JPS63270351A - Corrosion-resistant protection tube for thermocouple - Google Patents

Corrosion-resistant protection tube for thermocouple

Info

Publication number
JPS63270351A
JPS63270351A JP10206887A JP10206887A JPS63270351A JP S63270351 A JPS63270351 A JP S63270351A JP 10206887 A JP10206887 A JP 10206887A JP 10206887 A JP10206887 A JP 10206887A JP S63270351 A JPS63270351 A JP S63270351A
Authority
JP
Japan
Prior art keywords
protection tube
weight
thermocouple
magnesium oxide
chromium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10206887A
Other languages
Japanese (ja)
Other versions
JPH0774094B2 (en
Inventor
Kazunori Miura
三浦 一則
Takehiko Kato
武彦 加藤
Toshihiko Sasai
敏彦 笹井
Yasushi Matsuo
康史 松尾
Tadaoki Morimoto
森本 忠興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Niterra Co Ltd
Original Assignee
Hitachi Ltd
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, NGK Spark Plug Co Ltd filed Critical Hitachi Ltd
Priority to JP10206887A priority Critical patent/JPH0774094B2/en
Publication of JPS63270351A publication Critical patent/JPS63270351A/en
Publication of JPH0774094B2 publication Critical patent/JPH0774094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a thermocouple-protection tube having low apparent porosity, high strength, etc., and excellent corrosion resistance to molten glass, slag, etc., and various high-temperature gases, by mixing chromium oxide with magnesium oxide at a specific ratio and forming and calcining the mixture. CONSTITUTION:75-85wt.% of chromium oxide powder is mixed with 25-15wt.% of magnesium oxide powder. The mixture is mixed with proper amounts of water and a vehicle such as polyvinyl alcohol and carboxymethylcellulose, formed in the form of a thermocouple-protection tube and calcined at a high temperature in a neutral or reducing atmosphere to obtain the objective corrosion-resistant protection tube for thermocouple having an apparent porosity of <=5%. Chromium oxide reacts with magnesium oxide at a high temperature to form picrochromite. Accordingly, a dense protection tube having excellent corrosion resistance, etc., and containing crystalline phase composed of single picrochromite phase or a phase resembling thereto can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば高温のガラス、スラグ等の融体に直接浸
漬するか、高温の各種ガス雰囲気に配置し長時間連続的
に測温することのできる熱電対保護管にして、石炭ガス
化、液化プラントやガラスの溶解炉等における測温及び
温度制御に好適に利用し得る熱電対保護管に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to continuous temperature measurement over a long period of time by directly immersing it in a molten material such as high-temperature glass or slag, or by placing it in a high-temperature gas atmosphere of various types. The present invention relates to a thermocouple protection tube that can be used suitably for temperature measurement and temperature control in coal gasification, liquefaction plants, glass melting furnaces, etc.

〔従来の技術〕 〔発明が解決すべき問題点〕高温下に
おける雰囲気の温度例えばガラス等の融体や金属の鋳造
精錬における溶融物又は、石炭のガス化・液化等のプラ
ントの温度検知、温度制御のために、一般に白金・白金
ロジウム熱電対、クロメル−アルメル熱電対等の熱電対
が用いられている。
[Prior art] [Problems to be solved by the invention] Temperature detection of the atmosphere at high temperatures, such as temperature detection of molten materials such as glass, molten materials in metal casting and refining, or plants such as gasification and liquefaction of coal. For control, thermocouples such as platinum-platinum-rhodium thermocouples and chromel-alumel thermocouples are generally used.

このような熱電対を用いて温度測定を行う場合には、被
測定融体あるいはガスと熱電対とが反応して破損するこ
とを防ぐために、熱電対保護管が用いられている。
When temperature is measured using such a thermocouple, a thermocouple protection tube is used to prevent the thermocouple from reacting with the melt or gas to be measured and being damaged.

従来一般に用いられている熱電対保護管はムライト、ア
ルミナ、ジルコニア等の磁器材料から作られたちのであ
った。しかし、これらの保護管はガラス、スラグ等の融
体や各種ガス雰囲気に対する耐食性が不充分であること
から種々の改良が試みられている。
Thermocouple protection tubes commonly used in the past have been made from porcelain materials such as mullite, alumina, and zirconia. However, since these protective tubes have insufficient corrosion resistance against molten materials such as glass and slag, and various gas atmospheres, various improvements have been attempted.

特公昭57−49512号は、酸化クロム1〜35重量
%、残部酸化アルミニウムからなる組成のセラミックを
素材とするものであり、特公昭58−46692号はア
ルミナ、ムライト等の磁気質保護管本体の周囲に、珪酸
質断熱耐火物からなる保護管を設けたものであり、特公
昭62−4354号は窒化珪素70〜90重量%;残部
の酸化マグネシウム及びランタン族酸化物がそれぞれ0
.5重量%以上である粉末混合物を焼結した見掛は気孔
率1%以下の窒化珪素質保護管であり、いづれも溶融金
属に浸漬して測温することを目的とするもので、溶融ガ
ラスやスラグ等の融体又は各種ガス雰囲気の測温に使用
し得る耐食性の改良された保護管ではない。
Japanese Patent Publication No. 57-49512 is made of ceramic with a composition of 1 to 35% by weight of chromium oxide and the balance is aluminum oxide, and Japanese Patent Publication No. 58-46692 is made of a magnetic protective tube body made of alumina, mullite, etc. A protection tube made of a silicate heat-insulating refractory is provided around the periphery, and JP-B No. 62-4354 contains 70 to 90% by weight of silicon nitride; the balance is 0% each of magnesium oxide and lanthanum group oxide.
.. The appearance is a silicon nitride protection tube with a porosity of 1% or less, which is obtained by sintering a powder mixture of 5% by weight or more. It is not a protective tube with improved corrosion resistance that can be used for temperature measurement of molten materials such as slag or slag, or various gas atmospheres.

ただ石炭および石油の残香油などのガス化炉において使
用し得る耐食性の保護管として、特開昭59−8627
4号で、石英ガラスからなる外側管と、ボロンナイトラ
イドからなる内側管からなる複合型保護管が提案されて
いるだけである。
However, as a corrosion-resistant protective tube that can be used in gasifiers for coal and petroleum residual oil, JP-A-59-8627
No. 4 only proposes a composite protection tube consisting of an outer tube made of quartz glass and an inner tube made of boron nitride.

一方探護管ではないが、耐火物の分野では、特開昭52
−80315号でマグネシアペリクレースとクロム鉱石
と酸化第ニクロム粉末とよりなる混合物をプレス成形し
1700℃で焼結した耐火成型品、特開昭53−104
613号で電融マグクロクリンカーと電融マグネシアク
リンカ−とクロム鉱と酸化クロムとよりなる耐火原料を
配合焼成した耐熱衝撃性のマグクロリボンドれんが、特
公昭57−37552号でマグネシア原料微粉とクロム
鉱原料微粉との混合物を加熱急冷して得たクリンカーよ
り製造された塩基性耐火物が提案されているがいずれも
耐火物、れんが等の用途に用いられるもので、見掛気孔
率も14〜30%と非常にポーラスなもので熱電対保護
管には採用し得ない。
On the other hand, although it is not a detection tube, in the field of refractories, JP-A-52
No. 80315, a refractory molded product made by press-molding a mixture of magnesia periclase, chromium ore, and dichromium oxide powder and sintering it at 1700°C, JP-A-53-104
No. 613 is a thermal shock-resistant magkuro ribbon brick made by blending and firing refractory raw materials consisting of electrofused magnesia clinker, electrofused magnesia clinker, chromium ore, and chromium oxide, and Japanese Patent Publication No. 57-37552 is made of magnesia raw material fine powder and chromium. Basic refractories manufactured from clinker obtained by heating and rapidly cooling a mixture with mineral raw material fine powder have been proposed, but all of them are used for applications such as refractories and bricks, and the apparent porosity is 14 to 14. It is extremely porous (30%) and cannot be used in thermocouple protection tubes.

