JPS6326846B2 - - Google Patents

Info

Publication number
JPS6326846B2
JPS6326846B2 JP53095020A JP9502078A JPS6326846B2 JP S6326846 B2 JPS6326846 B2 JP S6326846B2 JP 53095020 A JP53095020 A JP 53095020A JP 9502078 A JP9502078 A JP 9502078A JP S6326846 B2 JPS6326846 B2 JP S6326846B2
Authority
JP
Japan
Prior art keywords
flow
hot wire
fluid
flow rate
flow tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53095020A
Other languages
Japanese (ja)
Other versions
JPS5522142A (en
Inventor
Hiroshi Kobayashi
Tooru Kita
Takeshi Fujishiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9502078A priority Critical patent/JPS5522142A/en
Priority to DE7979301516T priority patent/DE2965615D1/en
Priority to EP79301516A priority patent/EP0008185B1/en
Priority to US06/062,528 priority patent/US4326412A/en
Publication of JPS5522142A publication Critical patent/JPS5522142A/en
Publication of JPS6326846B2 publication Critical patent/JPS6326846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 本発明は流体の通路に自己発熱する熱線を張装
し、この熱線の放熱量により流体の流量を測定す
るようにした熱式流量計の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a thermal flow meter in which a fluid passage is provided with a self-heating hot wire, and the flow rate of the fluid is measured based on the amount of heat released by the hot wire.

従来、流管中を流れる流体流量を測定するに
は、自己発熱する熱線を流れに直交する面内に張
装した熱式流量計を用いるのが普通であつた。第
1図及び第2図は上記のような構成からなる従来
装置を例示するもので、流管1内の流体通路2の
流れに直交する面内に熱線3が字状又は逆V字
状に張装され、その両端部が出力端子5a,5b
に接続されている。
Conventionally, in order to measure the flow rate of fluid flowing through a flow tube, it has been common to use a thermal flowmeter in which a self-heating hot wire is stretched in a plane perpendicular to the flow. 1 and 2 illustrate a conventional device having the above-mentioned configuration, in which the hot wire 3 is arranged in a shape of a letter or an inverted V in a plane perpendicular to the flow of the fluid passage 2 in the flow tube 1. The ends are connected to output terminals 5a and 5b.
It is connected to the.

そこで、熱線3に通電して自己発熱状態に保つ
と、流体の通過により熱線3は温度降下を生じて
その抵抗値が減少する。この温度変化は熱線3の
放熱量を示し、これが流体の通過流量に比例する
ことを利用して上記抵抗値変化、あるいは端子電
圧変化から流体の流量を知ることができる。
Therefore, when the hot wire 3 is energized and maintained in a self-heating state, the temperature of the hot wire 3 decreases due to the passage of fluid, and its resistance value decreases. This temperature change indicates the amount of heat dissipated by the hot wire 3, and by utilizing the fact that this is proportional to the flow rate of fluid passing through it, the flow rate of the fluid can be determined from the change in resistance value or the change in terminal voltage.

しかし、このような装置は定常状態にある流量
測定には有効に利用されるが、例えば電子制御燃
料噴射装置を有する自動車用エンジンのインテー
クマニホールド内の吸入空気量を測定する場合の
ように、流体が流れに直交する方向に異つた流速
分布を有する場合(第3図参照)、あるいは脈動
流のように時間的分布をもつた場合(第4図参
照)にあつては、流れに直交する面内に張装され
た熱線の放熱量はその1断面の流速に対応する値
を示すにすぎず、必ずしも流体の平均流速に対応
する値を示さないので、測定された値が各断面平
均の真の流量と異つた値となる欠点を有してい
る。
However, although such a device is effectively used to measure the flow rate in a steady state, it cannot be used to measure the amount of air intake in the intake manifold of an automobile engine equipped with an electronically controlled fuel injection device. When the flow velocity has different flow velocity distribution in the direction perpendicular to the flow (see Figure 3) or has a temporal distribution such as pulsating flow (see Figure 4), the plane perpendicular to the flow The amount of heat dissipated from a hot wire stretched inside the interior only indicates a value corresponding to the flow velocity of one cross section, and does not necessarily indicate a value corresponding to the average flow velocity of the fluid, so the measured value is the true value of the average of each cross section. It has the disadvantage that the flow rate is different from that of the current flow rate.

本発明は上記の点に鑑みてなされたものであ
り、上述のように管路内の流体の流れが空間的及
び時間的に異なる流速分布をもつ場合でも、その
平均流速に対応する真の流量を測定し得る熱式流
量計を提供することを目的とする。
The present invention has been made in view of the above points, and even when the fluid flow in a pipe has a flow velocity distribution that differs spatially and temporally as described above, the true flow rate corresponding to the average flow velocity can be calculated. The purpose of the present invention is to provide a thermal flowmeter that can measure .

そのため、本発明による熱式流量計は、その熱
線を流体の通路を形成する流管内に、流体の流れ
方向に直交する成分と平行する成分とを共に有す
る方向に複数回屈曲させて、流管の中心軸方向に
見て該中心軸に関して略対称となるように張装し
たものである。
Therefore, in the thermal flowmeter according to the present invention, the hot wire is bent multiple times in a direction having both a component perpendicular to the fluid flow direction and a component parallel to the fluid flow direction. When viewed in the direction of the central axis, the belt is stretched so as to be approximately symmetrical with respect to the central axis.

以下、第5図及至第10図に示す実施例によつ
て本発明を説明するが第1図及び第2図に示す従
来例と同一の部分は同一の符号を付してその説明
を省略する。
Hereinafter, the present invention will be explained with reference to the embodiments shown in FIGS. 5 to 10, but the same parts as the conventional example shown in FIGS. .

第5図乃至第7図を参照して、4a,4bは熱
線3の固定用ピンであり、この実施例においては
熱線3は流管1の上部出力端子5aから下方並び
に後方に向つてピン4aに達する第1部分3a
と、ピン4aからほぼ水平でやや後方に向つてピ
ン4bに達する第2部分3b、及びピン4bから
上方並びに後方に向つて出力端子5bに達する第
3部分3cとからなる。
Referring to FIGS. 5 to 7, 4a and 4b are pins for fixing the hot wire 3. In this embodiment, the hot wire 3 is connected downwardly and rearward from the upper output terminal 5a of the flow tube 1 to the pin 4a. The first part 3a reaches
, a second portion 3b extending from the pin 4a almost horizontally and slightly rearward to reach the pin 4b, and a third portion 3c extending upward and rearward from the pin 4b to reach the output terminal 5b.

また、第8図乃至第10図は本発明の他の実施
例を示すもので、6は流管1の中心を通つて長手
方向に伸長する熱線支持体であり、熱線3は上部
出力端子5aから下方並びに後方に向つて下部の
ピン4aに達する第1部分3aと、ピン4aから
上方並びに後方に向つて支持体6の点6aに達す
る第2部分3bと、点6aから水平でやや後方に
向つて流管1の側方のピン4bに達し、さらに水
平でやや後方に支持体6の点6bを通つてピン4
cに達し、これと同様に水平でやや後方に向う流
管1のほぼ直径方向の張装を繰返し、点6c,6
d,6eを通つて点6fに達する第3部分3c及
び点6fから上方並びにやや後方に向つて上部出
力端子5bに達する第4部分3dとからなる。
Further, FIGS. 8 to 10 show another embodiment of the present invention, in which 6 is a hot wire support extending in the longitudinal direction through the center of the flow tube 1, and the hot wire 3 is connected to the upper output terminal 5a. a first portion 3a extending downward and rearward from the pin 4a to the lower pin 4a; a second portion 3b extending upward and rearward from the pin 4a to a point 6a on the support 6; and a second portion 3b extending horizontally and slightly rearward from the point 6a. It reaches the pin 4b on the side of the flow tube 1, and further horizontally and slightly backwardly passes through the point 6b of the support 6 and reaches the pin 4.
c, and in the same way, the horizontal and slightly backward tensioning of the flow tube 1 in the almost diametrical direction is repeated until points 6c and 6 are reached.
d and 6e to reach point 6f, and a fourth portion 3d extending upward and slightly rearward from point 6f to reach upper output terminal 5b.

このような構成で、熱線3に通電して自己発熱
状態に保ち、流体の通過による熱線3の温度降下
を上記抵抗値変化あるいは端子電圧変化により検
出すれば流体の流量を知ることができる。
With this configuration, the flow rate of the fluid can be determined by energizing the hot wire 3 to keep it in a self-heating state and detecting the temperature drop of the hot wire 3 due to passage of the fluid from the change in resistance value or the change in terminal voltage.

ここで、上記何れの実施例においても、熱線3
が流体通路2を形成する流管1内に、図示のよう
に流体の流れ方向(絡印A方向)に直交する成分
と平行する成分とを共に有する方向に複数回屈曲
して、流管1の中心軸方向に見て(第6図及び第
9図)該中心軸に関して略対称となるように張装
されているので、流体通路2の流れに直交及び平
行する立体的な所定の領域に亘つて略均等に張装
されることになり、この熱線3の全抵抗値がその
領域の平均流速に対応する流量を表わすことにな
る。
Here, in any of the above embodiments, the hot wire 3
is bent multiple times in the flow tube 1 forming the fluid passage 2 in a direction having both a component perpendicular to the fluid flow direction (direction of connection mark A) and a component parallel to the flow direction of the fluid as shown in the figure. When viewed in the direction of the central axis (FIGS. 6 and 9), it is tensioned so that it is approximately symmetrical with respect to the central axis. The hot wire 3 is tensioned substantially uniformly over the area, and the total resistance value of the hot wire 3 represents the flow rate corresponding to the average flow velocity in that area.

このように本発明によれば熱線が流路に直交す
る領域内だけでなく流れ方向に平行する所定領域
内に亘ても張装されているので、流れに直交する
面内にだけ熱線を1本又は複数本を張装した従来
の熱式流量計のようにその1断面だけの流量を示
すことなく、直接流管断面通過流量の平均値を測
定できる。また、熱線を流管の中心軸方向に見て
該中心軸に関して略対称となるるように張装した
ので、流管内の流れに直交する方向の流速分布に
対しても、熱線の抵抗変化は平均流量を示す結果
となり、流れが空間的、時間的分布を持つ場合に
もその平均流速に対応した真の流量を測定するこ
とが可能となる。
As described above, according to the present invention, the hot wire is stretched not only in the area perpendicular to the flow path but also in a predetermined area parallel to the flow direction, so that the hot wire is stretched only in the plane perpendicular to the flow. It is possible to directly measure the average value of the flow rate passing through the cross-section of the flow tube, without indicating the flow rate of only one cross-section, unlike a conventional thermal flowmeter in which one or more of these flowmeters are strung together. In addition, since the hot wire was stretched so as to be approximately symmetrical with respect to the central axis when viewed in the direction of the central axis of the flow tube, the resistance change of the hot wire was The result shows the average flow rate, and even if the flow has spatial and temporal distribution, it is possible to measure the true flow rate corresponding to the average flow velocity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱的流量計を具えた流管の縦断
面図、第2図a,bは相異なる熱線を有する流管
の第1図―線に沿う横断面図、第3図は流れ
の方向に異なる流速分布を有する場合の各断面の
流速分布線図、第4図a,bは脈動流の場合の流
体の疎密状態を示す説明図、及び流速の変化状態
を示す線図、第5図乃至第7図は本発明の一実施
例を示す図であり、第5図は流管の斜視図、第6
図はその横断面図、第7図はその縦断面図、第8
図乃至第10図は本発明の他の実施例を示す図で
あり、第8図は流管の斜視図、第9図はその横断
面図、第10図はその縦断面図である。 1……流管、2……流体通路、3……熱線、4
a,4b,4c……熱線固定用ピン、5a,5b
……熱線出力端子、6……熱線支持体。
FIG. 1 is a longitudinal cross-sectional view of a flow tube with a conventional thermal flow meter, FIGS. 2 a and b are cross-sectional views along the line FIG. A flow velocity distribution diagram of each cross section when the flow velocity distribution is different in the flow direction, FIGS. 5 to 7 are diagrams showing one embodiment of the present invention, in which FIG. 5 is a perspective view of a flow tube, and FIG. 6 is a perspective view of a flow tube.
The figure is a cross-sectional view, Figure 7 is a longitudinal cross-section, and Figure 8 is a vertical cross-sectional view.
10 to 10 are views showing other embodiments of the present invention, in which FIG. 8 is a perspective view of the flow tube, FIG. 9 is a cross-sectional view thereof, and FIG. 10 is a longitudinal cross-sectional view thereof. 1...flow tube, 2...fluid passage, 3...heat wire, 4
a, 4b, 4c...Pin for fixing hot wire, 5a, 5b
...Hot wire output terminal, 6...Hot wire support.

Claims (1)

【特許請求の範囲】[Claims] 1 流体の通路に自己発熱する熱線を張装し、こ
の熱線の放熱量により流体の流量を測定する熱式
流量計において、熱線を前記流体の通路を形成す
る流管内に、流体の流れ方向に直交する成分と平
行する成分とを共に有する方向に複数回屈曲させ
て、前記流管の中心軸方向に見て該中心軸に関し
て略対称となるように張装したことを特徴とする
熱式流量計。
1. In a thermal flow meter in which a hot wire that generates heat by itself is installed in a fluid passage and the flow rate of the fluid is measured based on the amount of heat released by the hot wire, the hot wire is inserted into a flow tube forming the fluid passage in the direction of the flow of the fluid. A thermal flow rate characterized in that the flow tube is bent multiple times in a direction having both orthogonal components and parallel components, and is stretched so as to be substantially symmetrical with respect to the central axis when viewed in the direction of the central axis of the flow tube. Total.
JP9502078A 1978-08-05 1978-08-05 Thermal flow meter Granted JPS5522142A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9502078A JPS5522142A (en) 1978-08-05 1978-08-05 Thermal flow meter
DE7979301516T DE2965615D1 (en) 1978-08-05 1979-07-30 Flowmeter of hot wire type
EP79301516A EP0008185B1 (en) 1978-08-05 1979-07-30 Flowmeter of hot wire type
US06/062,528 US4326412A (en) 1978-08-05 1979-07-31 Flowmeter of hot wire type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9502078A JPS5522142A (en) 1978-08-05 1978-08-05 Thermal flow meter

Publications (2)

Publication Number Publication Date
JPS5522142A JPS5522142A (en) 1980-02-16
JPS6326846B2 true JPS6326846B2 (en) 1988-05-31

Family

ID=14126361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9502078A Granted JPS5522142A (en) 1978-08-05 1978-08-05 Thermal flow meter

Country Status (1)

Country Link
JP (1) JPS5522142A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621804B2 (en) * 1987-06-22 1994-03-23 雪印乳業株式会社 Measuring method of flow velocity distribution of fluid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112264B2 (en) * 1971-04-05 1976-04-17
JPS5256214A (en) * 1975-11-01 1977-05-09 Nippon Soken Inc Air intake capacity detector for internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112264U (en) * 1974-07-15 1976-01-29

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112264B2 (en) * 1971-04-05 1976-04-17
JPS5256214A (en) * 1975-11-01 1977-05-09 Nippon Soken Inc Air intake capacity detector for internal combustion engine

Also Published As

Publication number Publication date
JPS5522142A (en) 1980-02-16

Similar Documents

Publication Publication Date Title
JP3783896B2 (en) Air flow measurement device
US4393697A (en) Air flow rate measuring apparatus
JPS6122889B2 (en)
US4326412A (en) Flowmeter of hot wire type
JPS6213605B2 (en)
KR960705192A (en) Vorrichtung zur messung der masse eines stromenden mediums
JP3240733B2 (en) Thermal air flow meter
JPS6231285B2 (en)
JPS6326846B2 (en)
JPS592498Y2 (en) hot wire flowmeter
US20050223794A1 (en) Fluid flow meter having an auxiliary flow passage
US2849880A (en) Thermal anemometers
US7703320B2 (en) Flow measuring device having resistors arranged in nesting arrangement
JPH07190821A (en) Flowmeter
RU2201581C2 (en) Thermal anemometric mass flow transducer of gas ( its variants )
JPH01201117A (en) Hot-wire type air flowmeter
JPH0151130B2 (en)
JPS6032571Y2 (en) Intake air amount sensor
JPH0143883B2 (en)
JPS5810111Y2 (en) Karman vortex flowmeter
JPS60185118A (en) Air flowmeter
JPS5819449Y2 (en) Flowmeter
JPH04221716A (en) Thermo-sensitive flow sensor
JPH04318425A (en) Hot wire type air flowmeter
JPH08105778A (en) Thermal type flowmeter