶用材料と
して優れた溶接性、塗装性、塗装後耐食性を有する極薄
溶接缶用材料が得られることを発見した。
As a result of detailed studies based on these ideas, the inventors of the present invention have developed a material for ultra-thin welded cans with excellent weldability, paintability, and post-painting corrosion resistance as a material for welded cans with a plate thickness of 0.10 to 0.18n+m. discovered that the material could be obtained.

本発明はその知見に基づいてなされたもので、その要旨
は 1)  m板厚0.10〜0.18mmの缶用メッキ原
板の缶内面相当面に塗装焼き付け後に合金化していない
金属錫が200〜2500mg/i” 、缶外面相当面
に塗装焼き付け後に合金化していない金属錫が50〜2
000mg/m2残留し、内外両面にクロム換算付着量
で各々1〜3hg/m2のクロメート被膜層を有するシ
ーム溶接性、塗料密着性および塗装後耐食性に優れた極
薄溶接缶用材料 2) 鋼板厚0.1θ〜0.18mmの缶用メッキ原板
の缶内面相当面に塗装焼き付け後にNi−Fe−5n合
金層あるいはFe−5n合金層が存在し、その上に合金
化していない金属錫が200〜2500mg/m”残留
し、一方、缶外面相当面に塗装焼き付け後にNi−Fe
−5n合金層あるいはFe−5n合金層が存在し、その
上に合金化していない金属錫が50〜2000mg/m
”残留し、さらに内外両面にクロム換算付着量で各々1
〜30mg/m”のクロメート被膜層を有するシーム溶
接性、塗料密着性および塗装後耐食性に優れた極薄溶接
缶用材料 である。
The present invention has been made based on this knowledge, and its gist is as follows: 1) 200% of unalloyed metallic tin is coated on the surface equivalent to the inner surface of a can plated original plate having a thickness of 0.10 to 0.18 mm after baking the paint. ~2500mg/i'', unalloyed metallic tin after baking on the surface equivalent to the outer surface of the can is 50~2
Material for ultra-thin welded cans with excellent seam weldability, paint adhesion, and post-painting corrosion resistance, with a chromate film layer of 1 to 3 hg/m2 on both the inside and outside surfaces, with a residual amount of 000 mg/m2 2) Steel plate thickness After baking, a Ni-Fe-5n alloy layer or a Fe-5n alloy layer is present on the surface corresponding to the inner surface of a can plating original plate of 0.1θ to 0.18 mm, and on top of that is a Ni-Fe-5n alloy layer or a Fe-5n alloy layer with a thickness of 200 to 200 mm. 2500 mg/m" remained, while Ni-Fe remained on the surface equivalent to the outer surface of the can after baking
-5n alloy layer or Fe-5n alloy layer is present, and unalloyed metallic tin is present on it at 50 to 2000 mg/m
”remains, and furthermore, the amount of chromium attached on both the inside and outside is 1.
This is a material for ultra-thin welded cans that has a chromate coating layer of ~30 mg/m'' and has excellent seam weldability, paint adhesion, and post-painting corrosion resistance.

(作   用) 以下に本発明について詳細に説明する。(For writing) The present invention will be explained in detail below.

本発明において、缶用メッキ原板として板厚0.10〜
0.18mmの鋼板を用いる。メッキ原板の製造法、材
質などは特に規制されるものではなく、通常の鋼片製造
工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質などの
工程を経て製造される。更に、このメッキ原板は必要と
される缶°体強度に応じて冷間圧延後焼鈍を行ってから
再冷間圧延(即ち2CR法)する製造工程で製造しテモ
ヨい、m波強度は製缶工程でのフランジ加工性から硬度
65〜71がよい。
In the present invention, as a plating original plate for cans, the plate thickness is 0.10~
A 0.18 mm steel plate is used. There are no particular restrictions on the manufacturing method or material of the plated original plate, and it is manufactured through normal steel billet manufacturing processes such as hot rolling, pickling, cold rolling, annealing, and tempering. Furthermore, this plated original plate is manufactured using a manufacturing process that involves cold rolling, annealing, and re-cold rolling (i.e., 2CR method) depending on the required strength of the can body. A hardness of 65 to 71 is preferable from the viewpoint of flange workability in the process.

本発明において、板厚が0.10mm未溝の薄いメッキ
原板では缶内容物の圧力あるいは窒素ガスの充填などの
利用、または缶体ビードを付加したりする方法を利用し
ても充分な缶体強度を安定に確保しがたく、板厚は0.
10mm以上である。
In the present invention, in the case of a thin plating plate with a thickness of 0.10 mm and no grooves, a sufficient can body can be obtained by using the pressure of the contents of the can, filling with nitrogen gas, or adding a can bead. It is difficult to ensure stable strength, and the plate thickness is 0.
It is 10 mm or more.

又、板厚が0.18o+mを越える場合は、公知技術の
利用により、良好な性能の溶接缶が製造可能である。し
かし、板厚0.18mm以上では缶体の軽量化あるいは
コストダウンなどの観点からも’Jfましくないので、
本発明においては板厚0.111+ni以下のメッキ原
板を用いる。本発明はこれらの板厚の鋼板表面に溶接性
、塗料密着性、塗装耐食性に優れた適正な被膜処理を施
す。
Further, when the plate thickness exceeds 0.18o+m, a welded can with good performance can be manufactured by using known technology. However, if the plate thickness is 0.18 mm or more, it will not be possible to reduce the weight of the can or reduce costs.
In the present invention, a plated original plate having a thickness of 0.111+ni or less is used. The present invention applies appropriate coating treatment to the surface of steel plates having these plate thicknesses, which has excellent weldability, paint adhesion, and paint corrosion resistance.

まず、良好な溶接性を発揮する被膜構成の作用効果につ
いて述べる。溶接性は散りの発生がなく、充分な溶接強
度が得られる適性溶接範囲が広ければ広いほど溶接性は
良好と評価される。そのためには塗装焼き付け後に残留
するfree−5n量が最も効果があり、その量が多い
ほど溶接性は良好である。その理由として、つまり溶接
性に及ぼす残留free−5n量の効果として以下のこ
とが挙げられる。
First, the effects of the coating structure that exhibits good weldability will be described. Weldability is evaluated to be better as the welding range is wider and there is no spatter, and sufficient welding strength is obtained. For this purpose, the amount of free-5n remaining after baking the paint is most effective, and the larger the amount, the better the weldability. The reason for this, that is, the effect of the amount of residual free-5n on weldability, is as follows.

a)錫金属が軟質のため溶接時に極論から加えられる加
圧力により極論/材料間あるいは材料/材料間の接触面
積が広がり、接触抵抗が減少し溶接時の局部的な電流の
集中が防げる。溶接電流が集中するとその部分で局部的
な発熱が起こり、散りを発生する原因となる。すなわち
、free−5nは敗りの発生を防止する。
a) Since tin metal is soft, the pressure applied from the pole during welding increases the contact area between poles/materials or between materials, reducing contact resistance and preventing local current concentration during welding. When the welding current is concentrated, local heat generation occurs in that area, causing spatter. In other words, free-5n prevents a loss from occurring.

b)錫金属が低融点のため溶接時の発熱により容易に溶
解し、極論/材料間あるいは材料/材料間の接触面積を
広げて接触抵抗を減少し、溶接時の局部的な電流の集中
を防止する。
b) Because tin metal has a low melting point, it easily melts due to the heat generated during welding, which increases the contact area between materials or between materials, reduces contact resistance, and reduces local current concentration during welding. To prevent.