又、特開昭57−36804号で、酸化クロムと酸化マ
グネシウム、酸化ニッケル、酸化コバルト、酸化マンガ
ンから選ばれた金属酸化物とからなる多孔質焼結体に、
リン、イオウを担持した感湿素子が開示されているが、
この感湿素子は多孔構造を備えること即ち多孔管である
ことが要件であるため、耐食性や機械的強度が不十分で
あり、しかも担持されるリン、イオウは高温で母材に腐
食作用を及ぼすことが本発明者らの検討の結果明らかと
なり、到底耐食性の保護管には使用し得ないことが確認
された。又、特開昭59−18156号で、マグネシウ
ム化合物とクロム化合物を配合した混合物を溶融し、粉
砕した高純度のマグネシア−クロミア系酸化物タリンカ
ーの製造方法が開示されているが、これはれんがの如き
多孔質の耐火物を作るための半溶融状塊状物(クリンカ
ー)自体の製造技術に留まり熱電対の保護管に利用でき
るような緻密で機械的強度に優れ、かつ腐食性の雰囲気
下で高い耐食性を有するものを製造することについては
開示されていない。
Moreover, in JP-A-57-36804, a porous sintered body consisting of chromium oxide and a metal oxide selected from magnesium oxide, nickel oxide, cobalt oxide, and manganese oxide,
Moisture sensing elements carrying phosphorus and sulfur have been disclosed, but
Since this moisture-sensitive element is required to have a porous structure, that is, to be a perforated tube, its corrosion resistance and mechanical strength are insufficient, and the phosphorus and sulfur carried thereon corrode the base material at high temperatures. This became clear as a result of studies conducted by the present inventors, and it was confirmed that it could not be used for corrosion-resistant protective tubes. Furthermore, JP-A-59-18156 discloses a method for producing a high-purity magnesia-chromia-based oxide talincar by melting and pulverizing a mixture of a magnesium compound and a chromium compound. The manufacturing technology of semi-molten clinker itself is used to make porous refractories such as clinker, and it is dense and has excellent mechanical strength, which can be used for thermocouple protection tubes, and is highly resistant to corrosive atmospheres. There is no disclosure of producing one that is corrosion resistant.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記のような実情に鑑み、鋭意検討の結果なさ
れたもので、その概要は以下のとおりである。
The present invention has been made as a result of intensive studies in view of the above-mentioned circumstances, and the outline thereof is as follows.

酸化クロム75〜85重量%、酸化マグネシウム25〜
15重量%よりなり、見掛は気孔率が5%以下好ましく
は1%以下である耐食性熱電対保護管。
Chromium oxide 75-85% by weight, magnesium oxide 25-85% by weight
A corrosion-resistant thermocouple protection tube consisting of 15% by weight and having an apparent porosity of 5% or less, preferably 1% or less.

上記保護管としてはピクロクロマイト(MgCrzO4
)の単相若しくはこれに近い相が形成されることが望ま
しく、このためには酸化クロム77.5〜82.5重量
%、酸化マグネシウム22.5〜17.5重量%に構成
したものが最も好ましいものである。 なおこの保護管
は、素材中において酸化クロムと酸化マグネシウムの総
量が98重量%以上で、酸化鉄の含有量が0.5重量%
以下のものを含有するものが耐食性の点から好ましい。
The protection tube mentioned above is made of picrochromite (MgCrzO4
It is desirable to form a single phase or a phase close to this, and for this purpose, the most preferable composition is 77.5 to 82.5% by weight of chromium oxide and 22.5 to 17.5% by weight of magnesium oxide. This is preferable. The total amount of chromium oxide and magnesium oxide in the material of this protective tube is 98% by weight or more, and the content of iron oxide is 0.5% by weight.
Those containing the following are preferred from the viewpoint of corrosion resistance.

〔作 用〕[For production]

本発明においては前記の如く、溶融ガラスに対する耐食
性のよい酸化クロムと、塩基性スラグに優れた耐食性を
有する酸化マグネシウムに着目し、これを前記の如き配
合比すなわち酸化クロム75〜85重量%に対し酸化マ
グネジうムを25〜15重量%配合したものが、ガラス
、スラグ等の融体に対しても、又高温の酸化性あるいは
還元性ガスに対しても充分な耐食性のある保護管が得ら
れたものである。
In the present invention, as mentioned above, we focused on chromium oxide, which has good corrosion resistance against molten glass, and magnesium oxide, which has excellent corrosion resistance against basic slag, and added them to the above-mentioned compounding ratio, that is, 75 to 85% by weight of chromium oxide. A protective tube containing 25 to 15% by weight of magnesium oxide has sufficient corrosion resistance against melts such as glass and slag, as well as against high-temperature oxidizing or reducing gases. It is something that

上記配合比において、酸化クロムが75重重景より少な
く、酸化マグネシウムが25重重景より多くなると、ガ
ラス、スラグ等の融体 に接したときに耐食性が悪く、
又酸化クロムが 85重量%より多(、酸化マグネシウ
ムが15重世%より少ないと、特にNZ、82等の還元
性ガスに接したときにこれに侵され易くなり、耐ガス性
が低下する。
In the above compounding ratio, if chromium oxide is less than 75 layers and magnesium oxide is greater than 25 layers, corrosion resistance will be poor when it comes into contact with molten materials such as glass and slag.
Also, if the chromium oxide content is more than 85% by weight, and the magnesium oxide content is less than 15% by weight, the product will be more easily attacked by reducing gases such as NZ and 82, and its gas resistance will decrease.

換言すれば上記配合はガラス、スラグ等の融体に対する
耐食性とガスに対する耐食性とを同時に発揮し得るもの
である。
In other words, the above formulation can exhibit corrosion resistance against melts such as glass and slag, and corrosion resistance against gases at the same time.

更に本発明では前記の組成の保護管であって、しかも見
掛は気孔率5%以下好ましくは1%以下を要件とする。
Furthermore, the present invention requires a protection tube having the above composition, and an apparent porosity of 5% or less, preferably 1% or less.

見掛は気孔率が5%より大きいと融体に対する耐食性や
耐ガス性が不十分となるばかりでなく、保護管としての
機械的強度も低過ぎるものとなる。特に見掛気孔率が1
%以下のものは耐食性、耐ガス性、機械的強度の点で全
く優れた保護管が得られる。
If the apparent porosity is greater than 5%, not only will the corrosion resistance against melts and gas resistance be insufficient, but also the mechanical strength as a protective tube will be too low. Especially when the apparent porosity is 1
% or less, a protective tube with excellent corrosion resistance, gas resistance, and mechanical strength can be obtained.

本発明の保護管において酸化クロムと酸化マグネシウム
とは高温で反応してピクロクロマイト(MgCrzL)
となり、この相の単−相で構成された場合(遊離の酸化
クロムや酸化マグネシウムの存在しないような場合)が
最も耐食性のものとなることが認められる。特にピクロ
クロマイトは融点が2350℃であり、この高温まで安
定な性質がある。しかしながらその特性上許容される範
囲を考えると、酸化クロム77.5〜82.5重量%、
酸化マグネシウム22.5〜17.5重量%よりなるも
のは結晶相がピクロクロマイト(MgCrzOn)単相
もしくはこれに近い相からなり、遊離の酸化クロムや酸
化マグネシウムは殆ど存在しない保護管が得られるため
、耐食性や機械的強度が極めて優れている緻密(見掛は
気孔率1%以下)のものが得られることが確認された。
In the protective tube of the present invention, chromium oxide and magnesium oxide react at high temperatures to form picrochromite (MgCrzL).
Therefore, it is recognized that the most corrosion resistant material is obtained when the material is composed of a single phase (such as when free chromium oxide or magnesium oxide is not present). In particular, picrochromite has a melting point of 2350°C and is stable up to this high temperature. However, considering the permissible range due to its characteristics, 77.5 to 82.5% by weight of chromium oxide,
A product containing 22.5 to 17.5% by weight of magnesium oxide has a crystalline phase consisting of a single picrochromite (MgCrzOn) phase or a phase close to this, and a protective tube containing almost no free chromium oxide or magnesium oxide can be obtained. Therefore, it was confirmed that a dense material (apparent porosity of 1% or less) with extremely excellent corrosion resistance and mechanical strength could be obtained.

しかして如何なる場合でも保護管の密度が先に述べたよ
うに緻密でなく、従来の耐火物のように見掛は気孔率が
著しく高いものは機械的強度も低いので薄肉の保護管と
はなり得ないことは明らかである。
However, in any case, as mentioned above, the density of the protective tube is not dense, and if the porosity of conventional refractories is apparently extremely high, the mechanical strength is also low, so it cannot be used as a thin-walled protective tube. It is clear that you will not get it.

又更に本発明の好ましい実施態様は、素材中の酸化クロ
ムと酸化マグネシウムの総量が98重量%以上にして、
酸化鉄の含有量が0.5重量%以下であることである。
Furthermore, in a preferred embodiment of the present invention, the total amount of chromium oxide and magnesium oxide in the material is 98% by weight or more,
The content of iron oxide is 0.5% by weight or less.

その理由は高温におけるガラス、スラグ等の融体に対す
るセラミックスの耐食性について詳細に検討した結果、
気孔のないような緻密なセラミックスでも主としてその
粒界、特にそこに存在するガラス相を介して侵食が進行
するとの知見を得たが、実際の保護管の作製に際しては
原料の調製、成形から焼結に至る各プロセスで不純物の
混入が想定され、得られる保護管が優れた耐食性を発揮
するためには前記のように酸化クロムと酸化マグネシウ
ムの割合が98重量%以上、より好ましくは99重量%
以上必要で、特に耐食性に悪影響を及ぼす酸化鉄の含有
量は0.5重量%以下であることが必要である。
The reason for this is as a result of a detailed study of the corrosion resistance of ceramics against molten materials such as glass and slag at high temperatures.
We have found that even in dense ceramics with no pores, erosion progresses mainly through the grain boundaries, especially the glass phase that exists there. It is assumed that impurities are mixed in in each process leading to the formation of the protective tube, and in order for the resulting protective tube to exhibit excellent corrosion resistance, the ratio of chromium oxide and magnesium oxide should be 98% by weight or more, more preferably 99% by weight, as described above.
The content of iron oxide, which is necessary and has a particularly negative effect on corrosion resistance, must be 0.5% by weight or less.

本発明においては保護管の製造に当たり、酸化クロム又
は他の酸化クロム源と酸化マグネシウム又は他の酸化マ
グネシウム源もしくは反応焼結成いは電融したピクロク
ロマイト粉末を用いることができる。
In the present invention, in manufacturing the protective tube, chromium oxide or other chromium oxide source and magnesium oxide or other magnesium oxide source, or picrochromite powder obtained by reaction sintering may be used.

この酸化マグネシウム源、酸化クロム源は焼成後所定の
重量比となるような割合で配合されるが、通常それぞれ
粉末又は造粒したものを均一に混合し、保護管の形に成
形後、中性ないし還元性雰囲気中で温度1600〜20
00℃で焼成することによって見掛気孔率5%以下の保
護管が得られる。
The magnesium oxide source and chromium oxide source are mixed in a predetermined weight ratio after firing, but usually powder or granules are uniformly mixed, formed into a protective tube shape, and then neutralized. or in a reducing atmosphere at a temperature of 1600 to 20
By firing at 00°C, a protective tube with an apparent porosity of 5% or less can be obtained.

保護管の成形に当っては前記の場合は金型プレス、ラバ
ープレス等の乾式プレスが行なわれるか、泥漿鋳込成形
や押し出し成形等信のセラミックスの成形手法を利用す
ることもできる。
In the above-mentioned case, the protective tube may be formed by dry pressing such as mold pressing or rubber pressing, or other ceramic forming techniques such as slurry casting or extrusion may be used.

〔実施例〕〔Example〕

以下実施例について述べる。 Examples will be described below.

実施例1: 酸化クロム粉末(平均粒径0.5μm)、酸化マグネシ
ウム粉末(平均粒径O02μm)の所定量に、ポリビニ
ルアルコール(PVA)を3重量%添加配合し、ボール
ミルにより湿式混合後、乾燥・造粒を行い、所要の保護
管の形状を有するゴム型に充填して静水圧プレス法によ
り成形した。この成形体を弱還元性雰囲気中で1600
〜2000℃の温度にて2時間加熱して、外径15φ1
鳳、内径11φml、長さ300龍の保護管を製作した
。得られた保護管の嵩密度、曲げ強度及び石炭スラグに
対し酸化及び還元の2種類の雰囲気下において1600
℃、10時間浸漬した後の侵食量を測定した。得られた
結果は第1表に示す。又石炭スラグの化学組成は第2表
に示すとおりである。
Example 1: 3% by weight of polyvinyl alcohol (PVA) was added to a predetermined amount of chromium oxide powder (average particle size: 0.5 μm) and magnesium oxide powder (average particle size: 0.02 μm), mixed wet in a ball mill, and then dried. - Granulation was performed, and the product was filled into a rubber mold having the required shape of a protective tube and molded using a hydrostatic press method. This molded body was heated to 1600°C in a weakly reducing atmosphere.
Heated at a temperature of ~2000℃ for 2 hours to create an outer diameter of 15φ1
We made a protective tube with an inner diameter of 11φml and a length of 300 mm. The bulk density, bending strength, and coal slag of the obtained protective tube were evaluated at 1600 °C under two types of atmospheres: oxidizing and reducing.
The amount of erosion after immersion at ℃ for 10 hours was measured. The results obtained are shown in Table 1. The chemical composition of the coal slag is shown in Table 2.

これによれば本発明の実施例に相当する保護管寛1〜6
は見掛気孔率が5%以下で曲げ強度及び耐食性に優れて
いることが判る。
According to this, protective tubes 1 to 6 corresponding to the embodiment of the present invention
It can be seen that the material has an apparent porosity of 5% or less and is excellent in bending strength and corrosion resistance.

第2表 実施例2 酸化クロム粉末(平均粒径0.5μm)64重量%、炭
酸マグネシウム粉末(平均粒径0.1 μm)36重量
%及びカルボキシメチルセルロース(CMC)5重量%
と適量の水を加えて混練した後、押出成形機により所要
の形状に成形した。
Table 2 Example 2 Chromium oxide powder (average particle size 0.5 μm) 64% by weight, magnesium carbonate powder (average particle size 0.1 μm) 36% by weight, and carboxymethylcellulose (CMC) 5% by weight
After adding an appropriate amount of water and kneading, the mixture was molded into the desired shape using an extruder.

これを弱還元性雰囲気中で1900℃で2時間加熱して
、外径15φlIn、内径11ψ鶴、長さ500鶴の保
護管を得た。この保護管は嵩密度4.16g/−見掛気
孔率0.5%であった。
This was heated at 1900° C. for 2 hours in a slightly reducing atmosphere to obtain a protective tube with an outer diameter of 15φlIn, an inner diameter of 11φ and a length of 500mm. This protective tube had a bulk density of 4.16 g/- and an apparent porosity of 0.5%.

実施例3 酸化クロム粉末(平均粒径0.5μm)72重重景、水
酸化マグネシウム粉末(平均粒径0.1 μm)28i
t%及びポリアクリル酸アンモニウム及びポリビニルア
ルコール(PVA)0.5重量%とatの水を加えて泥
漿を作り、これを所定の形状の石膏型に鋳込んで成形し
た。これを弱還元雰囲気中で1900℃で2時間加熱し
て外径15φ龍、内径11φ鶴、長さ300鰭の保護管
を得た。
Example 3 Chromium oxide powder (average particle size 0.5 μm) 72×, magnesium hydroxide powder (average particle size 0.1 μm) 28i
A slurry was prepared by adding 0.5% by weight of ammonium polyacrylate and polyvinyl alcohol (PVA) and 0.5% by weight of water, and the slurry was cast into a plaster mold of a predetermined shape. This was heated at 1900° C. for 2 hours in a weakly reducing atmosphere to obtain a protective tube with an outer diameter of 15φ, an inner diameter of 11φ, and a length of 300 fins.

この保護管の嵩密度4.20g/cffl、見掛気孔率
0.1%と緻密であった。この焼結体のX線回折を行っ
たところピクロクロマイト(MgCr 204)単相で
あった。
This protective tube was dense with a bulk density of 4.20 g/cffl and an apparent porosity of 0.1%. When this sintered body was subjected to X-ray diffraction, it was found to be a single phase of picrochromite (MgCr 204).

実施例4 電融ピクロクロマイト塊状物をボールミルにより湿式粉
砕後、これにポリビニルアルコール(PVA)を3重量
%加えて混合した後、乾燥造粒を行い、所定の形状のゴ
ム型に充填して静水圧プレス法により成形した。
Example 4 Electrofused picrochromite lumps were wet-pulverized using a ball mill, 3% by weight of polyvinyl alcohol (PVA) was added thereto, mixed, dried, granulated, and filled into a rubber mold of a predetermined shape. It was molded using a hydrostatic press method.

この成形体を弱還元性雰囲気中で1900℃で2時間加
熱して外径15φmm、内径11φ關、長さ3001の
保護管を得た。
This molded body was heated at 1900° C. for 2 hours in a slightly reducing atmosphere to obtain a protective tube having an outer diameter of 15 mm, an inner diameter of 11 mm, and a length of 300 cm.

この保護管は嵩密度4.15 g / crK、見掛気
孔率2.7%であった。
This protective tube had a bulk density of 4.15 g/crK and an apparent porosity of 2.7%.

次に実施例3と実施例4の保護管について化学分析を行
なったところ第3表に示すとおりである。
Next, the protective tubes of Examples 3 and 4 were subjected to chemical analysis, and the results are shown in Table 3.

第3表 重量% いずれも素材中の酸化クロム及び酸化マグネシウムの割
合が98%以上で、FezO=は0.5重量%以下であ
った。
Table 3 Weight % In all cases, the proportions of chromium oxide and magnesium oxide in the materials were 98% or more, and FezO= was 0.5% by weight or less.

実施例工 (保護管寛3)の保護管と比較例としてこれ
と同一サイズのアルミナ質保護管とを用意し、白金−白
金ロジウム(PR13%)熱電対を入れ、1500℃の
溶融スラグ中に浸漬して連続温度測定を行った。
A protection tube of the example construction (protection tube Hiroshi 3) and an alumina protection tube of the same size as this as a comparative example were prepared, a platinum-platinum rhodium (PR13%) thermocouple was inserted, and they were placed in molten slag at 1500℃. Continuous temperature measurements were performed by immersion.

その結果はアルミナ質保護管では侵食により14時間後
に測温不能となったのに対して、実施例1の保護管は1
00時間後も侵食されず測温可能であった。
The results showed that with the alumina protection tube, it became impossible to measure the temperature after 14 hours due to corrosion, whereas with the protection tube of Example 1, temperature measurement became impossible after 14 hours.
Even after 00 hours, there was no corrosion and temperature measurement was possible.

〔発明の効果〕〔Effect of the invention〕

本発明によるときは前記の比較試験から明らかなように
、ガラス、スラグ等の融体や高温の各種ガスに接しても
侵されることが少なく、しかも機械的強度にも優れた保
護管を提供することができる。
As is clear from the above comparative tests, the present invention provides a protective tube that is less likely to be corroded even when it comes in contact with molten materials such as glass and slag, or various high-temperature gases, and has excellent mechanical strength. be able to.

Claims (1)

【特許請求の範囲】 1)酸化クロム75〜85重量%、酸化マグネシウム2
5〜15重量%よりなり、見掛気孔率が5%以下である
ことを特徴とする耐食性熱電対保護管。 2)見掛気孔率が1%以下である特許請求の範囲第1項
記載の耐食性熱電対保護管。 3)酸化クロム77.5〜82.5重量%、酸化マグネ
シウム22.5〜17.5重量%よりなり、結晶相がピ
クロクロマイト(MgCr_2O_4)単相もしくはこ
れに近い相からなる特許請求の範囲第1項記載の耐食性
熱電対保護管。 4)素材中の酸化クロムと酸化マグネシウムの総量が9
8重量%以上にして、酸化鉄の含有量が0.5重量%以
下である特許請求の範囲第1項記載の耐食性熱電対保護
管。
[Claims] 1) Chromium oxide 75-85% by weight, magnesium oxide 2
A corrosion-resistant thermocouple protection tube comprising 5 to 15% by weight and having an apparent porosity of 5% or less. 2) The corrosion-resistant thermocouple protection tube according to claim 1, which has an apparent porosity of 1% or less. 3) Claims consisting of 77.5 to 82.5% by weight of chromium oxide and 22.5 to 17.5% by weight of magnesium oxide, with a crystalline phase consisting of a single picrochromite (MgCr_2O_4) phase or a phase close to this. The corrosion-resistant thermocouple protection tube according to item 1. 4) The total amount of chromium oxide and magnesium oxide in the material is 9
The corrosion-resistant thermocouple protection tube according to claim 1, wherein the iron oxide content is 8% by weight or more and 0.5% by weight or less.
JP10206887A 1987-04-27 1987-04-27 Corrosion resistant thermocouple protection tube Expired - Fee Related JPH0774094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10206887A JPH0774094B2 (en) 1987-04-27 1987-04-27 Corrosion resistant thermocouple protection tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10206887A JPH0774094B2 (en) 1987-04-27 1987-04-27 Corrosion resistant thermocouple protection tube

Publications (2)

Publication Number Publication Date
JPS63270351A true JPS63270351A (en) 1988-11-08
JPH0774094B2 JPH0774094B2 (en) 1995-08-09

Family

ID=14317447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10206887A Expired - Fee Related JPH0774094B2 (en) 1987-04-27 1987-04-27 Corrosion resistant thermocouple protection tube

Country Status (1)

Country Link
JP (1) JPH0774094B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438429A (en) * 1990-06-04 1992-02-07 Jgc Corp Thermocouple with protective tube
CN117430437A (en) * 2023-12-20 2024-01-23 中钢洛耐科技股份有限公司 Composite refractory material for regenerator cell of melting furnace and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438429A (en) * 1990-06-04 1992-02-07 Jgc Corp Thermocouple with protective tube
CN117430437A (en) * 2023-12-20 2024-01-23 中钢洛耐科技股份有限公司 Composite refractory material for regenerator cell of melting furnace and preparation method and application thereof
CN117430437B (en) * 2023-12-20 2024-03-12 中钢洛耐科技股份有限公司 Composite refractory material for regenerator cell of melting furnace and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0774094B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US3192058A (en) Refractories and methods of manufacture therefor
CA1037503A (en) Carbon composition and shaped article made therefrom
US3972722A (en) Alumina-zircon bond for refractory grains
JPS63270351A (en) Corrosion-resistant protection tube for thermocouple
FISK A High‐Lime Refractory Resistant to Phosphate Melts—Studies in the System CaO–TiO2
JPH05254924A (en) Clinker consisting of chromium solid solution spinel and corundum and refractory using the same
JP2003238250A (en) Yttria refractory
WO2013183091A1 (en) Unburned brick
US4212679A (en) Method of making magnesite grain
JPS6335593B2 (en)
CN111344264A (en) Molten raw material for producing refractory products, method for producing said molten raw material and use of said molten raw material
JP4538779B2 (en) Magnesia-alumina clinker and refractory obtained using the same
JPH0794343B2 (en) Magnesia clinker and method for producing the same
JPS6059189B2 (en) Sintered refractory brick for ultra-dense glass furnace and its manufacturing method
JP2999134B2 (en) Magnesia chrome refractory and cement rotary kiln
JP2568825B2 (en) Zirconia-containing magnesia clinker and method for producing the same
JPS5839798B2 (en) Method for producing coal-fired firebrick
JP2941128B2 (en) Zirconia-containing magnesia-alumina spinel clinker and refractory obtained using the same
JPS6216847A (en) Heat insulating material for molten iron
JPS61222955A (en) Magnesia refractory material
JPS6011263A (en) Low heat conductivity basic refractories
JP3257820B2 (en) Clinker comprising chromium solid solution spinel and refractory obtained using the same
KR20210023191A (en) Magnesia-based moniolithic refractory
KR0150794B1 (en) Process for the preparation of magnesia clinker
JPS5935864B2 (en) Method for producing fired magnesia chromium monoxide refractories that are stable at high temperatures, especially under high-temperature reducing conditions

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees