JPS63268232A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPS63268232A
JPS63268232A JP10353187A JP10353187A JPS63268232A JP S63268232 A JPS63268232 A JP S63268232A JP 10353187 A JP10353187 A JP 10353187A JP 10353187 A JP10353187 A JP 10353187A JP S63268232 A JPS63268232 A JP S63268232A
Authority
JP
Japan
Prior art keywords
solid electrolytic
layer
electrolytic capacitor
manganese dioxide
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10353187A
Other languages
Japanese (ja)
Inventor
Sumio Nishiyama
西山 澄夫
Isao Irikura
入蔵 功
Tamekiyo Taniguchi
谷口 為清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10353187A priority Critical patent/JPS63268232A/en
Publication of JPS63268232A publication Critical patent/JPS63268232A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To improve the dielectric strength and the occurrence rate of short- circuit failure, by performing the alkalizing treatment of a solid electrolytic layer like a manganese dioxide, and then forming graphite and a cathode layer of a silver-electrically-conductive material. CONSTITUTION:A porous tantalum sintered body on which a dielectric oxide film is formed by anodizing is dipped in a manganese nitrate, and subjected to pyrolysis at 250 deg.C to form a manganese dioxide film on an oxide film. After re-formation is finished, dipping for 30 min is performed in sodium hydroxide water solution. After hot water washing and drying, a graphite layer is formed, and further a silver layer and a solder layer are arranged. By transfer resin mold sheathing, a solid electrolytic capacitor is formed. According to this method, the manganese dioxide layer is alkalized, so that the ionization of silver can be prevented, and migration does not occur. Therefore, even in the state of high temperature and moisture, leak current does not increase, dielectric strength is not lowered, and short-circuit failure does not occur.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体電解コンデンサの製造方法に関するもので
あシ、特に樹脂外装固体電解コンデンサの湿中特性にお
ける漏れ電流の安定な固体電解コンデンサを得ることで
ある。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing a solid electrolytic capacitor, and in particular to a method for producing a solid electrolytic capacitor with stable leakage current in wet characteristics of a resin-clad solid electrolytic capacitor. be.

従来の技術 従来のこの種の固体電解コンデンサはタンタル。Conventional technology Conventional solid electrolytic capacitors of this type are tantalum.

チタン、ニオブ、アルミニウム等の皮膜形成金属の陽極
体の表面を陽極酸化して誘電体酸化皮膜を形成し、次い
で硝酸マンガン水溶液でその表面を3ヘー/ 濡らし、熱処理することにより酸化皮膜上に二酸化マン
ガンの固体電解質層を形成し、更にグラファイト、銀の
導電性物質で被覆した後、金属ケース内への封入、又は
樹脂外装被覆を施して完成されている。
The surface of the anode body of a film-forming metal such as titanium, niobium, aluminum, etc. is anodized to form a dielectric oxide film, and then the surface is wetted with a manganese nitrate aqueous solution at 3 H/min and heat treated to form a dielectric film on the oxide film. After forming a solid electrolyte layer of manganese and coating it with conductive materials such as graphite and silver, the device is sealed in a metal case or coated with a resin exterior.

ところで、固体電解コンデンサの特性を左右する固体電
解質としての二酸化マンガン層の形成に関しては、従来
よシ種々の工夫が施されておシ、例えば先に形成させた
誘電体酸化皮膜をできるだけ傷めないようにするべく、
熱分解条件を緩和する効果をもたらす物質を予じめ硝酸
マンガン溶液に加えたシ、或いは形成された二酸化マン
ガンの改質をはかるべく同じく硝酸マンガンに添加物を
施す多くの試みがなされている。
By the way, with regard to the formation of a manganese dioxide layer as a solid electrolyte that influences the characteristics of solid electrolytic capacitors, various measures have been taken in the past, for example, to avoid damaging the previously formed dielectric oxide film as much as possible. In order to
Many attempts have been made to pre-add substances to the manganese nitrate solution which have the effect of mitigating the thermal decomposition conditions, or to similarly apply additives to the manganese nitrate in order to modify the manganese dioxide formed.

発明が解決しようとする問題点 しかしながら、従来の方法で作成された樹脂外装固体電
解コンデンサについて、これらを例えば、85℃90%
の高温高湿の条件下で定格電圧印加、又は無負荷放置し
た場合、経過時間とともに漏れ電流値の増大、耐圧の低
下、及び短絡不良の発生するものが散見される。この現
象は無負荷放置の場合が顕著である。
Problems to be Solved by the Invention However, regarding resin-clad solid electrolytic capacitors made by conventional methods, for example, 85°C 90%
When the rated voltage is applied or left unloaded under high temperature and high humidity conditions, leakage current increases, breakdown voltage decreases, and short circuit failures occur over time. This phenomenon is noticeable when left unloaded.

この原因は、高温高湿下で銀がイオン化して誘電体酸化
皮膜上まで移動するいわゆるマイグレーション現象によ
るものである。
This is due to the so-called migration phenomenon in which silver is ionized under high temperature and high humidity and migrates onto the dielectric oxide film.

問題点を解決するだめの手段 本発明は、このような欠点を改善するもので、固体電解
コンデンサの製造に際し、二酸化マンガン層等の固体電
解質層の形成後、二酸化マンガン層等の固体電解質層を
著しく溶解しない程度のアルカリ金属、アルカリ土類金
属の水酸化物の希薄アルカリ溶液及びこれらの弱酸塩の
希薄アルカリ溶液、或は水酸化アンモニウム溶液の夫々
単独、又は混合溶液に浸漬し、湯洗乾燥又は湯洗熱処理
、或はこれらの溶液に浸漬して直に乾燥又は熱処理を施
すことなどにより二酸化マンガン層等の固体電解質層の
アルカリ処理を施し、しかる後グラファイト、銀導電性
物質の陰極層を形成する方法である。
Means for Solving the Problems The present invention is intended to improve these drawbacks, and in manufacturing a solid electrolytic capacitor, after forming a solid electrolyte layer such as a manganese dioxide layer, the solid electrolyte layer such as a manganese dioxide layer is Immerse in dilute alkaline solutions of hydroxides of alkali metals and alkaline earth metals to the extent that they do not dissolve significantly, dilute alkaline solutions of weak acid salts of these metals, or ammonium hydroxide solutions, either alone or in a mixture, and wash with hot water and dry. Alternatively, the solid electrolyte layer such as the manganese dioxide layer is subjected to alkali treatment by hot water washing heat treatment, immersion in these solutions and direct drying or heat treatment, and then a cathode layer of graphite or silver conductive material is applied. This is a method of forming.

なお、上記アルカリ金属又はアルカリ土類金属6へ−7 の弱酸塩溶液を使用する場合、充分な溶解度をもつもの
であって二酸化マンガン等の固体電解質を著しく変質さ
せないものであれば、アニオン側の形態は問わない。
In addition, when using a weak acid salt solution of the alkali metal or alkaline earth metal 6 to 7, as long as it has sufficient solubility and does not significantly alter the solid electrolyte such as manganese dioxide, the anion side The form does not matter.

これに適する上記塩類としては、炭酸塩、炭酸水素塩、
酢酸塩、蟻酸塩、酒石酸塩、クエン酸塩。
The above salts suitable for this purpose include carbonates, hydrogen carbonates,
Acetate, formate, tartrate, citrate.

乳酸塩等がある。There are lactate, etc.

作用 このような本発明の方法によれば、二酸化マンガン層が
アルカリ性を帯びるだめ銀のイオン化が防止でき、従っ
てマイグレーションが生じないため、高温高湿の条件下
であっても、漏れ電流の増大、耐圧の低下、短絡不良な
どが発生しない。
Effect: According to the method of the present invention, since the manganese dioxide layer becomes alkaline, ionization of silver can be prevented and migration does not occur, so even under high temperature and high humidity conditions, increase in leakage current, No drop in withstand voltage or short circuit failures will occur.

実施例 以下、本発明の一実施例につき説明する。Example An embodiment of the present invention will be described below.

〔実施例1〕 陽極酸化により誘電体酸化皮膜を形成させた多孔質タン
タル焼結体に硝酸マンガン水溶液を含浸させ、250℃
で熱分解して酸化皮膜上に二酸化マンガン層を形成させ
、再化成終了後、6o℃61、−> 0.1M/βの水酸化ナトリウム水溶液に30分間浸漬
し、湯洗乾燥後、グラファイト層を施し、更に銀層、半
田層を設け、トランスファー樹脂モールドで外装して固
体電解コンデンサとした。
[Example 1] A porous tantalum sintered body on which a dielectric oxide film was formed by anodic oxidation was impregnated with an aqueous manganese nitrate solution and heated at 250°C.
A manganese dioxide layer is formed on the oxide film by thermal decomposition, and after completion of re-formation, it is immersed in a sodium hydroxide aqueous solution of 61°C -> 0.1M/β for 30 minutes, washed with hot water and dried, and then a graphite layer is formed. A silver layer and a solder layer were applied, and the capacitor was packaged with a transfer resin mold to form a solid electrolytic capacitor.

これについて、温度85℃湿度90%の条件下で無負荷
放置する耐湿試験を行い、1000時間後、常温で耐圧
特性、短絡故障発生率を、二酸化マンガン層のアルカリ
処理しない以外は全く同様に作成した従来品と比較した
Regarding this, we conducted a humidity test by leaving it under no load at a temperature of 85 degrees Celsius and a humidity of 90%, and after 1000 hours, the pressure resistance characteristics and short circuit failure rate were measured at room temperature using the same method except that the manganese dioxide layer was not treated with alkali. compared with the conventional product.

〔実施例2〕 アルカリ処理液として60°C0,1M71水酸化カリ
ウム水溶液を使用したこと以外は実施例つと全く同様に
作成して耐湿試験を実施例1と同様に行なった。
[Example 2] A sample was prepared in exactly the same manner as in Example 1, except that a 60°C, 1M 71 potassium hydroxide aqueous solution was used as the alkaline treatment liquid, and a moisture resistance test was conducted in the same manner as in Example 1.

〔実施例3〕 アルカリ処理液として60℃0.1 M/l 水酸化ス
トロンチウム水溶液を使用した以外は実施例1と同様な
処理を行なって完成品とし耐湿試験を行なった。
[Example 3] A finished product was subjected to the same treatment as in Example 1, except that a 60° C. 0.1 M/l strontium hydroxide aqueous solution was used as the alkaline treatment liquid, and a moisture resistance test was conducted.

〔実施例4〕 71\−。[Example 4] 71\-.

アルカリ処理液として60℃0.1M/β水酸化バリウ
ム水溶液を使用した以外は実施例1と同様な処理を行な
って完成品とし、実施例1と同様な耐湿試験を行なった
A finished product was prepared by performing the same treatment as in Example 1, except that a 60° C. 0.1 M/β barium hydroxide aqueous solution was used as the alkaline treatment liquid, and the same moisture resistance test as in Example 1 was conducted.

〔実施例5〕 アルカリ処理液として60℃0゜8M/l の炭酸ナト
リウム水溶液を使用した以外は実施例1と同様な処理を
行なって完成品とし、実施例1と同様な耐湿試験を行な
った。
[Example 5] The same treatment as in Example 1 was performed except that an aqueous sodium carbonate solution of 60°C, 0°, and 8M/l was used as the alkaline treatment liquid to obtain a finished product, and the same moisture resistance test as in Example 1 was conducted. .

〔実施例6〕 アルカリ処理液として60℃O,BM/lの炭酸カリウ
ム水溶液を使用した以外は実施例1と同様な処理を行な
って完成品とし、実施例1と同様な耐湿試験を行なった
[Example 6] A finished product was obtained by performing the same treatment as in Example 1, except that an aqueous potassium carbonate solution of 60° C.O., BM/l was used as the alkaline treatment liquid, and the same moisture resistance test as in Example 1 was conducted. .

