JPS63268111A - Method for forming magnetic head core - Google Patents

Method for forming magnetic head core

Info

Publication number
JPS63268111A
JPS63268111A JP10242687A JP10242687A JPS63268111A JP S63268111 A JPS63268111 A JP S63268111A JP 10242687 A JP10242687 A JP 10242687A JP 10242687 A JP10242687 A JP 10242687A JP S63268111 A JPS63268111 A JP S63268111A
Authority
JP
Japan
Prior art keywords
base
thin film
core
screw
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10242687A
Other languages
Japanese (ja)
Inventor
Masao Shimizu
正男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP10242687A priority Critical patent/JPS63268111A/en
Publication of JPS63268111A publication Critical patent/JPS63268111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To prevent the characteristic deterioration of a core by giving and sticking beforehand the displacement in the direction reverse to the direction deformed by the difference in the thermal expansion coefficient of both to a base when a thin film material is stuck in which the thermal expansion coefficient has the difference with a head forming base. CONSTITUTION:A core forming substrate 1 is fitted to a jig 9 used together as a base holder. At the screw hole of the center of a flattening part 10 of the jig 9, a pushing screw 11 is protrudably freely screwed, a reverse L-shaped hook 12 is provided at both edges of the flattening part 10 and by the screw 11, the base 1 can be deformed to a convex by the screw 11. Next, only for a forecasting displacement quantity 8 to occur by the thermal expansion coefficient of the base 1 and a Sendust alloy thin film 2, the base 1 is displaced with the pushing screw 11. Next, with a high frequency spattering device, a Sendust thin film 2 is stuck made vacuum in a vacuum chamber 16, a high frequency growing discharging is generated at the space of a Sendust alloy 14 and a base body structure 9' under the presence of Ar gas, a plasma is generated, and a static magnetic field is impressed by permanent magnets 19 and 19. When the body structure 9' is heated to 200-400 deg.C and removed after the spattering is completed, a thermal contraction to occur at an annealing process corrects flatly the base 1.

Description

【発明の詳細な説明】 の1 この発明は、コンピュータやDAT等の磁気記録応用装
置に用いられる磁気ヘッドのコア加工に関する技術で、
詳しくは、スパッタリング等により薄膜を付着させる時
のヘッドコア基板の変形防止技術である。
[Detailed Description of the Invention] No. 1 This invention relates to a technology related to core processing of a magnetic head used in a magnetic recording application device such as a computer or a DAT.
Specifically, it is a technique for preventing deformation of a head core substrate when a thin film is attached by sputtering or the like.

従迷m 一般に薄膜磁気ヘッドコアは、例えば第4図に示すよう
に、結晶化ガラス板等の基板1上に、Fe−Ml、 M
n−Znフェライト等の強磁性体2を薄膜パターンに成
膜付着させることにより、薄膜コアを形成することが多
い。このようにしてコアを形成するには、スパッタリン
グ技術による場合がほとんどであり、例えば特開昭59
−127211号に従来技術として紹介されている。
In general, a thin film magnetic head core is made of Fe-Ml, M
A thin film core is often formed by depositing a ferromagnetic material 2 such as n-Zn ferrite in a thin film pattern. In order to form the core in this way, sputtering technology is used in most cases.
This is introduced as a prior art in No.-127211.

また最近では、第5図に示すように、コア半体3と4と
を接合して形成するバルク型コア5の磁気ギャップ6を
形成する対接面に、コアよりも高飽和磁束密度のセンダ
スト合金薄膜7,7及びギャップスペーサ薄膜として5
to28を付着させたりすることがある。
Recently, as shown in FIG. 5, Sendust, which has a higher saturation magnetic flux density than the core, has been added to the opposing surface forming the magnetic gap 6 of the bulk core 5 formed by joining the core halves 3 and 4. Alloy thin film 7, 7 and gap spacer thin film 5
To28 may be attached.

これらの場合、ガラス等の基板1やコア半4.$3゜4
は、薄膜形成基板であるから、スパッタリング付着を良
好とするためには、数百℃に加熱しておくのが普通であ
る。
In these cases, a substrate 1 such as glass or a core half 4. $3゜4
Since this is a substrate on which a thin film is formed, it is usually heated to several hundred degrees Celsius in order to improve sputtering adhesion.

[I く  °    −。[I        -.

ところで、上述したような薄膜を形成する場合、付着さ
せる薄膜材料と、形成基板とは熱膨張係数に差異がある
。したがって、スパッタリング後、常温まで冷却する時
に、第4図に示した基板1ならば、第4図に破線1′、
2′で示すように熱膨張係数の差によって、反りが生じ
、その際の歪み応力が悪影響を与え、コアの特性劣化や
、極端な場合には、破損して製造歩留を低下させてしま
う問題があった。
By the way, when forming a thin film as described above, there is a difference in thermal expansion coefficient between the thin film material to be attached and the forming substrate. Therefore, when cooling to room temperature after sputtering, if the substrate 1 shown in FIG.
As shown in 2', warping occurs due to the difference in thermal expansion coefficient, and the strain stress at that time has an adverse effect, leading to deterioration of the core properties or, in extreme cases, damage, reducing manufacturing yield. There was a problem.

口゛の この発明は、上記従来の問題を解決するために、提案す
るもので、薄膜を付着させるヘッドコア基板を、予め、
成膜付着後にヘッド形成基板と薄膜との熱膨張係数の差
により変形する方向と逆向きに変位させておく手段を採
用するものである。すなわち、この発明は、予め予想さ
れるワークの変位を矯正する変位量を設定して相殺する
方法である。
This invention is proposed in order to solve the above-mentioned conventional problems.The head core substrate to which the thin film is to be attached is prepared in advance.
After the film has been deposited, a method is employed in which the thin film is displaced in the opposite direction to the direction in which it is deformed due to the difference in thermal expansion coefficient between the head forming substrate and the thin film. That is, the present invention is a method of setting a displacement amount to correct a previously anticipated displacement of a workpiece and offsetting it.

1皿 この発明によれば、予め成膜作業時の温度により変形す
る方向と逆向きに、変位させたヘッドコア基板上に、薄
膜材料を付着させるので、薄膜形成後、基板と薄膜の熱
膨張係数の差により、常温に戻りながら収縮する際の応
力が、予め設定した変位量を元に復帰させるように作用
する。
According to the present invention, the thin film material is deposited on the head core substrate which has been displaced in advance in the opposite direction to the direction in which it is deformed due to the temperature during the film forming operation, so that after the thin film is formed, the thermal expansion coefficient of the substrate and the thin film is Due to the difference in temperature, the stress that occurs when shrinking while returning to room temperature acts to restore the preset amount of displacement to the original state.

実」1例− 第1図〜第3図は、この発明の一実施例を示すための磁
気ヘッドコア基板及び薄膜形成を行う高周波スパッタリ
ング装置の概念図である。以下に上記図面を参照しなが
ら実施例を説明する。まずこの実施例に用いるコア形成
基板として、熱膨張係数が100X 10’/”Cの結
晶化ガラス基板を、その基板へ付着させるコア材となる
薄膜材料に、熱膨張係数が150〜180−7/”Cの
センダスト合金を準備しておく。
Practical Example - Figs. 1 to 3 are conceptual diagrams of a magnetic head core substrate and a high frequency sputtering apparatus for forming a thin film, showing an embodiment of the present invention. Examples will be described below with reference to the above drawings. First, as a core forming substrate used in this example, a crystallized glass substrate with a thermal expansion coefficient of 100X 10'/''C is used. /"C sendust alloy is prepared.

さて、はじめに第1図のようにコア形成基板1を、基板
ホルダ兼用の治具9に取付ける。この治具9は、コア形
成基板1を載置する平坦部IOの中央にネジ孔を設け、
押し込みネジ11が若干突出自在に螺着されている。さ
らにこの治具9の平坦部IOの両端には、逆り字形の鉤
12.12が設けられ、押し込みネジ■を僅かに突出さ
せると、ワークであるがラス基板1の両端部が鉤12.
12に掛けられ固定したまま、押し込みネジ11と当接
している中央部のみが若干押し上げられ、弓状の凸形に
変形するようになっている。そこでつぎに、ガラス基板
1とセンダスト合金薄膜2の熱膨張係数差によって生じ
ると予測できる変位量8だけ、押し込みネジ11を押し
込み、第2図に示す凸形に変位設定する。つぎに変位設
定した治具・基板構体3”を第3図に示した高周波スパ
ッタリング装置I2に取込んで、センダスト薄膜を付着
させる。ここで高周波スパッタリング装置12において
、13は治具・基板構体9゛を装着した基体で、ターゲ
ットとしてセンダスト合金14を装備した電極板15と
対向配設され、真空チャンバlB内に収納されている。
First, as shown in FIG. 1, the core forming substrate 1 is attached to a jig 9 which also serves as a substrate holder. This jig 9 has a screw hole in the center of the flat part IO on which the core forming substrate 1 is placed,
A push screw 11 is screwed so that it can freely protrude slightly. Furthermore, hooks 12.12 in the shape of an inverted letter are provided at both ends of the flat portion IO of this jig 9, and when the push-in screw (■) is slightly protruded, both ends of the lath board 1, which is a workpiece, are hooked into the hooks 12.12.
12 and remains fixed, only the central portion that is in contact with the push-in screw 11 is pushed up slightly, deforming into an arch-like convex shape. Therefore, next, the push screw 11 is pushed in by a displacement amount 8 that can be predicted to be caused by the difference in thermal expansion coefficient between the glass substrate 1 and the Sendust alloy thin film 2, and the displacement is set in the convex shape shown in FIG. Next, the jig/substrate structure 3'' whose displacement has been set is taken into the high frequency sputtering device I2 shown in FIG. 3, and a sendust thin film is deposited thereon. The base body is placed opposite an electrode plate 15 equipped with a sendust alloy 14 as a target, and is housed in a vacuum chamber IB.

そして基体■3は真空チャンバ16と供に接地し、電極
板15へは、マツチングボックス17を介して高周波電
源!8に接続しである。真空チャンバ16内へは、数m
TorrのArガスを、ガス供給バルブ20より送り込
みながら、排気口21より真空ポンプ(図示省略)等に
より排気している。またターゲットであるセンダスト合
金I4と治具・基板構体8゛との空間には、高周波グロ
ー放電を起こさせてプラズマを発生させるが、プラズマ
を十分持続させ、かつ空間内に閉じ込めるために永久磁
石19.19により、空間を横切る静磁界を印加しであ
る。そこでスパッタリングを開始する際には、基体13
に内蔵しているヒータで、治具φ基板橋体9′を約20
0℃〜400”C程に、加熱して凸形基板表面を活性化
して成膜良好な条件を作り出す。このようにして、スパ
ッタリング終了後、ヒータによる加熱を停止させ、常温
まで徐冷を行うと、センダスト合金薄膜2とガラス基板
1との熱膨張係数は、センダスト合金薄膜側が先述のと
おり大であるので、徐冷過程で起こる熱収縮応力が基板
1を平坦に矯正するように働く。
The base 3 is grounded together with the vacuum chamber 16, and a high frequency power source is connected to the electrode plate 15 via a matching box 17! It is connected to 8. The distance into the vacuum chamber 16 is several meters.
Torr of Ar gas is fed through a gas supply valve 20 and exhausted through an exhaust port 21 using a vacuum pump (not shown) or the like. Furthermore, in the space between the Sendust alloy I4, which is the target, and the jig/substrate structure 8', a high frequency glow discharge is caused to generate plasma, and in order to sustain the plasma sufficiently and confine it within the space, a permanent magnet 19 is installed. .19, a static magnetic field is applied across the space. Therefore, when starting sputtering, the base 13
The built-in heater heats the jig φ substrate bridge body 9' by approximately 20
The convex substrate surface is activated by heating to about 0°C to 400"C to create favorable conditions for film formation. In this way, after sputtering is completed, heating by the heater is stopped and the material is slowly cooled to room temperature. Since the coefficient of thermal expansion between the Sendust alloy thin film 2 and the glass substrate 1 is larger on the Sendust alloy thin film side as described above, the thermal shrinkage stress generated during the slow cooling process works to straighten the substrate 1 to be flat.

尚、上記実施例では、磁気ヘッド形成基板として結晶化
ガラス基板を、薄膜材料としてセンダスト合金を用いた
が、この発明は、これに限らず、例えばバルク型のMI
Gギャップヘッドを形成する場合であれば、基板として
Mn −Zn単結晶フェライ゛ トとし、薄膜材料とし
てセンダスト合金やS i O2を積層させるようにし
てもよく、同様な効果が期待できる。
In the above embodiment, a crystallized glass substrate was used as the magnetic head forming substrate, and Sendust alloy was used as the thin film material.
If a G-gap head is to be formed, a Mn--Zn single-crystal ferrite may be used as the substrate, and sendust alloy or SiO2 may be laminated as the thin film material, and similar effects can be expected.

光朋j廊1aJL この発明を実施すると、基板へ薄膜を形成する際の反り
が防止され、反りによる歪みによって従来発生していた
コアの特性劣化やコア破損による製造歩留り低下をなく
シ、著しい信頼性向上が達成できる。またこの発明では
、基板を予め変位させる治具の精度を工夫するだけで、
所望の平坦度にして磁気ヘッドコア材料を加工できるの
で、薄膜成膜作業性改善に大きく貢献できる。
By implementing this invention, warping during the formation of a thin film on a substrate can be prevented, and the deterioration of core characteristics and the reduction in manufacturing yield due to core breakage, which conventionally occur due to distortion due to warping, can be eliminated, resulting in significant reliability. Sexual improvement can be achieved. In addition, with this invention, simply by devising the precision of the jig that displaces the board in advance,
Since the magnetic head core material can be processed to the desired flatness, it can greatly contribute to improving the workability of forming thin films.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、この発明の一実施例を紹介するため
の磁気ヘッド形成基板・治具構体を断面視した概念図、
第3図はその実施例で用いる高周波スパッタリング装置
の概念図、第4図は、一般的な磁気ヘッド形成基板と薄
膜を示した側面図、第5図は、バルク型ヘッドコアを示
す概略正面図である。 1・・・・・・基板、   2・・・・・・薄膜、9・
・・・・・治具、3′・・・・・・治具・基板構体、8
・・・・・・変位量。 特許出願人   関西日本電気株式会社(乙)、3〜・
′ 鵡−
1 and 2 are conceptual cross-sectional views of a magnetic head forming substrate/jig structure for introducing an embodiment of the present invention;
Fig. 3 is a conceptual diagram of the high frequency sputtering device used in this example, Fig. 4 is a side view showing a general magnetic head forming substrate and thin film, and Fig. 5 is a schematic front view showing a bulk type head core. be. 1...Substrate, 2...Thin film, 9.
...Jig, 3'...Jig/board structure, 8
・・・・・・Amount of displacement. Patent applicant Kansai NEC Co., Ltd. (Otsu), 3-・
′ Parrot

Claims (1)

【特許請求の範囲】[Claims] 磁気ヘッド形成基板に、熱膨張係数が基板と差異がある
薄膜材料を、成膜付着させるに際して、予め上記ヘッド
形成基板を、成膜付着後にヘッド形成基板と薄膜との熱
膨張係数の差によって変形する方向と逆向きに変位させ
ておくことを特徴とする磁気ヘッドコア形成方法。
When a thin film material having a coefficient of thermal expansion different from that of the substrate is deposited on a magnetic head forming substrate, the head forming substrate is deformed in advance due to the difference in thermal expansion coefficient between the head forming substrate and the thin film after the film is deposited. A method for forming a magnetic head core characterized by displacing the core in a direction opposite to that of the magnetic head core.
JP10242687A 1987-04-24 1987-04-24 Method for forming magnetic head core Pending JPS63268111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10242687A JPS63268111A (en) 1987-04-24 1987-04-24 Method for forming magnetic head core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10242687A JPS63268111A (en) 1987-04-24 1987-04-24 Method for forming magnetic head core

Publications (1)

Publication Number Publication Date
JPS63268111A true JPS63268111A (en) 1988-11-04

Family

ID=14327131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10242687A Pending JPS63268111A (en) 1987-04-24 1987-04-24 Method for forming magnetic head core

Country Status (1)

Country Link
JP (1) JPS63268111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504887A2 (en) * 1991-03-22 1992-09-23 Read-Rite Corporation Automated system for lapping magnetic heads
US6123608A (en) * 1998-11-17 2000-09-26 Alps Electric Co., Ltd. Crown forming apparatus for forming crown floating type magnetic head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0504887A2 (en) * 1991-03-22 1992-09-23 Read-Rite Corporation Automated system for lapping magnetic heads
US6123608A (en) * 1998-11-17 2000-09-26 Alps Electric Co., Ltd. Crown forming apparatus for forming crown floating type magnetic head

Similar Documents

Publication Publication Date Title
JPS63268111A (en) Method for forming magnetic head core
US20100108496A1 (en) Sputtering apparatus, thin film formation apparatus, and magnetic recording medium manufacturing method
JPS63205805A (en) Method for correcting camber of core chip
US20100108495A1 (en) Thin film formation apparatus and magnetic recording medium manufacturing method
JP2949875B2 (en) Manufacturing method of magnetic recording medium
JP2002004043A (en) Structure having curved surface, and its manufacturing method
JP2906163B2 (en) Sputtering equipment
JPS621866A (en) Sputtering device
JPH0746665B2 (en) Method of manufacturing magnetic thin film
JPS5876429A (en) Forming method of metallic thin film
JPH04246805A (en) Thin film forming method
JPH0620321A (en) Production of magnetic recording medium
JPH0554173B2 (en)
JPH11350133A (en) Production of disk plate and substrate holder
Macken et al. Rapid thermal processing of sendust for magnetic recording applications
JPS6076027A (en) Production of magnetic recording medium
JPS60150237A (en) Production of magnetic recording medium
JPH0751748B2 (en) Thin film generation method
JPH0762534A (en) Substrate holder for production of thin-film magnetic disk
JPS62125517A (en) Magnetic head
JPH0195509A (en) Sputtering device for manufacturing magnetic thin film
JPH03119519A (en) Production of perpendicular magnetic recording medium
JPS62202304A (en) Manufacture of magnetic head
JPH06244048A (en) Method for formation of magnetically soft thin film and magnetic head
JPH06349060A (en) Production of recording medium and its apparatus