溶接缶用材料は溶接される前に溶接部に相当する以外の
部分に塗装が施され、その塗料は200℃前後の温度で
数分焼き付けられ!!!膜が形成される。この塗装焼き
付け時に錫メッキ層と地峡界面で熱による拡散反応が進
行しfree−3n量が減少するため溶接性が劣化して
くる。つまり、良好な溶接性を確保するには塗装焼き付
け後、溶接される直前に残留するfree−sn量をい
かに確保するかが重要なポイントである。特に0.10
〜0.18m1の極薄原板素材で経済的な観点から必要
最少量のSnメッキ量で溶接缶用材料の素材設計を考え
た場合、塗装焼き付け後残留するfree−5nが溶接
性を支配する。
Before the materials for welded cans are welded, the parts other than those corresponding to the welds are painted, and the paint is baked at a temperature of around 200°C for several minutes! ! ! A film is formed. During this coating baking process, a thermal diffusion reaction progresses at the interface between the tin plating layer and the isthmus, and the amount of free-3n decreases, resulting in deterioration of weldability. In other words, in order to ensure good weldability, an important point is how to secure the amount of free-sn that remains after baking the paint and immediately before welding. Especially 0.10
When considering the material design of a welding can material using an extremely thin original plate material of ~0.18 m1 and the minimum amount of Sn plating necessary from an economical point of view, the free-5n remaining after baking the paint dominates the weldability.

ここで重要なのは、缶体形状から缶の内面に接触する溶
接極論は缶の中に入って溶接を行うため、その径は缶径
より小さくなければならず、それに比べて缶の外面に接
触する溶接極論はそのような規制を受けることはなく、
極論の径は任意に設定できることである。つまり、缶の
内面に接触する極論の径は缶外面に接触する極論径に比
べて極めて小径サイズに規制されることになる。極論径
が小さいということは極論と材料の接触面積が小さくな
り溶接時に流れる電流の通電路が規制されることであり
、溶接通電時に局部的な過電流が流れる。溶接時に発生
する散りは、このような過電流による局部的な発熱が直
接的な原因である。
What is important here is that due to the shape of the can body, welding that contacts the inner surface of the can is performed inside the can, so its diameter must be smaller than the can diameter; Welding Extreme Theory is not subject to such regulations,
The diameter of the extreme theory can be set arbitrarily. In other words, the extreme diameter that contacts the inner surface of the can is regulated to be extremely smaller than the extreme diameter that contacts the outer surface of the can. The small diameter of the pole means that the contact area between the pole and the material is small, which restricts the current flow path during welding, and a local overcurrent flows during welding. Splashing that occurs during welding is directly caused by local heat generation caused by such overcurrent.

特に本発明のように0.10〜0.18mmの極薄鋼板
用いて電気抵抗溶接法により溶接缶を製缶する場合、外
面側に相当する面以上に内面側の小径電極と材料表面と
の界面接触抵抗を低減して通電路を広く確保する必要が
ある。
In particular, when making welded cans by electric resistance welding using ultra-thin steel plates of 0.10 to 0.18 mm as in the present invention, the small-diameter electrode on the inner side and the material surface are closer to each other than the surface corresponding to the outer surface. It is necessary to reduce the interfacial contact resistance and ensure a wide conduction path.

即ち、溶接過程において材料同志が重ね合わされた鋼板
界面で溶接ナゲツトが形成されるに必要な溶接電流が、
材料/電極の接触抵抗、材料/材料の接触抵抗および材
料の抵抗を含めた総抵抗に応じて負荷される。この溶接
電流は充分な溶接強度が得られ同時に形成された溶接ナ
ゲツトから敗りが発生しない適性溶接範囲内の電流が負
荷される。
In other words, the welding current required to form a weld nugget at the interface of the steel plates where materials are overlapped in the welding process is:
The load is applied according to the total resistance including material/electrode contact resistance, material/material contact resistance and material resistance. This welding current is within an appropriate welding range that provides sufficient welding strength and at the same time does not cause damage to the formed weld nuggets.

そして、この負荷された溶接電流によって材料/材料界
面に溶接ナゲツトが形成されるに必要な熱量が与えられ
るが、材料が極薄鋼板の場合材料の板厚が厚い場合に比
べて、材料表面が極めて冷却されにくいという問題があ
る。特に、缶内面側は極論径が小径のため缶外面側に比
べて極論への伝熱により放熱される熱量が少なく、缶内
面側は缶外面側に比べて材料表面の温度が高くなり易い
。その結果、溶接時に材料表面の温度が上昇するため材
料板厚が薄い場合極論/材料界面の接触抵抗が増大し、
材料/材料界面に溶接ナゲツトを生成するのに必要な溶
接電流以上の電流を供給するため、ナゲツト部より多く
の散りを発生し溶接欠陥を生じさせることになる。
This applied welding current provides the necessary amount of heat to form a weld nugget at the material/material interface, but when the material is an ultra-thin steel plate, the material surface is There is a problem in that it is extremely difficult to cool down. In particular, since the inner surface of the can has a smaller diameter, the amount of heat radiated by heat transfer to the inner surface of the can is smaller than that on the outer surface of the can, and the temperature of the material surface on the inner surface of the can tends to be higher than that on the outer surface of the can. As a result, the temperature of the material surface increases during welding, so when the material plate is thin, the contact resistance at the material interface increases,
Since a current higher than the welding current required to generate a weld nugget at the material/material interface is supplied, more spatter is generated than at the nugget, resulting in weld defects.

従って、板厚が0.10〜0.18mmの極薄鋼板が溶
接缶用材料として使用される場合には缶内面相当面と溶
接極軸界面の接触抵抗を低減させる得る被膜構成が必要
である。これらの観点から種々の検討の結果、材料の缶
内面相当面に軟質で低融点のfree−5nが塗装焼き
付け後に多く残留し得る被膜構成にすることが重要であ
る。
Therefore, when an ultra-thin steel plate with a thickness of 0.10 to 0.18 mm is used as a material for welded cans, it is necessary to have a coating structure that can reduce the contact resistance between the can inner surface and the weld polar axis interface. . As a result of various studies from these points of view, it is important to create a coating structure in which a large amount of soft, low-melting point free-5n can remain on the surface of the material corresponding to the inner surface of the can after the coating is baked.

free−5nが多く残留することにより小径電極との
接触面積を広く確保できること、更には材料表面の温度
が上昇しても材料板厚方向への通電性が増大することに
よって、材料/材料界面に生成するナゲツト形成に必要
な電流以上の電流を供給する必要はない、この効果を得
るためには溶接缶用材料の缶内面相当面に塗装焼き付け
後にfree−5nが200〜2500mg/m2、缶
外面相当面に塗装焼き付け後にfree−5nが50〜
2000rng/m”残留することで構成される。
By retaining a large amount of free-5n, a large contact area with the small-diameter electrode can be secured, and furthermore, even if the temperature of the material surface increases, the conductivity in the thickness direction of the material increases, so it is It is not necessary to supply a current higher than the current required for the nugget formation to be generated. To obtain this effect, the free-5n should be 200 to 2500 mg/m2 after baking the welded can material on the surface equivalent to the inside of the can, and the outside surface of the can. free-5n is 50 ~ after painting and baking on the corresponding surface
2,000 rng/m” remains.

缶内面相当面においてfree−5n残留量が2001
!1g/l112未溝の場合、材料/極軸界面の接触抵
抗が高く、良好な溶接性を確保することはできない。ま
た、耐食性の観点からもfree−5n残留量が少ない
ということは、犠牲防食作用が低下し耐食性が劣化する
。一方、free−5n残留量が2500mg/m2を
越えると、材料/極軸界面での接触抵抗は充分低減し良
好な溶接性が確保できる。更に、耐食性も充分良好な性
能が確保される。しかし、free−Sn残留量が多く
なると接触抵抗の低減効果および耐食性の向上効果が飽
和するとともに、塗装後の塗膜硬度も柔らかく、製缶加
工時に傷が付き易くなるため耐食性も劣化する。このよ
うに、缶内面側において特に良好な溶接性を発揮し、塗
膜硬度の劣化も起こらない適正なfree−5n残留量
は200〜25QOmg/m”である。
The amount of free-5n remaining on the surface equivalent to the inner surface of the can is 2001
! In the case of 1 g/l112 without grooves, the contact resistance at the material/polar axis interface is high and good weldability cannot be ensured. Moreover, from the viewpoint of corrosion resistance, a small residual amount of free-5n means that the sacrificial anticorrosion effect decreases and the corrosion resistance deteriorates. On the other hand, when the free-5n residual amount exceeds 2500 mg/m2, the contact resistance at the material/polar axis interface is sufficiently reduced and good weldability can be ensured. Furthermore, sufficiently good corrosion resistance performance is ensured. However, when the amount of free-Sn remaining increases, the effect of reducing contact resistance and the effect of improving corrosion resistance become saturated, and the coating film hardness after painting is also soft, making it easy to be scratched during can manufacturing, so that corrosion resistance also deteriorates. As described above, an appropriate residual amount of free-5n that exhibits particularly good weldability on the inner surface of the can and does not cause deterioration of coating hardness is 200 to 25 QOmg/m''.