〔実施例子〕[Example child]

アルカリ処理液として60℃o<M/l  酢酸ストo
ンテウム水溶液を使用した以外は実施例1と同様な処理
を行なって完成品とし、実施例1と同様な耐湿試験を行
なった。
As an alkaline treatment solution, 60°C o<M/l acetic acid stoichiometry
A finished product was obtained by performing the same treatment as in Example 1, except that an aqueous solution of Nteum was used, and the same moisture resistance test as in Example 1 was conducted.

〔実施例8〕 アルカリ処理液として60℃0.4M/(J酢酸バリウ
ム水溶液を使用した以外は実施例1と同様な処理を行な
って完成品とし、実施例1と同様な耐湿試験を行なった
[Example 8] The same treatment as in Example 1 was performed except that a 60°C 0.4 M/(J barium acetate aqueous solution was used as the alkaline treatment liquid) to obtain a finished product, and the same moisture resistance test as in Example 1 was conducted. .

〔実施例9〕 アルカリ処理液として60 ’(:0.8 M/l水酸
化アンモニウム水溶液を使用した以外は実施例1と同様
な処理を行なって完成品とし、実施例1と同様な耐湿試
験を行なった。
[Example 9] A finished product was prepared by performing the same treatment as in Example 1, except that a 60' (:0.8 M/l ammonium hydroxide aqueous solution) was used as the alkaline treatment liquid, and the same moisture resistance test as in Example 1 was carried out. I did it.

この実施例1〜9により製作した固体電解コンデンサと
実施例1で述べた従来品との耐湿試験の結果を比較させ
て次表および図面に示す。なお、表に短絡故障発生率を
示し、図に耐圧特性を示す。
The results of the humidity test between the solid electrolytic capacitors manufactured in Examples 1 to 9 and the conventional product described in Example 1 are compared and shown in the following table and drawings. The table shows the short-circuit failure rate, and the figure shows the voltage resistance characteristics.

(以下余白) 9へ一ン 表 試験コンデンサ: 35V4.7μF 試験条件   二85°090%中に1000時間無負
荷放置 発明の効果 上記表及び図面より明らかなように、本発明による製造
方法により製作した固体電解コンデンサ107、−2 は、従来品に比べ耐圧特性、短絡故障発生率を著しく改
善することができ、これにより本発明の製造方法は工業
的利用価値の高いものである。
(Space below) Test capacitor: 35V4.7μF Test conditions: Left unloaded for 1000 hours in 285°090% Effect of the invention As is clear from the above table and drawings, the capacitor manufactured by the manufacturing method of the present invention The solid electrolytic capacitor 107,-2 can significantly improve the withstand voltage characteristics and short-circuit failure rate compared to conventional products, and thus the manufacturing method of the present invention has high industrial utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の固体電解コンデンサの製造方法の効果を説
明するだめの温度85℃、湿度90%の条件下での固体
電解コンデンサの耐湿試験後の耐圧特性図である。
The figure is a breakdown voltage characteristic diagram after a humidity test of a solid electrolytic capacitor under conditions of a temperature of 85° C. and a humidity of 90%, for explaining the effects of the method for manufacturing a solid electrolytic capacitor of the present invention.

Claims (6)

【特許請求の範囲】[Claims] (1)皮膜形成金属を陽極体とし、この表面に誘電体酸
化皮膜を形成し、更にこの上に固体電解質層を形成した
後、固体電解質層を著しく溶解しない程度のアルカリ性
溶液により固体電解質層をアルカリ処理することを特徴
とする固体電解コンデンサの製造方法。
(1) Film-forming metal is used as an anode body, a dielectric oxide film is formed on the surface of the anode, and a solid electrolyte layer is further formed on this, and then the solid electrolyte layer is removed using an alkaline solution that does not dissolve the solid electrolyte layer significantly. A method for manufacturing a solid electrolytic capacitor, characterized by alkali treatment.
(2)アルカリ性溶液の溶質としてアルカリ金属の水酸
化物を使用することを特徴とする特許請求の範囲第1項
に記載の固体電解コンデンサの製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, characterized in that an alkali metal hydroxide is used as the solute of the alkaline solution.
(3)アルカリ性溶液の溶質としてアルカリ土類金属の
水酸化物を使用することを特徴とする特許請求の範囲第
1項に記載の固体電解コンデンサの製造方法。
(3) The method for manufacturing a solid electrolytic capacitor according to claim 1, characterized in that an alkaline earth metal hydroxide is used as the solute of the alkaline solution.
(4)アルカリ性溶液の溶質としてアルカリ金属の弱酸
塩を使用することを特徴とする特許請求の範囲第1項に
記載の固体電解コンデンサの製造方法。
(4) The method for manufacturing a solid electrolytic capacitor according to claim 1, characterized in that a weak acid salt of an alkali metal is used as the solute of the alkaline solution.
(5)アルカリ性溶液の溶質としてアルカリ土類金属の
弱酸塩を使用することを特徴とする特許請求の範囲第1
項に記載の固体電解コンデンサの製造方法。
(5) Claim 1 characterized in that a weak acid salt of an alkaline earth metal is used as the solute of the alkaline solution.
A method for manufacturing a solid electrolytic capacitor as described in .
(6)アルカリ性溶液として水酸化アンモニウム溶液を
使用することを特徴とする特許請求の範囲第1項に記載
の固体電解コンデンサの製造方法。
(6) The method for manufacturing a solid electrolytic capacitor according to claim 1, characterized in that an ammonium hydroxide solution is used as the alkaline solution.
JP10353187A 1987-04-27 1987-04-27 Manufacture of solid electrolytic capacitor Pending JPS63268232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10353187A JPS63268232A (en) 1987-04-27 1987-04-27 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10353187A JPS63268232A (en) 1987-04-27 1987-04-27 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63268232A true JPS63268232A (en) 1988-11-04

Family

ID=14356465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10353187A Pending JPS63268232A (en) 1987-04-27 1987-04-27 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63268232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106548870A (en) * 2015-09-21 2017-03-29 中国振华(集团)新云电子元器件有限责任公司 It is a kind of improve tantalum capacitor breakdown voltage by film method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106548870A (en) * 2015-09-21 2017-03-29 中国振华(集团)新云电子元器件有限责任公司 It is a kind of improve tantalum capacitor breakdown voltage by film method

Similar Documents

Publication Publication Date Title
JPH0992581A (en) Anodic oxidation of capacitor anode
JP2014060231A (en) Method of manufacturing solid electrolytic capacitor
JPH0473924A (en) Solid-state electrolytic capacitor and its manufacture
JPS63268232A (en) Manufacture of solid electrolytic capacitor
JPH0245908A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP7227870B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JP5262238B2 (en) Manufacturing method of solid electrolytic capacitor
JPS5821414B2 (en) Kotai Denkai Capacitor
JP3092512B2 (en) Method for manufacturing solid electrolytic capacitor
US3345208A (en) Fabrication of electrolytic capacitors
JPS6217185A (en) Production of electrode foil for aluminum electrolytic capacitor
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JP2001203128A (en) Method of manufacturing solid electrolytic capacitor
JP3800913B2 (en) Manufacturing method of solid electrolytic capacitor
JP3184337B2 (en) Solid electrolytic capacitors
JPS62185307A (en) Solid electrolytic capacitor
JP2001267185A (en) Method for manufacturing solid electrolytic capacitor
JPH01287916A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH11238650A (en) Solid electrolytic capacitor and its manufacture
JPH0393219A (en) Manufacture of solid-state electrolytic capacitor
JPH0750662B2 (en) Solid electrolytic capacitor re-formation treatment method
JPH0727849B2 (en) Manufacturing method of solid electrolytic capacitor
JPH01289107A (en) Manufacture of electrode foil for aluminum electrolytic condenser
JP2003197482A (en) Method of manufacturing solid electrolytic capacitor