次に、缶外面相当面においては極論径が内面側極論径よ
り大きいので、缶内面側はどfree−5n残留量を多
く必要としない。しかし、free−5n残留量が50
11g/112未満では、材料/極軸界面での接触抵抗
が大きく、局部発熱による散りの発生が起き易くなり溶
接性を劣化する。更に、耐錆性の観点からもfree−
5n残留量が少なくなると、地鉄の露出面積が大きくな
り、好ましくない、一方、free−5n残留量が20
0hg/a”を越えると、良好な溶接性、耐錆性は確保
できるがその効果は飽和しまた経済的メリットもなくな
る。
Next, since the extreme diameter on the surface equivalent to the outer surface of the can is larger than the extreme diameter on the inner surface, a large amount of free-5n residual is not required on the inner surface of the can. However, the residual amount of free-5n is 50
If it is less than 11 g/112, the contact resistance at the material/polar axis interface is large, and expulsion is likely to occur due to local heat generation, resulting in deterioration of weldability. Furthermore, from the perspective of rust resistance, free-
When the residual amount of free-5n decreases, the exposed area of the base metal increases, which is undesirable.On the other hand, when the residual amount of free-5n decreases
If it exceeds 0hg/a'', good weldability and rust resistance can be ensured, but the effects are saturated and there is no economic advantage.

したがって、缶外面側において適正なfree−5n残
留量は50〜200hg/m”である。
Therefore, the appropriate amount of free-5n remaining on the outer surface of the can is 50 to 200 hg/m''.

このように、極薄材で良好な溶接性を発揮する溶接缶用
材料には塗装焼き付け後に残留するtree−5n量が
最も大きな影響を与えている。しかし、耐食性、耐錆性
、更には経済的な観点から、できるだけ少ない錫メッキ
量で塗装焼き付け後のfree−5n残留量を確保する
ために適正な下地処理を施すことが望ましい。
As described above, the amount of tree-5n remaining after baking the paint has the greatest influence on the material for welded cans, which is extremely thin and exhibits good weldability. However, from the viewpoint of corrosion resistance, rust resistance, and economical aspects, it is desirable to perform appropriate surface treatment to ensure the amount of free-5n remaining after baking the paint with as little tin plating as possible.

次に、この適正な下地処理について詳細に説明する。Next, this appropriate base treatment will be explained in detail.

錫メッキ層の適正な下地処理として、Ni−Fe−5n
合金層あるいはFe−5n合金層を施す、 Ni−Fe
−5n合金下地処理は、錫メッキ量が少ない領域で良好
な性能を発揮するのに特に有効である。錫メッキ量が多
い領域でもNf−Fe−5n合金下地処理は施した方が
好ましいが、実用的にはさほど大きな差は認められない
、また、Snメッキ量の多い領域では、Niを含む合金
層を形成する大きな効果は、特に認められないので、合
金層としてはメッキ原板に直接Snメッキを施し、Fa
−5n合金層を形成させる。Snメッキ量が多い領域で
はFe−5n合金層でも塗装焼き付け後free−5n
が充分残留し、良好な溶接性は確保でき、又、耐食性、
耐錆性も良好である。
As an appropriate base treatment for the tin plating layer, Ni-Fe-5n
Ni-Fe with alloy layer or Fe-5n alloy layer applied
-5n alloy undercoating is particularly effective in providing good performance in areas where the amount of tin plating is low. Although it is preferable to perform Nf-Fe-5n alloy undercoating even in areas where there is a large amount of tin plating, there is not a very large difference in practical terms. Since no significant effect was observed in forming the alloy layer, Sn plating was applied directly to the plated original plate, and the Fa
-5n alloy layer is formed. In areas with a large amount of Sn plating, even the Fe-5n alloy layer is free-5n after baking the paint.
remains, ensuring good weldability, corrosion resistance,
Rust resistance is also good.

しかし、経済的な観点からは、高価な錫を節約可能なで
きるだけ少ない錫メッキ量で良好な溶接性、耐食性、耐
錆性を確保しなくてはならず、これから述べるNi−F
e−5n合金の下地処理が重要である。
However, from an economic point of view, it is necessary to ensure good weldability, corrosion resistance, and rust resistance with as little tin plating as possible to save expensive tin.
Surface treatment of e-5n alloy is important.

Ni−Fe−5n合金層を錫メッキ層の下地処理として
設ける目的衣の3点である。
These are three points for the purpose of providing a Ni-Fe-5n alloy layer as a base treatment for a tin plating layer.

■ Ni−Fe−5n合金下地処理を施すと、塗装焼き
付け時に錫メッキ層と原板素地との熱拡散が抑制される
効果が得られ、Ni−Fe−5n合金下地処理が施され
ない場合に比べて、合金化されないfree−5n残留
量が多い。
■ Applying the Ni-Fe-5n alloy base treatment has the effect of suppressing heat diffusion between the tin plating layer and the base plate during paint baking, compared to the case where the Ni-Fe-5n alloy base treatment is not applied. , there is a large amount of unalloyed free-5n remaining.

その結果、軟質、低融点のfree−5nがより多く存
在するため、材料/極論界面の接触抵抗が砥下し、良好
な溶接性を確保することが容易となる。また、同一の錫
メッキ量を施した場合、free−5n残留量が多いと
錫金属の軟質性から製缶加工性が有利であり、加工部で
の優れた耐錆性が得られる。
As a result, since more free-5n, which is soft and has a low melting point, is present, the contact resistance at the material/extreme interface is reduced, making it easy to ensure good weldability. Furthermore, when the same amount of tin plating is applied, if the amount of free-5n remaining is large, the softness of the tin metal makes it easier to make cans, and excellent rust resistance can be obtained in the processed parts.

■ Ni−Fe−5n合金層はFe−5n合金層に比べ
、均一で緻密であることから缶内容物中での錫メッキ層
の溶出速度が低減され、同−free−Sn残留量の場
合、Ni−Fe−5n合金下地処理を施した方が錫金属
の犠牲防食能が長時間維持され、缶寿命が長くなる。更
には、犠牲防食作用のない内容物中で錫メッキ層あるい
は塗膜に欠陥が生じた場合、又、外面側で錫メッキ層あ
るいは塗膜に欠陥が生じた場合でも、鉄の溶出を防止し
て、耐食性および耐錆性を向上する。
■ Since the Ni-Fe-5n alloy layer is more uniform and dense than the Fe-5n alloy layer, the elution rate of the tin plating layer in the can contents is reduced, and for the same -free-Sn residual amount, When the Ni-Fe-5n alloy base treatment is applied, the sacrificial anticorrosion ability of tin metal is maintained for a long time, and the life of the can is extended. Furthermore, even if a defect occurs in the tin plating layer or paint film in the content that does not have sacrificial corrosion protection, or if a defect occurs in the tin plating layer or paint film on the outer surface, it will prevent the elution of iron. Improves corrosion resistance and rust resistance.

■ Ni−Fe−5n合金層は比較的硬質である。従っ
て、製缶加工時あるいは缶体の輸送時などにおいて、塗
膜の傷付きが防止され、たとえ傷付きが生じても硬質の
Ni−Fe−5n合金層が存在するため鋼素地まで到達
する傷が付きにくく、塗膜後の耐食性及び耐錆性を向上
させる。
(2) The Ni-Fe-5n alloy layer is relatively hard. Therefore, the paint film is prevented from being scratched during can manufacturing or transportation of the can body, and even if scratches occur, the presence of the hard Ni-Fe-5n alloy layer prevents the scratches from reaching the steel base. It is difficult to stick to and improves corrosion and rust resistance after coating.

このような効果のある適正なNi−Fe−5n合金層を
形成するための方法は、本発明においては特に規制する
ものではないが、以下のような方法で形成するのが好ま
しい。
Although the method for forming an appropriate Ni-Fe-5n alloy layer having such effects is not particularly limited in the present invention, it is preferable to form it by the following method.

■ 電気メッキ法により、鋼板表面に旧メッキ、Ni−
Fe合金メッキあるいはNi−5n合金メッキを施し、
その上層に本発明の被膜構成を得るための錫メッキを施
し、リフロー処理を行りてNi−Fe−5n合金層を形
成する、あるいは塗装焼き付け時の加熱処理を利用して
Ni−Fe−5n合金層を形成する方法■ 電気メッキ
法により、鋼板表面にNiメッキ、Ni−Fe合金メッ
キ、Ni−5n合金メッキを施してから、還元性雰囲気
で拡散処理を施してから、その−うえに錫メッキを行い
、リフロー処理を施してNi−Fe−5n合金層を形成
する、あるいは塗膜焼き付け時の加熱処理を利用してN
i−Fe−5n合金層を形成する方法などが採用される
■ By electroplating, the old plating and Ni-
Fe alloy plating or Ni-5n alloy plating is applied,
The upper layer is tin-plated to obtain the coating structure of the present invention, and a Ni-Fe-5n alloy layer is formed by performing reflow treatment, or by using heat treatment during paint baking to form a Ni-Fe-5n alloy layer. Method of forming an alloy layer ■ Apply Ni plating, Ni-Fe alloy plating, or Ni-5n alloy plating to the surface of a steel plate by electroplating, then perform a diffusion treatment in a reducing atmosphere, and then add tin on top. Plating and reflow treatment to form a Ni-Fe-5n alloy layer, or heat treatment during coating baking to form a Ni-Fe-5n alloy layer.
A method such as forming an i-Fe-5n alloy layer is adopted.

特に、Ni系下地処理層と錫メッキ層が設けてから、リ
フロー処理を施してNi−Fe−5n合金層を形成する
場合は、錫メッキ層の表面にフラックス処理を施してか
ら、錫金属の融点(232℃)直上の235〜350℃
の温度範囲で1〜10秒程度の加熱溶融処理を行って容
易に形成される。また、このフラックスの種類によって
、リフロー処理後の外観が影響される。金属光沢を有す
る外観を得るには、フラックスとして錫メッキ浴の濃度
を均一に希釈した溶液を用い、また白色マット状の外観
を得る場合には水道水、蒸留水あるいは錫メッキ浴を1
71O以下に希釈した溶液などを用いれば良い。
In particular, when performing reflow treatment to form a Ni-Fe-5n alloy layer after providing a Ni-based base treatment layer and a tin plating layer, flux treatment is performed on the surface of the tin plating layer, and then tin metal 235-350℃ just above the melting point (232℃)
It is easily formed by heating and melting for about 1 to 10 seconds at a temperature range of . Furthermore, the appearance after reflow treatment is affected by the type of flux. To obtain an appearance with metallic luster, use a uniformly diluted solution of the tin plating bath as the flux, and to obtain a white matte appearance, use tap water, distilled water, or a tin plating bath at one time.
A solution diluted to 71O or less may be used.

本発明のように板厚0.10〜(1,18mmの鋼板を
用いる場合には、缶強度を確保するためには前述したよ
うに2CR法により製造された原板を用いるのが好まし
い、従って、焼鈍拡散処理の冷間圧延によってNi系下
地処理層が破壊される可能性があるので、拡散処理法よ
りも2CR圧延後にメッキ処理を行うことが下地処理と
しては好ましい。
When using a steel plate with a thickness of 0.10 to 1.18 mm as in the present invention, it is preferable to use an original plate manufactured by the 2CR method as described above in order to ensure can strength. Therefore, Since the Ni-based base treatment layer may be destroyed by the cold rolling of the annealing diffusion treatment, it is preferable as the base treatment to perform the plating treatment after 2CR rolling rather than the diffusion treatment method.

更に、Ni−Fe−5n合金層の厚さについては、リフ
ロー処理時の温度、加熱時間および下地処理として施さ
れるNfメッキ、Ni−Fe合金メッキ、Nf−5n合
金メッキ層の組成メッキ量により、各々任意に調整可能
である。また、リフロー処理を施さない場合には、塗装
焼き付けによる加熱条件は使用する塗料により決まって
しまうが、下地処理層の組成及び付着量によりNi−F
e−5n合金層は任意に調整可能である。
Furthermore, the thickness of the Ni-Fe-5n alloy layer depends on the temperature during reflow treatment, heating time, and the compositional plating amount of Nf plating, Ni-Fe alloy plating, and Nf-5n alloy plating layer applied as base treatment. , each can be adjusted arbitrarily. In addition, if reflow treatment is not performed, the heating conditions for paint baking are determined by the paint used, but the composition and amount of adhesion of the base treatment layer determines the Ni-F
The e-5n alloy layer can be adjusted arbitrarily.

Nt4a−5n合金層の被覆量は特に規制されるもので
はないが、合金層のピンホールを減少させ、m密な合金
層を形成せしめ、良好な性能を確保するには250mg
/m”以上、また製缶加工時において硬質なNi−Fe
−Sn合金層にクラックか発生し上層free−5n層
あるいは塗膜表面にまで達するクランクの発生源になる
のを防止するためには1000mg/m’以下が望まし
い。
The coating amount of the Nt4a-5n alloy layer is not particularly restricted, but in order to reduce pinholes in the alloy layer, form a dense alloy layer, and ensure good performance, it is 250 mg.
/m” or more, and hard Ni-Fe during can manufacturing.
In order to prevent cracks from occurring in the -Sn alloy layer and reaching the upper free-5n layer or the coating surface, it is desirable that the amount is 1000 mg/m' or less.

Snメッキ量の多い領域ではFe−Sn合金層が生成す
るが、Fe−Sn合金層はNi−Fe−Sn合金層に比
べて粗であるため、良好な性能を確保するにはその被覆
量は400mg/m2以上、又、製缶加工時にクランク
が発生せず、耐食性を劣化させないためには1400m
g/+”以下の被膜量が望ましい。
A Fe-Sn alloy layer is formed in areas with a large amount of Sn plating, but since the Fe-Sn alloy layer is coarser than the Ni-Fe-Sn alloy layer, the coating amount must be limited to ensure good performance. 400mg/m2 or more, and 1400m to prevent cranking during can manufacturing and to prevent deterioration of corrosion resistance.
A coating amount of less than g/+" is desirable.

引き続き、このような被覆層を有した鋼板の錫メッキ層
に対して、塗料密着性、塗装耐食性の向上を目的として
クロメート処理を施す、クロメート被覆は缶内面に対し
て缶内容物が塗膜を通過して塗膜下で腐食が進行するア
ンダーカッティングコロ−ジョンの防止、缶外面に対し
ては貯蔵時に塗膜下で発生する糸状錆、いわゆるフィリ
フォームコロージBンなどの耐錆性の向上に非常に効果
がある。
Subsequently, the tin-plated layer of the steel plate with such a coating layer is subjected to chromate treatment for the purpose of improving paint adhesion and paint corrosion resistance. Prevents undercutting corrosion, which occurs when the paint passes through and progresses under the paint film, and improves the rust resistance of filamentous rust that occurs under the paint film during storage on the outside of the can, such as so-called filiform corrosion B. is very effective.

このようなりロメート被膜が形成されていることにより
、長時間にわたり塗膜の密着性が劣化せず、良好な耐食
性、耐錆性が保持される。
By forming such a romate film, the adhesion of the coating does not deteriorate over a long period of time, and good corrosion resistance and rust resistance are maintained.

また、クロメート被膜は硫黄化合物を含む食品、例えば
魚肉、畜産物などの場合に見られる鋼板の表面の黒変即
ち硫化黒変を防止する効果が大きい、このように、クロ
メート被膜は特に塗装されて用いられる場合には性能向
上に効果が大きいが、溶接性に対してはマイナス要因で
ある。ここで言うクロメート被覆とは水和酸化クロム単
一の被膜即ち本来のクロメート被膜と、いま一つは下層
に金属クロム層、上層に水和酸化クロム層の二層よりな
る被膜の二つの場合を指している。水和酸化クロム被膜
は電気的に絶縁体のため電気抵抗が非常に高く、金属ク
ロムも融点が高くかつ電気抵抗も高いので、両者とも溶
接性を劣化せしめるマイナス要因である。
In addition, the chromate film is highly effective in preventing blackening, that is, sulfide blackening, on the surface of steel sheets that occurs when foods containing sulfur compounds, such as fish meat and livestock products, are used. When used, it is highly effective in improving performance, but it is a negative factor in weldability. The chromate coating referred to here refers to two cases: one is a single coating of hydrated chromium oxide, that is, the original chromate coating, and the other is a coating consisting of two layers: a metallic chromium layer on the bottom layer and a hydrated chromium oxide layer on the top layer. pointing. Since the hydrated chromium oxide film is an electrical insulator, it has very high electrical resistance, and metallic chromium also has a high melting point and high electrical resistance, both of which are negative factors that deteriorate weldability.

そのため、良好な塗装性能と実用的に溶接性を劣化せし
めない適正なりロム付着量が非常に重要となる0本発明
においてはクロム付着量は金属クロム換算で片面当たり
1〜30mg/m” 、好ましくは5〜2011g/l
112である。
Therefore, it is very important to have good coating performance and an appropriate amount of chromium that does not deteriorate practical weldability.In the present invention, the amount of chromium deposited is preferably 1 to 30 mg/m per side in terms of metallic chromium. is 5-2011g/l
It is 112.

即ち、クロム付着量が1 tag/+2未満では、塗料
密着性の向上、アンダーカッチ°イングコロージョンな
どの塗膜下腐食の防止に効果が得られないので、5 m
g/m”以上のクロム付着量が望ましい。一方、30m
g/m”を越えると接触抵抗が著しく増加し、局部的な
発熱による敗りが発生し易くなり、溶接性が劣化する。
That is, if the amount of chromium deposited is less than 1 tag/+2, it will not be effective in improving paint adhesion or preventing corrosion under the paint film such as undercutting corrosion.
It is desirable that the amount of chromium deposited is 30 g/m” or more.
If it exceeds "g/m", the contact resistance will increase significantly, failure will likely occur due to local heat generation, and weldability will deteriorate.

そのため、クロム付着量は30mg/m2以下、好まし
くは20mg/m2以下である。
Therefore, the amount of chromium deposited is 30 mg/m2 or less, preferably 20 mg/m2 or less.

クロメート処理は各種のクロム酸のナトリウム塩、カリ
ウム塩、アンモニウム塩の水溶液による浸漬処理、スプ
レィ処理、電解処理など、いずれの方法で行っても良い
が、特に陰極電解処理が優れている。とりわけ、クロム
酸にso、”−イオン、F−イオン(錯イオンを含む)
あるいはそれらの混合物を添加した水溶液中での陰極電
解処理が最も優れている。クロム酸の濃度は特に規制し
ないが、20〜200 ginの範囲で充分である。
The chromate treatment may be carried out by any method such as immersion treatment with aqueous solutions of various sodium salts, potassium salts, and ammonium salts of chromic acid, spray treatment, electrolytic treatment, etc., but cathodic electrolytic treatment is particularly excellent. In particular, chromic acid contains so, "- ions, F- ions (including complex ions)
Alternatively, cathodic electrolytic treatment in an aqueous solution to which a mixture thereof is added is most excellent. The concentration of chromic acid is not particularly limited, but a range of 20 to 200 gin is sufficient.

添加するアニオンの量はCr”の17300〜1/25
好ましくは17200〜175Gの時、最良のクロメー
ト被膜が得られる。アニオンの量がCr”の1/300
以下では均質かつ均一で塗装性能に大きく影響する良質
のクロメート被膜が得られない、また、1725以上は
、生成するクロメート被膜中に取り込まれるアニオンの
量が多くなり、塗装性能、特に塗料二次密着性が劣化す
る。添加されるアニオンは硫酸、硫酸クロム、弗化アン
モン、弗化ソーダの化合物などの形態でクロム酸浴中へ
添加される。
The amount of anion added is 17300 to 1/25 of Cr”
Preferably, the best chromate coating is obtained between 17,200 and 175G. The amount of anion is 1/300 of Cr”
If it is less than 1725, it will not be possible to obtain a high-quality chromate film that is homogeneous and uniform and will greatly affect coating performance, and if it is more than 1725, the amount of anions incorporated into the formed chromate film will be large, which will affect coating performance, especially secondary paint adhesion. Sexuality deteriorates. The anions to be added are added to the chromic acid bath in the form of compounds such as sulfuric acid, chromium sulfate, ammonium fluoride, and sodium fluoride.

浴温は特にに規制するものではないが、30〜70℃の
範囲が作業性の点から適切な温度範囲である。陰極電解
電流密度は5〜100A/dm’の範囲で充分である。
Although the bath temperature is not particularly limited, a range of 30 to 70°C is an appropriate temperature range from the viewpoint of workability. A cathode electrolytic current density of 5 to 100 A/dm' is sufficient.

処理時間は、前記処理条件の任意の組み合わせにおいて
、クロム付着量が前記に示した1〜30mg/m”の範
囲に入るように設定する。
The treatment time is set so that the amount of chromium deposited falls within the range of 1 to 30 mg/m'' shown above under any combination of the treatment conditions.

特に本発明においてはクロム酸水溶液にso4”−又は
F−イオンを上記範囲で添加し電流密度50〜100A
/dm’で0.2sec以下の短時間処理を行うのが好
ましい。この処理により金属クロムが錫メッキ層上に5
〜15mg/m”析出し、その上層に水和酸化クロム層
からなる二層型クロメート被膜が生成される。この水和
酸化クロム層は、電解処理後の水溶液中での浸漬時間の
調整あるいは別に設けられた処理タンクで濃度の異なる
クロム酸−アニオン系処理浴での溶解処理によりその被
膜量が調整される。
In particular, in the present invention, so4"- or F- ions are added to the chromic acid aqueous solution in the above range, and the current density is 50 to 100 A.
It is preferable to perform short-time processing of 0.2 sec or less at /dm'. Through this treatment, 55% of metallic chromium is deposited on the tin plating layer.
~15mg/m" is precipitated, and a two-layer chromate film consisting of a hydrated chromium oxide layer is formed on the upper layer. This hydrated chromium oxide layer can be formed by adjusting the immersion time in the aqueous solution after electrolytic treatment or by The coating amount is adjusted by dissolution treatment in chromic acid-anion treatment baths having different concentrations in a treatment tank provided.

この金属クロム層が錫メッキ層表面に均一に被覆するこ
とによりて、塗装性能が著しく向上し、特に錫メッキ後
リフロー処理を行い、これらのクロメート処理を施した
ものが、更に一段と塗装性能の向上が著しい、容器用素
材として使用される場合、クエン酸などの有機酸水溶液
を含む腐食環境では、塗膜を通して浸入してくる腐食水
溶液が塗膜下で錫メッキ層を腐食させるため、金属クロ
ム層を析出させ、腐食水溶液が錫金属表面に到達するの
を抑制する効果′が顕著である。
By uniformly coating the surface of the tin-plated layer with this metallic chromium layer, the coating performance is significantly improved.In particular, the coating performance is further improved when reflow treatment is performed after tin plating and these chromate treatments are applied. When used as a material for containers, the metal chromium layer is exposed to corrosive environments containing aqueous solutions of organic acids such as citric acid. The effect of inhibiting the aqueous corrosive solution from reaching the tin metal surface is remarkable.

そして、上記付着量の範囲において二層型クロメート被
膜における金属クロム層と水和酸化クロム層の比が0.
6≦水和酸化クロム/金属クロム≦3の範囲が好ましい
、即ち、金属クロムに対して水和酸化クロムの量が少な
い場合、金属クロム層上に水和酸化クロム層の均一被覆
性が劣るため、塗料密着性が劣化する傾向にある。一方
、金属クロム層に比べ水和酸化クロム層が多い場合、水
和酸化クロム層中に含有されるアニオンおよびCrトイ
オンが多くなり、塗装後高温環境にさらされた場合にこ
れらイオンの溶出が起こり、塗膜下で微小膨れ(いわゆ
るブリスター)が発錆し易くなるので好ましくない、従
って、水和酸化クロムと金属クロムの構成比率を上記の
ごとく0.6〜3の範囲に設定するのが好ましい。
The ratio of the metal chromium layer to the hydrated chromium oxide layer in the two-layer chromate coating is 0.
The range of 6≦hydrated chromium oxide/metallic chromium≦3 is preferable, that is, if the amount of hydrated chromium oxide is small relative to metal chromium, the uniform coverage of the hydrated chromium oxide layer on the metal chromium layer will be poor. , paint adhesion tends to deteriorate. On the other hand, if the hydrated chromium oxide layer is larger than the metal chromium layer, the anions and Cr ions contained in the hydrated chromium oxide layer will increase, and these ions will elute when exposed to a high temperature environment after painting. This is undesirable because minute blisters (so-called blisters) are likely to rust under the paint film.Therefore, it is preferable to set the composition ratio of hydrated chromium oxide to metallic chromium in the range of 0.6 to 3 as described above. .

[実 施 例] 以下に本発明の実施例について述べ、その結果を第1表
に示す。
[Example] Examples of the present invention will be described below, and the results are shown in Table 1.

冷間圧延もしくは焼鈍後の2回圧延により、所定の板厚
に調整したメッキ原板を5%苛性ソーダ中で電解脱脂し
水洗後10%硫酸中で電解酸洗し、表面活性死後必要に
応じて下地処理を行った。下地処理を行う場合には■−
(イ)、(0)、(八)に示す条件で各々Niメッキ、
Ni−Fe合金メッキ、Nf−5n合金メッキを行った
。尚、熱拡散処理は冷間圧延後■−(イ)、(ロ)、(
八)に示す条件で各種下地処理を行フた後■−(ニ)に
示す焼鈍条件で熱拡散処理を行った。
The plated original plate, which has been adjusted to a specified thickness by cold rolling or rolling twice after annealing, is electrolytically degreased in 5% caustic soda, washed with water, electrolytically pickled in 10% sulfuric acid, and after surface activation, the base plate is prepared as necessary. processed. ■- When performing surface treatment
Ni plating under the conditions shown in (a), (0), and (8), respectively.
Ni-Fe alloy plating and Nf-5n alloy plating were performed. In addition, heat diffusion treatment is performed after cold rolling ■-(A), (B), (
After various surface treatments were performed under the conditions shown in 8), thermal diffusion treatment was performed under the annealing conditions shown in ①-(d).

各種下地処理後、■に示す条件で錫メッキを施し、引き
続き必要に応じてリフロー処理を行った。そして、■−
■〜Oに示す処理浴でクロメート被膜を生成させたもの
を作成した。
After various surface treatments, tin plating was performed under the conditions shown in (2), followed by reflow treatment if necessary. And ■-
A chromate film was produced using the treatment baths shown in (1) to (0).

■各種下地処理条件 (イ)  Niメッキ下地処理 メッキ浴組成  NiSO4・6H2ONiC文2・6
日20 H,BO。
■Various base treatment conditions (a) Ni plating base treatment plating bath composition NiSO4/6H2ONiC text 2/6
Day 20 H, BO.

メッキ浴温 50℃ 250g/文 50g/立 25g/交 電流密度 1〜20A/d+a” (電解時間はNiメッキ量に応
じて調整) (ロ)  Ni−Fe合金メッキ下地処理メッキ浴組成 NiSO4・6H2O N*C9t・66H2 O75/1 140 gel FeSO4・7Hz0 70〜170g/fi(合金組
成に応じて変更) H,BO。
Plating bath temperature 50℃ 250g / 50g / vertical 25g / alternating current density 1 to 20A / d+a'' (Electrolysis time is adjusted according to the amount of Ni plating) (b) Ni-Fe alloy plating base treatment Plating bath composition NiSO4 6H2O N*C9t・66H2 O75/1 140 gel FeSO4・7Hz0 70-170g/fi (changed according to alloy composition) H, BO.

メ キ浴温 50℃ て調整) (八)  (Ni−5n)合金メッキ下地処理メッキ浴
組成  Snr:1x NIC交2・6H2O N)1.HF2 メッキ浴温  50℃ 40g/文 50g/1 300g/交 55g/1 流 密 度 2〜30^/dm” (電解時間は Ni−5n合金メッキ量に応じ て調整) (:)熱拡散条件 各種下地処理後衣に示す条件で熱拡散処理を行った。
(8) (Ni-5n) Alloy plating base treatment Plating bath composition Snr: 1x NIC 2/6H2O N) 1. HF2 plating bath temperature 50℃ 40g/50g/1 300g/55g/1 Flow density 2~30^/dm" (Electrolysis time is adjusted according to the amount of Ni-5n alloy plating) (:) Heat diffusion conditions Various bases After treatment, heat diffusion treatment was performed under the conditions shown in the figure.

焼鈍温度 焼鈍時間 ガス雰囲気 ′550〜700  ℃ 20〜80sec 2〜8%水素+92〜98%窒 素+不可避的不純物 ■錫メッキ条件 メッキ浴組成 硫酸錫 添加剤 メッキ浴温 50℃ 電流密度15〜25^/d112 ■クロメート処理浴 ■Crys     100g/1 so4’−o、6g/交 ■Na2Cr20y   24g/l pH4,5 Q Crys     80g/1 504’−o、osg/又 NazSfFa   2.Sg/l NH4F     0.5g/12 上記処理材について、以下に示す(^)〜()I)20
〜30g/1 1〜5g/2 の項目について実施し、その性能を評価した。
Annealing temperature Annealing time Gas atmosphere '550-700℃ 20-80sec 2-8% hydrogen + 92-98% nitrogen + inevitable impurities ■Tin plating conditions Plating bath composition Tin sulfate additive Plating bath temperature 50℃ Current density 15-25^ /d112 ■Chromate treatment bath ■Crys 100g/1 so4'-o, 6g/cross ■Na2Cr20y 24g/l pH4,5 Q Crys 80g/1 504'-o, osg/also NazSfFa 2. Sg/l NH4F 0.5g/12 The above treated materials are shown below (^) ~ ()I)20
-30g/1 1 to 5g/2 items were carried out and the performance was evaluated.

(A)接触抵抗の測定 シーム溶接性に大きな影響を与える接触抵抗値をCF型
電極のスポット溶接機を用いて測定した。測定用試験片
は、塗装焼き付けを想定して205℃x 10m1n 
x 3回のbakingを行い、材料/材料界面で缶内
面側と外面側が接触するように試験片をセットした。
(A) Measurement of contact resistance The contact resistance value, which has a large effect on seam weldability, was measured using a spot welder with a CF type electrode. The test piece for measurement is 205℃ x 10m1n, assuming paint baking.
Baking was performed three times, and the test piece was set so that the inner and outer sides of the can were in contact at the material/material interface.

CF型電極を用いた静抵抗測定方法を以下に示す、用い
た電極はクロム銅製で先端径4.5■φのものである。
The method for measuring static resistance using a CF type electrode is shown below. The electrode used is made of chromium copper and has a tip diameter of 4.5 mm.

試験片2枚を電極間に配置し、エアーシリンダーにより
200kgfに加圧した状態で電極間にIAの低電流を
通電し、その時の電極/電極間、電極/m板間、鋼板/
鋼板間の電圧降下をナノボルトメーターで測定すること
で、冷間での静抵抗を求めた。
Two test pieces were placed between the electrodes, and a low current of IA was applied between the electrodes under a pressurized state of 200 kgf using an air cylinder.
The cold static resistance was determined by measuring the voltage drop between the steel plates with a nanovoltmeter.

CB)シーム溶接性 試験片は、塗装焼討付けを想定して205℃×10m1
n X 3回のbakingを行い、次の溶接条件でシ
ーム溶接性を評価した。
CB) Seam weldability test piece was prepared at 205℃ x 10m1 assuming paint burning.
Baking was performed three times, and seam weldability was evaluated under the following welding conditions.

ラップ代0.5a+m、加圧力45kgf、溶接スピー
ド420缶/winの条件で、電流を変更して溶接を実
施し、十分な溶接強度が得られる最小電流値と「散り」
なとの溶接欠陥が目立ち始める最大電流値からなる適性
電流範囲の広さ、および溶接欠陥の発生状況から総合的
に判断して評価した。
Welding was performed by changing the current under the conditions of lap thickness 0.5a+m, pressurizing force 45kgf, and welding speed 420 cans/win, and the minimum current value and "splash" that can obtain sufficient welding strength were determined.
The evaluation was made comprehensively based on the width of the appropriate current range, which is the maximum current value at which welding defects begin to become noticeable, and the situation in which welding defects occur.

(C)塗膜硬度テスト 缶外面の塗膜の傷付き程度を評価するため、缶外面に相
当する面にクリヤーラッカーを40ffig/dm2塗
布し、180 t x 10m1n乾燥硬化した。
(C) Paint film hardness test In order to evaluate the extent of scratches on the paint film on the outer surface of the can, clear lacquer was applied at 40 ffig/dm2 on the surface corresponding to the outer surface of the can, and dried and cured at 180 t x 10 m1n.

引き続き、各種硬度の鉛筆の芯の先端をフラットに調整
した後、試験片に対し45°の角度で押し当て、50m
m長さの傷付きテストを行った。
Subsequently, after adjusting the tip of pencil lead of various hardness to be flat, press it against the test piece at an angle of 45°, and hold it for 50 m.
A scratch test with a length of m was conducted.

(D)基盤目テスト 試験片の缶内面に相当する面にエポキシフェノール系塗
料を55mg/di’塗布し、205℃x lomin
乾燥硬化した。更に缶外面に相当するクリヤーラッカー
を40mg/dm2塗布し、180℃x lomin乾
燥硬化した。引き続き、各々の面に1mm間隔でスクラ
ッチを入れ、計100個の基盤目を作成し、速やかにテ
ープ剥離し、その剥離状況を評価した。
(D) Base grain test Apply 55 mg/di' of epoxy phenol paint to the surface corresponding to the inner surface of the can of the test piece, and heat at 205°C x lomin.
Dry and harden. Further, a clear lacquer corresponding to the outer surface of the can was applied at a rate of 40 mg/dm2, and dried and cured at 180°C x lomin. Subsequently, scratches were made on each surface at 1 mm intervals to create a total of 100 base marks, and the tape was immediately peeled off, and the peeling status was evaluated.

(E)UCC(アンダーカッティングコロ−ジョン)評
価テスト 缶内面に相当する面の塗装後耐食性を評価するため、缶
内面側に相当する面に缶用エポキシフェノール(フェノ
ールリッチ)!!!料を片面当たり50mg/da2塗
布し、205℃x 10m1nの焼き付けを行い、次い
で180℃x 20mInの空焼きを行りた。その後、
塗装板の鉄面に達するようにスクラッチを入れ、1.5
%クエン酸−1,5%食塩の混合液である試験液中に大
気開放下で55℃×4日間浸漬した。試験終了後、速や
かにスクラッチ部および平面部をテープ剥離して、スク
ラッチ部近傍の塗膜剥離状況、スクラッチ部のピッティ
ング状況および平面部の塗膜剥離状況を判定して総合的
に評価した。
(E) UCC (Undercutting Corrosion) Evaluation Test In order to evaluate the corrosion resistance after painting on the surface corresponding to the inner surface of the can, epoxy phenol for cans (phenol rich) was applied to the surface corresponding to the inner surface of the can! ! ! The material was applied at 50 mg/da2 per side, and baked at 205°C x 10ml, followed by dry baking at 180°C x 20ml. after that,
Make a scratch to reach the iron surface of the painted board, 1.5
% citric acid and 1.5% common salt in a test solution at 55° C. for 4 days in the open atmosphere. After the test was completed, the scratched area and flat area were immediately peeled off with tape, and the peeling status of the paint film near the scratched area, the pitting status of the scratch area, and the peeling status of the paint film on the flat area were determined and comprehensively evaluated.

(F)耐硫化黒変性テスト 缶内面側に相当する面に(E) と同様の塗装を行い、
1を曲げを施した試験片を市販の鯖水煮を均一化したも
のの中に入れ、115℃x 90m1nのレトルト処理
を行った。試験後、曲げ加工部および平面部の硫化黒変
状況を評・価した。
(F) Apply the same coating as in (E) to the inner surface of the sulfurization-resistant blackening test can.
The test piece obtained by bending No. 1 was placed in a commercially available homogenized mackerel boiled in water, and subjected to retort treatment at 115° C. x 90 ml. After the test, the sulfide blackening status of the bent and flat parts was evaluated.

(G)  フィリフォームコロージョンテスト缶外面側
に相当する面の糸状錆び性を評価するため、クリヤーラ
ッカーを40mg/dl12塗布し、180℃X 10
Qlin乾燥硬化した。引き続き、ナイフで鉄面に達す
るスクラッチを入れ、35℃で5%の塩水噴霧を1時間
施し、速やかに水洗乾燥後25℃で相対湿度85%で2
週間放置し、糸状錆び性を評価した。
(G) Filiform corrosion test In order to evaluate the filiform rust on the surface corresponding to the outer surface of the can, 40 mg/dl12 of clear lacquer was applied and heated at 180℃
Qlin dry cured. Next, make a scratch that reaches the steel surface with a knife, spray with 5% salt water at 35℃ for 1 hour, immediately wash with water and dry, then dry at 25℃ and 85% relative humidity.
After being left for a week, the filamentous rust resistance was evaluated.

(H)実缶テスト 試験片の缶内面側に相当する面にエポキシフェノール系
塗料を55mg/dm’塗布し、205℃×10mfn
乾燥硬化した。更に、缶外面に相当する面にクリヤーラ
ッカーを40B/dm”i布し、180℃X 10m1
n乾燥硬化した。引き続き、シーム溶接機を用いて、缶
胴を製作し溶接部を塩ビゾル系樹脂で補修を行い、オレ
ンジジュースとコーラを充填後#25ブリキ製の缶蓋を
巻き絞め、38℃で12ケ月保管した。試験終了後、内
容物を取り出し、鉄溶出量および缶内面側(平坦部と溶
接部)の腐食状況を観察評価した。
(H) Apply 55mg/dm' of epoxy phenol paint to the surface corresponding to the inner surface of the actual can test specimen, and apply it at 205℃ x 10mfn.
Dry and harden. Furthermore, clear lacquer was applied to the surface corresponding to the outer surface of the can at 40B/dm"i, and the temperature was 180℃ x 10m1.
It was dried and cured. Next, a can body was manufactured using a seam welding machine, the welded part was repaired with PVC sol resin, and after filling with orange juice and cola, a #25 tin can lid was wrapped around it and stored at 38℃ for 12 months. did. After the test, the contents were taken out and the amount of iron eluted and the corrosion status of the inner surface of the can (flat parts and welded parts) were observed and evaluated.

[発明の効果] 本発明は極薄鋼板を使用し、充分広い適性溶接範囲を有
し、かつ良好な塗装性能と、塗装後耐食性を発揮する極
薄溶接缶用材料を有利に提供するものであり、顕著な効
果を示すものである。
[Effects of the Invention] The present invention advantageously provides a material for ultra-thin welded cans that uses ultra-thin steel plates, has a sufficiently wide suitable welding range, and exhibits good painting performance and corrosion resistance after painting. This shows a remarkable effect.

他4名4 others

Claims (1)

【特許請求の範囲】 1 鋼板厚0.10〜0.18mmの缶用メッキ原板の
缶内面相当面に塗装焼き付け後に合金化していない金属
錫が200〜2500mg/m^2、缶外面相当面に塗
装焼き付け後に合金化していない金属錫が50〜200
0mg/m^2残留し、内外両面にクロム換算付着量で
各々1〜30mg/m^2のクロメート被膜層を有する
ことを特徴とするシーム溶接性、塗料密着性および塗装
後耐食性に優れた極薄溶接缶用材料。 2 鋼板厚0.10〜0.18mmの缶用メッキ原板の
缶内面相当面に塗装焼き付け後にNi−Fe−Sn合金
層あるいはFe−Sn合金層が存在し、その上に合金化
していない金属錫が200〜2500mg/m^2残留
し、一方、缶外面相当面に塗装焼き付け後にNi−Fe
−Sn合金層あるいはFe−Sn合金層が存在し、その
上に合金化していない金属錫が50〜2000mg/m
^2残留し、さらに内外両面にクロム換算付着量で各々
1〜30mg/m^2のクロメート被膜層を有すること
を特徴とするシーム溶接性、塗料密着性および塗装後耐
食性に優れた極薄溶接缶用材料。
[Scope of Claims] 1. After baking the coating on the surface equivalent to the can inner surface of a plated original sheet for cans with a steel plate thickness of 0.10 to 0.18 mm, 200 to 2500 mg/m^2 of unalloyed metallic tin is added to the surface equivalent to the outer surface of the can. 50 to 200 unalloyed metal tin after painting baking
A pole with excellent seam weldability, paint adhesion, and post-painting corrosion resistance, with a chromate coating layer of 1 to 30 mg/m^2 in chromium equivalent on both the inner and outer surfaces, with a residual chromate content of 0 mg/m^2. Material for thin welded cans. 2. A Ni-Fe-Sn alloy layer or a Fe-Sn alloy layer is present on the surface corresponding to the inner surface of the can of a steel plate plate with a thickness of 0.10 to 0.18 mm after baking, and unalloyed metallic tin is present on the surface of the plated sheet for cans with a thickness of 0.10 to 0.18 mm. 200 to 2500 mg/m^2 remained, while Ni-Fe remained on the surface equivalent to the outer surface of the can after baking the paint.
- Sn alloy layer or Fe-Sn alloy layer is present, and unalloyed metallic tin is present on it at 50 to 2000 mg/m
An ultra-thin weld with excellent seam weldability, paint adhesion, and post-painting corrosion resistance, with a chromate coating layer on both the inner and outer surfaces with a chromate coating amount of 1 to 30 mg/m^2. Materials for cans.
JP63310888A 1988-12-08 1988-12-08 Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance Expired - Fee Related JP2583297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310888A JP2583297B2 (en) 1988-12-08 1988-12-08 Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310888A JP2583297B2 (en) 1988-12-08 1988-12-08 Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance

Publications (2)

Publication Number Publication Date
JPH02156096A true JPH02156096A (en) 1990-06-15
JP2583297B2 JP2583297B2 (en) 1997-02-19

Family

ID=18010589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310888A Expired - Fee Related JP2583297B2 (en) 1988-12-08 1988-12-08 Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance

Country Status (1)

Country Link
JP (1) JP2583297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734265A (en) * 1993-07-21 1995-02-03 Toyo Kohan Co Ltd Surface treated steel sheet for can excellent in weldability and production of welded can using the same
JP2011125930A (en) * 2011-01-11 2011-06-30 Jfe Steel Corp Method for deciding welding characteristic for tinned steel sheet for welded can

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481875B2 (en) * 2009-02-20 2014-04-23 Jfeスチール株式会社 Surface-treated steel sheet for welding can and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735693A (en) * 1980-08-08 1982-02-26 Nippon Steel Corp Plated steel plate of superior weldability
JPS5941495A (en) * 1982-09-02 1984-03-07 Kawasaki Steel Corp Surface treated steel plate for welded can
JPS6013098A (en) * 1983-07-05 1985-01-23 Kawasaki Steel Corp Production of surface treated steel sheet for seam welded can
JPS6029477A (en) * 1983-07-29 1985-02-14 Nippon Steel Corp Production of steel sheet for can vessel having excellent weldability and painting performance
JPS6033362A (en) * 1983-08-01 1985-02-20 Nippon Steel Corp Preparation of steel plate for can and container excellent in weldability
JPS60110881A (en) * 1983-11-18 1985-06-17 Kawasaki Steel Corp Manufacture of multiple-layer plated steel sheet for welded can
JPS634090A (en) * 1986-06-23 1988-01-09 Kawasaki Steel Corp Surface treated steel sheet for producing can
JPS634091A (en) * 1986-06-23 1988-01-09 Kawasaki Steel Corp Surface treated steel sheet for producing can
JPS6393894A (en) * 1986-10-06 1988-04-25 Kawasaki Steel Corp Steel sheet for can having excellent paint adhesiveness on outside surface
JPH0431039A (en) * 1990-05-29 1992-02-03 Tokiwa Chem Kogyo Kk Production of bright tape for molding

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735693A (en) * 1980-08-08 1982-02-26 Nippon Steel Corp Plated steel plate of superior weldability
JPS5941495A (en) * 1982-09-02 1984-03-07 Kawasaki Steel Corp Surface treated steel plate for welded can
JPS6013098A (en) * 1983-07-05 1985-01-23 Kawasaki Steel Corp Production of surface treated steel sheet for seam welded can
JPS6029477A (en) * 1983-07-29 1985-02-14 Nippon Steel Corp Production of steel sheet for can vessel having excellent weldability and painting performance
JPS6033362A (en) * 1983-08-01 1985-02-20 Nippon Steel Corp Preparation of steel plate for can and container excellent in weldability
JPS60110881A (en) * 1983-11-18 1985-06-17 Kawasaki Steel Corp Manufacture of multiple-layer plated steel sheet for welded can
JPS634090A (en) * 1986-06-23 1988-01-09 Kawasaki Steel Corp Surface treated steel sheet for producing can
JPS634091A (en) * 1986-06-23 1988-01-09 Kawasaki Steel Corp Surface treated steel sheet for producing can
JPS6393894A (en) * 1986-10-06 1988-04-25 Kawasaki Steel Corp Steel sheet for can having excellent paint adhesiveness on outside surface
JPH0431039A (en) * 1990-05-29 1992-02-03 Tokiwa Chem Kogyo Kk Production of bright tape for molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734265A (en) * 1993-07-21 1995-02-03 Toyo Kohan Co Ltd Surface treated steel sheet for can excellent in weldability and production of welded can using the same
JP2011125930A (en) * 2011-01-11 2011-06-30 Jfe Steel Corp Method for deciding welding characteristic for tinned steel sheet for welded can

Also Published As

Publication number Publication date
JP2583297B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
JPH0154437B2 (en)
US4790913A (en) Method for producing an Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability
JPH02156096A (en) Material for very thin welded can having superior seam weldability, adhesion to coating material and corrosion resistant after coating
JPS62297491A (en) Production of chromium electroplated steel sheet for vessel
JPH0140118B2 (en)
JPH0431039B2 (en)
JPH0826477B2 (en) Manufacturing method of Sn-based multi-layered steel sheet with excellent paint adhesion
JP3720961B2 (en) Steel plate for welding cans with excellent weldability, corrosion resistance, and adhesion
JPS5941495A (en) Surface treated steel plate for welded can
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JPH06293996A (en) Stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and adhesion of paint
JPH05106091A (en) Material for welded can excellent in seam weldability and adhesive strength of paint
JPH11106952A (en) Steel sheet for welded can excellent in waldability, corrosion resistance and film adhesion
JPS6240396A (en) Surface treated steel sheet for can having superior weldability and corrosion resistance
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability
JPH11106953A (en) Steel sheet for welded can excellent in weldability, corrosion resistance and film adhesion
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPH06173086A (en) Base stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and adhesive property of coating material
JPH0665789A (en) Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion
JPH06116747A (en) Blank for welded can having excellent high speed seam-weldability, corrosion resistance, heat resistance and coating adhesion
JPH02310378A (en) Material for welded can excellent in seam weldability, heat resistance, and adhesive strength of paint
JPH06116790A (en) Stock for welded can excellent in high speed seam weldability, pitting corrosion resistance, heat resistance and adhesion of coating material
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JPH0310088A (en) Material for welded can having superior seam weldability, heat resistance and corrosion resistance after coating

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees