JPS63268110A - Manufacture of thin film magnetic head - Google Patents

Manufacture of thin film magnetic head

Info

Publication number
JPS63268110A
JPS63268110A JP10220987A JP10220987A JPS63268110A JP S63268110 A JPS63268110 A JP S63268110A JP 10220987 A JP10220987 A JP 10220987A JP 10220987 A JP10220987 A JP 10220987A JP S63268110 A JPS63268110 A JP S63268110A
Authority
JP
Japan
Prior art keywords
insulating layer
thin film
magnetic
photoresist
film coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10220987A
Other languages
Japanese (ja)
Other versions
JPH0810481B2 (en
Inventor
Toshio Fukazawa
利雄 深澤
Kumiko Wada
久美子 和田
Yoshihiro Tozaki
善博 戸崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10220987A priority Critical patent/JPH0810481B2/en
Publication of JPS63268110A publication Critical patent/JPS63268110A/en
Publication of JPH0810481B2 publication Critical patent/JPH0810481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve a recording and reproducing efficiency by executing the flattening cavity part processing of a prescribed thickness and flattening the level difference of the photoresist occurred at an insulating layer on a thin film coil. CONSTITUTION:On an Ni-Zn ferrite-made magnetic base 1, a first insulating layer 2 by an SiO2 thin film is formed, and on it, a thin film coil 3 is patterned to a prescribed shape with a chemical etching, etc. Next, a second insulating layer 4 of the SiO2 thin film is formed, further, a photoresist 5 is coated, a shape is flattened, the unnecessary part of first and second insulating layers 2 and 4 is ion-beam-etched, an intermediate insulating layer is inclination-processed to an optimum angle, next, a magnetic cavity part insulating layer 6 is formed with an SiO2 thin film and a magnetic core 7 is formed with a Sendust thin film. Thus, since the insulating layer 4 formed on the thin film coil 3 is flattened and the intermediate insulating layer is processed to an optimum inclination angle, the magnetic core 7 does not generate unevenness, and formed with an inclination at a part from a magnetic cavity part 8 to the upper part of the thin film coil 3, and therefore, a magnetic flux easily flows in the magnetic core 7 and the deterioration of a magnetic permeability can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気記録再生装置に使用する薄膜磁気ヘッドの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a thin film magnetic head used in a magnetic recording/reproducing device.

従来の技術 近年、磁気記録分野において、高記録密度化に伴い、狭
トラツク、マルチトラック化された薄膜磁気ヘッドが必
要となってきている。
2. Description of the Related Art In recent years, in the field of magnetic recording, thin film magnetic heads with narrow tracks and multi-tracks have become necessary as recording densities have increased.

この薄膜磁気ヘッドの最も重要な製造プロセスとして磁
気コアの形成があり、この磁気コアの磁気能率を高める
ためには単に透磁率を大きくするだけではなく、磁気コ
アを磁束の流れやすい形状に加工する必要がある。その
ためには (1)磁気空隙部から薄膜コイル上の絶縁層に至る中間
絶縁層を傾斜させる、 (2)薄膜コイル上に形成した凹凸を平坦化するという
2つの加工が必要となる。第4図に従来の薄膜磁気ヘッ
ドの平面図、第6図に第4図のムー人′線断面図を用い
て従来の薄膜磁気ヘッドの製造方法を示す。
The most important manufacturing process for this thin-film magnetic head is the formation of the magnetic core.In order to increase the magnetic efficiency of this magnetic core, it is not only necessary to simply increase the magnetic permeability, but also to process the magnetic core into a shape that facilitates the flow of magnetic flux. There is a need. To achieve this, two processes are required: (1) slanting the intermediate insulating layer from the magnetic gap to the insulating layer on the thin-film coil; and (2) flattening the unevenness formed on the thin-film coil. FIG. 4 is a plan view of a conventional thin film magnetic head, and FIG. 6 is a cross-sectional view taken along the line 4 of FIG. 4 to illustrate a method of manufacturing a conventional thin film magnetic head.

第4図、第5図において、1は磁性基板、2は第1の絶
縁層、3は薄膜コイル、4は第2の絶縁層、16は第1
のホトレジスト、1eは第2のホトレジスト、6は磁気
空隙部絶縁層、7は磁気コア、8は磁気空隙部である。
4 and 5, 1 is a magnetic substrate, 2 is a first insulating layer, 3 is a thin film coil, 4 is a second insulating layer, and 16 is a first insulating layer.
1e is a second photoresist, 6 is a magnetic gap insulating layer, 7 is a magnetic core, and 8 is a magnetic gap.

次に製造プロセスについて説明する。第5図aは磁性基
板1上に第1の絶縁層を形成したプロセスを示す。次に
第6図すに示すように第1の絶縁層2上に薄膜コイル3
をケミカルエツチング法等で微細パターン加工し、形成
する。その後、第6図Cに示すように第2の絶縁層4を
形成する。このとき第2の絶縁層4には、薄膜コイル3
の凹凸がそのまま転写されている。第6図dは第2の絶
縁層2の凹凸の段差を縮少(平坦化)せしめるため、第
1のホトレジスト16をスピンコードで平坦塗布を行っ
た様子を示す。第6図gは第2の絶縁層4と第1のホト
レジスト16をイオンビームエツチング法などを用いて
等しいエツチングレートでエツチングを行ったものを示
す。第6図fは、磁気空隙部8及び基板1と磁気コア7
を磁気的に結合するために不必要な第1の絶縁層2と第
2の絶縁層4を除去するために必要なエツチングを行う
ためのパターンを施した第2のホトレジスト16の様子
を示し、第5図gに示すように磁気空隙部8から薄膜コ
イル3上の第2の絶縁層4へ至る中間絶縁層を傾斜させ
るようにエツチングを行い、その後、第2のホトレジス
ト16を除去した後、第4図りに示すように磁気空隙部
絶縁層6を形成し、磁気コア7を形成する。
Next, the manufacturing process will be explained. FIG. 5a shows the process of forming the first insulating layer on the magnetic substrate 1. FIG. Next, as shown in FIG. 6, a thin film coil 3 is placed on the first insulating layer 2.
A fine pattern is formed using a chemical etching method or the like. Thereafter, the second insulating layer 4 is formed as shown in FIG. 6C. At this time, the second insulating layer 4 has a thin film coil 3
The unevenness is transferred as is. FIG. 6d shows a state in which the first photoresist 16 is flattened using a spin code in order to reduce (flatten) the unevenness of the second insulating layer 2. FIG. 6g shows the second insulating layer 4 and the first photoresist 16 etched at the same etching rate using an ion beam etching method or the like. FIG. 6f shows the magnetic gap 8, the substrate 1 and the magnetic core 7.
The second photoresist 16 is patterned to perform the etching necessary to remove the first insulating layer 2 and the second insulating layer 4 that are unnecessary for magnetically coupling the . As shown in FIG. 5g, the intermediate insulating layer from the magnetic gap 8 to the second insulating layer 4 on the thin film coil 3 is etched so as to be inclined, and then, after removing the second photoresist 16, As shown in the fourth diagram, a magnetic gap insulating layer 6 is formed, and a magnetic core 7 is formed.

発明が解決しようとする問題点 しかしながら、上記のような薄膜磁気ヘッドの製造プロ
セスでは第2の絶縁層4を平坦化を行うために塗布する
第1のホトレジスト15は薄膜コイル3によって生ずる
段差を0とするように塗布されなければならない。この
ような第1のホトレジスト16の塗布は困難である。従
って、第1のホトレジスト16の塗布後の段差は、第5
図gに示されるように、第2の絶縁層4と第1のホトレ
ジスト16のエツチングレートが等しい条件でエツチン
グされた後、第2の絶縁層4に転写されるため、第2の
絶縁層4上に形成される磁気コア7も段差をもった凹凸
形状となり、透磁率の劣化を招き記録再生効率の劣化を
招く。
Problems to be Solved by the Invention However, in the manufacturing process of the thin film magnetic head as described above, the first photoresist 15 applied to planarize the second insulating layer 4 eliminates the level difference caused by the thin film coil 3. It must be applied as shown. Coating such a first photoresist 16 is difficult. Therefore, the level difference after coating the first photoresist 16 is
As shown in FIG. The magnetic core 7 formed above also has an uneven shape with steps, leading to deterioration of magnetic permeability and deterioration of recording and reproducing efficiency.

また、平坦化加工と磁気空隙部から薄膜コイル3上の第
2の絶縁層4に至る中間絶縁層を傾斜させる加工プロセ
スが各々存在するため、製造プロセスを複雑にし、薄膜
磁気ヘッドの製造コストを増加させる要因ともなってい
た。
In addition, since there is a planarization process and a process for tilting the intermediate insulating layer from the magnetic gap to the second insulating layer 4 on the thin-film coil 3, the manufacturing process becomes complicated and the manufacturing cost of the thin-film magnetic head is reduced. It was also a contributing factor to the increase.

本発明は上記問題点に鑑み、磁気コア7の凹凸を解消し
、即ち、第2の絶縁層4の凹凸を解消する平坦化加工を
行い、この平坦化加工と同時に磁気空隙部から薄膜コイ
ル上の第2の絶縁層へ至る中間絶縁層の傾斜加工を行う
ことによって、磁気コアの特性を向上させ、かつ製造コ
ストを低減する薄膜磁気ヘッドの製造方法を提供するも
のである0 問題点を解決するための手段 上記目的を達するため、本発明の薄膜磁気ヘッドの製造
方法は、平坦化加工及び磁気空隙部から薄膜コイル上の
絶縁層に至る中間絶縁層の傾斜加工を同時に行うもので
ある。
In view of the above-mentioned problems, the present invention eliminates the unevenness of the magnetic core 7, that is, performs a flattening process to eliminate the unevenness of the second insulating layer 4. The present invention provides a method for manufacturing a thin film magnetic head that improves the characteristics of the magnetic core and reduces manufacturing costs by performing slope processing on the intermediate insulating layer leading to the second insulating layer. Means for Achieving In order to achieve the above object, the method for manufacturing a thin film magnetic head of the present invention simultaneously performs planarization processing and slope processing of the intermediate insulating layer from the magnetic gap to the insulating layer on the thin film coil.

作用 この製造方法によりエツチング後の薄膜コイル上に形成
された絶縁層は平担化され、中間絶縁層は最適な傾斜角
度に加工されるため、磁気コアは凹凸がなく、また、磁
気空隙部から薄膜コイルの上部へ至る部分も傾斜をもっ
て形成されるため段差がない。従って、磁気コア中を磁
束は容易に流れることができ、透磁率の劣化を防ぐこと
ができ記録再生特性を向上させる。そして、平坦化加工
と傾斜加工を同時に行うため、製造プロセスを簡略化で
き、製造コストを低減することができる。
Function: With this manufacturing method, the insulating layer formed on the thin film coil after etching is flattened, and the intermediate insulating layer is processed at an optimal angle of inclination, so the magnetic core has no unevenness and is free from the magnetic gap. The portion leading to the top of the thin film coil is also formed with an inclination, so there is no step. Therefore, magnetic flux can easily flow through the magnetic core, preventing deterioration of magnetic permeability and improving recording and reproducing characteristics. Since the flattening process and the tilting process are performed simultaneously, the manufacturing process can be simplified and manufacturing costs can be reduced.

実施例 以下に本発明における一実施例について説明する0 第1図は本発明による薄膜磁気ヘラ”ドの製造プロセス
を示したものである。第4図と同様のものには同一番号
を付し、説明を省略する。6はホトレジストである。
EXAMPLE An example of the present invention will be described below. Figure 1 shows the manufacturing process of a thin film magnetic heald according to the present invention. Components similar to those in Figure 4 are given the same numbers. , the explanation is omitted. 6 is a photoresist.

次に製造プロセスについて説明する。第1図aは、磁性
基板1(Ni−Znフェライト)上に第1の絶縁層2 
(5i02薄膜)が形成された後、薄膜コイル3がケミ
カルエツチング法等で所定の形状にバターニングされた
ものを示している。第1図すは薄膜コイル3上に第2の
絶縁層4 (5iOz薄膜)が形成された様子を示して
いる。このとき第2の絶縁層4には薄膜コイル3の凹凸
がそのまま転写されている。第1図Cは、第2の絶縁層
4を平坦化するためのホトレジスト5を塗布し、その後
、磁気空隙部8及び基板1と磁気コア7を磁気的に結合
させるため不必要な第1の絶縁層2、第2の絶縁層4を
除去するために必要なエツチングを行うためのパターン
をホトレジスト5に形成した様子を示す。このホトレジ
スト6は後で詳細に説明するが、所定の厚みと段差を有
している。
Next, the manufacturing process will be explained. FIG. 1a shows a first insulating layer 2 on a magnetic substrate 1 (Ni-Zn ferrite).
(5i02 thin film) is formed, and then the thin film coil 3 is patterned into a predetermined shape by chemical etching or the like. FIG. 1 shows a state in which a second insulating layer 4 (5iOz thin film) is formed on the thin film coil 3. At this time, the unevenness of the thin film coil 3 is directly transferred to the second insulating layer 4. In FIG. 1C, a photoresist 5 is applied to planarize the second insulating layer 4, and then an unnecessary first layer is applied to magnetically couple the magnetic gap 8, the substrate 1, and the magnetic core 7. A pattern for performing etching necessary to remove the insulating layer 2 and the second insulating layer 4 is formed on the photoresist 5. This photoresist 6 will be described in detail later, but has a predetermined thickness and a step difference.

次に第1図dに示すように磁気空隙部8から薄膜コイル
3上の第2の絶縁層4へ至る中間絶縁層を最適角度に傾
斜加工させる方法としてイオンビームを用いたイオンビ
ームエツチング法を使用した。この方法は加速されたム
rイオンをエツチング処理すべき試料に衝突させること
によシエッチングを行うもので、試料に対するイオン入
射角度を制御することによってそのエツチング断面形状
(傾斜角度)を自由に制御できる特徴を有している。こ
の後、第1図eに示すように磁気空隙部絶縁層6を5i
02薄膜で形成し、磁気コア7をセンダスト薄膜で形成
する。
Next, as shown in FIG. 1d, an ion beam etching method using an ion beam is used to tilt the intermediate insulating layer from the magnetic gap 8 to the second insulating layer 4 on the thin film coil 3 at an optimal angle. used. This method performs etching by colliding accelerated murine ions with the sample to be etched, and by controlling the ion incidence angle with respect to the sample, the etching cross-sectional shape (tilt angle) can be freely controlled. It has the characteristics of being able to After that, as shown in FIG. 1e, the magnetic gap insulating layer 6 is
02 thin film, and the magnetic core 7 is formed of Sendust thin film.

前述したように、ホトレジスト5は所定の段差と厚みを
有している。この理由を以下に第2図を用いて説明する
。第2図は第1図におけるプロセスCからdへ至る加工
、即ち、平坦化加工及び中間絶縁層の傾斜加工を詳細に
示したものである。
As described above, the photoresist 5 has a predetermined step and thickness. The reason for this will be explained below using FIG. 2. FIG. 2 shows in detail the processes from C to d in FIG. 1, that is, the planarization process and the slope process of the intermediate insulating layer.

(以後、第2図で示されるプロセスを平坦化空隙部傾斜
加工と呼ぶ。)第2図において第1図と同一のものには
同一番号を付し、説明を省略する。
(Hereinafter, the process shown in FIG. 2 will be referred to as flattening gap tilt machining.) In FIG. 2, the same parts as in FIG.

また、ホトレジスト6の段差をRc、厚みをH1第2の
絶縁層4の段差をS、第1の絶縁層2と第2の絶縁層4
の厚みの和をLとし、ムー五′線はホトレジスト5の凸
部の先端を示し、B −B’線は第2の絶縁層4の凸部
の先端を示し、a −c’線は第2の絶縁層4の凹部の
底部を示す。
Further, the step of the photoresist 6 is Rc, the thickness is H1, the step of the second insulating layer 4 is S, and the difference between the first insulating layer 2 and the second insulating layer 4 is
Let L be the sum of the thicknesses of The bottom of the recess of the insulating layer 4 of No. 2 is shown.

この加工時のイオンビームエツチング条件は、中間絶縁
層の傾斜角度を最適に加工する第1の絶縁層2および第
2の絶縁層4のエツチング条件で行う。このとき、第1
の絶緯層2および第2の絶縁層4のエツチングレートを
raとし、ホトレジスト5のエツチングレートをrOと
する。第2図aにおいて、前記エツチングレートでエツ
チングを開始する。第2図すはエツチング面がムー人′
線よりB−B’線へ移行した時の様子を示している。こ
の時、薄膜コイル3上のホトレジスト6は(H+R,−
8)だけエツチングされており、これに要した時間をt
lとすると、 ro t、 = H+ Rc −S    −−−(1
)よりtlは t+=(H+Rc  S)/ro  −−(2)となる
。さらにエツチングを進行させ、エツチング面がC−a
t線に達した時、エツチングを終了する。第2図すから
第2図Cへ移行するまでの時間をt2 とする。この時
、薄膜コイル3上の第2の絶縁層4はSだけエツチング
され薄膜コイル3の間に残されたホトレジスト6は(S
−Ra)だけエツチングされる。従って r5 t2= 8       ・・・・・・・・・・
・・ (3)rQ t2= S −R(+    ・・
・・・・・・・・・・ (4)となる。(3)式、(4
)式よ!1lt2を消去し、R(+について解くと、 となる。よって、第2図aの平坦化加工前のホトレジス
ト5の段差RCは(5)式を満たすような値としておけ
ば、薄膜コイルa上の第2の絶縁層4は完全な平坦化が
できる。
The ion beam etching conditions during this processing are such that the first insulating layer 2 and the second insulating layer 4 are etched to optimize the inclination angle of the intermediate insulating layer. At this time, the first
The etching rate of the isolated layer 2 and the second insulating layer 4 is ra, and the etching rate of the photoresist 5 is rO. In FIG. 2a, etching is started at the etching rate. In Figure 2, the etched side is a Mu person.
It shows the situation when moving from the line to the line BB'. At this time, the photoresist 6 on the thin film coil 3 is (H+R, -
8) is etched, and the time required for this is t.
l, then rot, = H+ Rc −S ---(1
), tl becomes t+=(H+Rc S)/ro --(2). Further etching progresses until the etched surface becomes C-a.
When the t-line is reached, the etching is finished. The time from FIG. 2 to FIG. 2 C is defined as t2. At this time, the second insulating layer 4 on the thin film coil 3 is etched by S, and the photoresist 6 left between the thin film coils 3 is etched by (S).
-Ra) is etched. Therefore r5 t2= 8 ・・・・・・・・・・・・
・・(3)rQ t2=S −R(+ ・・
・・・・・・・・・・・・(4) Equation (3), (4
) ceremony! 1lt2 and solving for R(+), we get: Therefore, if the step RC of the photoresist 5 before planarization shown in FIG. 2a is set to a value that satisfies equation (5), then The second insulating layer 4 can be completely planarized.

一方、磁気空隙部8の第1.第2絶縁層2,4は、プロ
セスが第2図aからCへ進行する時間(t1+ t2)
の間に絶縁層をLだけエツチングする必要があることか
ら ra(t++tz)=L   −”−・(6)となる。
On the other hand, the first. The second insulating layers 2, 4 are formed at the time (t1+t2) during which the process progresses from a to c in FIG.
Since it is necessary to etch the insulating layer by L during the etching process, ra(t++tz)=L -''- (6).

(2)式、(4)式、(6)式よシt+ j t2を消
去すると rB・−=L     ・・・・・・・・・・・・ (
′7)O 即ち、 従って、ホトレジスト5の厚みHを(8)式を満たすよ
うにすれば、平坦化加工を行うと同時に磁気空隙部8が
形成される。
According to equations (2), (4), and (6), if t + j t2 is eliminated, rB・-=L ・・・・・・・・・・・・ (
'7)O That is, if the thickness H of the photoresist 5 is made to satisfy the formula (8), the magnetic gap 8 is formed at the same time as the planarization process is performed.

本実施例において中間絶縁層の傾斜角度を46゜とする
ため、イオンビーム入射角度を46°とした時にはエツ
チングレート比ro/rsは第3図から0.78となる
。第2の絶縁層40段差Sを2μm、第1の絶縁層2と
第2の絶縁層4の厚みの和りを3μmと設定しているの
で(8)式、(6)式よシホトレジスト6の厚みHは2
.3 μm 、段差R,は0.33pmにしなければな
らない。このようなホトレジスト6の塗布は、ホトレジ
スト6塗布時のスピンコード回転数、ホトレジスト5の
粘度を制御することによって行った。本実施例ではホト
レジスト6にゴム環化系ホトレジストを用い、スピンコ
ード回転数を300 Orpm 、粘度を12009と
することによって所定の膜厚と段差を得た。
In this embodiment, since the inclination angle of the intermediate insulating layer is 46 degrees, the etching rate ratio ro/rs is 0.78 from FIG. 3 when the ion beam incident angle is 46 degrees. Since the step S of the second insulating layer 40 is set to 2 μm, and the sum of the thicknesses of the first insulating layer 2 and the second insulating layer 4 is set to 3 μm, equations (8) and (6) show that the photoresist 6 The thickness H is 2
.. 3 μm, and the step R must be 0.33 pm. The photoresist 6 was coated as described above by controlling the spin cord rotation speed and the viscosity of the photoresist 5 during coating of the photoresist 6. In this example, a rubber cyclized photoresist was used as the photoresist 6, and a predetermined film thickness and level difference were obtained by setting the spin cord rotation speed to 300 Orpm and the viscosity to 12009.

上記のような手法によシ中間絶縁層の傾斜角度を45°
、平坦化後の第2の絶縁層4の段差を0.1μm以下に
した。
By using the method described above, the inclination angle of the intermediate insulating layer is set to 45°.
, the level difference of the second insulating layer 4 after planarization was set to 0.1 μm or less.

本実施例においては平坦化空隙部傾斜加工後に磁気空隙
部絶縁層6を形成していたが、平坦化空隙部傾斜加工の
際に、磁気空隙部8となる部分の第1および第2の絶縁
層2.4の一部を残してエツチングし、このエツチング
残シ厚みが磁気空隙部絶縁層6と同じ厚みgとなるよう
にホトレジスト6の厚みHを設定することも可能である
。この場合、ホトレジスト6の厚みHは(8)式のかわ
りに次式 %式%(9) 発明の効果 以上のように本発明の薄膜磁気ヘッドの製造方法によれ
ば、例えば薄膜コイル上の絶縁層に生じた段差をホトレ
ジストを所定の厚みH及び段差R3即ち 1(=−L 1I rB;磁気空隙部から薄膜コイル上の絶縁層へ至る中間
絶縁層を最適角度にエ ツチングする条件下での絶縁層エツ チングレート ro;上記エツチング条件下におけるホトレジストのエ
ツチングレート S;薄膜コイル上に形成された絶縁層の段差 L;磁気空隙部においてエツチングされる絶縁層の厚み で塗布し平坦化空隙部加工を行なうことにより、このプ
ロセス後に形成される磁気コアの形状に段差等が生ずる
ことがないため、磁束が流れやすくなり記録再生効率を
著しく向上させることができる。また、平坦化と磁気空
隙部は同時に形成、加工できるため、製造プロセスが大
幅に簡略化され、製造コストを低減できるので安価に磁
気記録再生効率に優れた薄膜磁気ヘッドを提供すること
ができるという効果を有する。
In this embodiment, the magnetic gap insulating layer 6 was formed after the flattening gap inclination processing, but during the planarization gap inclination processing, the first and second insulating layers of the portion that will become the magnetic gap 8 are formed. It is also possible to set the thickness H of the photoresist 6 so that a portion of the layer 2.4 is left unetched, and the thickness of the etched residue becomes the same thickness g as the magnetic gap insulating layer 6. In this case, the thickness H of the photoresist 6 is determined by the following formula % formula % (9) instead of formula (8). Effects of the Invention As described above, according to the method for manufacturing a thin film magnetic head of the present invention, for example, the insulation on the thin film coil Insulation under conditions where the photoresist layer is etched to a predetermined thickness H and the step R3, that is, 1 (=-L 1I rB; the intermediate insulating layer from the magnetic gap to the insulating layer on the thin film coil is etched at an optimal angle. Layer etching rate ro; Etching rate S of the photoresist under the above etching conditions; Step L of the insulating layer formed on the thin film coil; Coating to the thickness of the insulating layer to be etched in the magnetic gap, and flattening the gap. As a result, there are no steps or the like in the shape of the magnetic core formed after this process, making it easier for magnetic flux to flow and significantly improving recording and reproducing efficiency.Furthermore, the flattening and magnetic gap are formed at the same time. Since the manufacturing process can be greatly simplified and the manufacturing cost can be reduced, it is possible to provide a thin film magnetic head with excellent magnetic recording and reproducing efficiency at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における薄膜磁気ヘッドの製
造方法を示す模式図、第2図は本発明の一実施例におけ
る平坦化空隙部加工の模式図、第3図はイオンビームエ
ツチング法によるイオンビーム入射角度とエツチングレ
ート比を示す特性図、第4図は従来の薄膜磁気ヘッドの
平面図、第5図は従来の薄膜磁気ヘッドの製造方法を示
す模式図である。 1・・・・・・磁性基板、2・・・・・・第1の絶縁層
、3・・・・・・薄膜コイル、4・・・・・・第2の絶
縁層、6・・・・・・ホトレジスト、6・・・・・・磁
気空隙部絶縁層、7・・・・・・磁気コア、8・・・・
・・磁気空隙部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
一一忌姓愚鴛 第2図 第3図 Aオンローム入射能θ(jり 第4図 第5図 第5図
FIG. 1 is a schematic diagram showing a method for manufacturing a thin film magnetic head in an embodiment of the present invention, FIG. 2 is a schematic diagram of flattening gap processing in an embodiment of the present invention, and FIG. 3 is an ion beam etching method. FIG. 4 is a plan view of a conventional thin film magnetic head, and FIG. 5 is a schematic diagram showing a method of manufacturing a conventional thin film magnetic head. DESCRIPTION OF SYMBOLS 1... Magnetic substrate, 2... First insulating layer, 3... Thin film coil, 4... Second insulating layer, 6... ... Photoresist, 6 ... Magnetic gap insulating layer, 7 ... Magnetic core, 8 ...
...Magnetic gap. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
Figure 2 Figure 3 A On-Roam incident power θ

Claims (2)

【特許請求の範囲】[Claims] (1)磁性基板上に第1の絶縁層、薄膜コイル、第2の
絶縁層、薄膜磁気コアを順次形成するに際し、前記薄膜
コイルの凹凸が転写された前記第2の絶縁層の凹凸を平
坦にする加工と、磁気空隙部から前記薄膜コイル上の前
記第2の絶縁層上に至る中間絶縁層の傾斜部を形成する
加工とを同時に行うことを特徴とする薄膜磁気ヘッドの
製造方法。
(1) When sequentially forming a first insulating layer, a thin film coil, a second insulating layer, and a thin film magnetic core on a magnetic substrate, flatten the unevenness of the second insulating layer to which the unevenness of the thin film coil has been transferred. A method for manufacturing a thin-film magnetic head, characterized in that processing for forming a sloped portion of an intermediate insulating layer from a magnetic gap portion to the second insulating layer on the thin-film coil are simultaneously performed.
(2)中間絶縁層の傾斜を最適角度で加工する際の絶縁
層のエッチングレートr_s、このときのホトレジスト
のエッチングレートをr_o、薄膜コイル上に形成され
た絶縁層の段差をS、磁気空隙部においてエッチングさ
れる絶縁層の厚みをLとした時に、ホトレジストの塗布
後の段差R_c、厚みHを R_c=S*[1−(r_o/r_s)]、H=(r_
o/r_s)Lとするようなホトレジスト塗布条件によ
ってエッチングを行う特許請求の範囲第1項記載の薄膜
磁気ヘッドの製造方法。
(2) The etching rate of the insulating layer when processing the slope of the intermediate insulating layer at the optimum angle, r_s, the etching rate of the photoresist at this time, r_o, the step of the insulating layer formed on the thin film coil, S, the magnetic gap. When the thickness of the insulating layer etched in is L, the step R_c and thickness H after photoresist application are R_c=S*[1-(r_o/r_s)], H=(r_
2. The method of manufacturing a thin film magnetic head according to claim 1, wherein etching is performed under photoresist coating conditions such that o/r_s)L.
JP10220987A 1987-04-24 1987-04-24 Method of manufacturing thin film magnetic head Expired - Lifetime JPH0810481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10220987A JPH0810481B2 (en) 1987-04-24 1987-04-24 Method of manufacturing thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10220987A JPH0810481B2 (en) 1987-04-24 1987-04-24 Method of manufacturing thin film magnetic head

Publications (2)

Publication Number Publication Date
JPS63268110A true JPS63268110A (en) 1988-11-04
JPH0810481B2 JPH0810481B2 (en) 1996-01-31

Family

ID=14321270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10220987A Expired - Lifetime JPH0810481B2 (en) 1987-04-24 1987-04-24 Method of manufacturing thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH0810481B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492888A2 (en) * 1990-12-27 1992-07-01 Sony Corporation Of America Thin film magnetic head for use with magneto-optic disk drive
EP0716411A1 (en) * 1994-12-05 1996-06-12 Aiwa Co., Ltd. Method for fabricating a planer thin film structure
US5650983A (en) * 1993-04-28 1997-07-22 Sony Corporation Printed circuit board magnetic head for magneto-optical recording device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0492888A2 (en) * 1990-12-27 1992-07-01 Sony Corporation Of America Thin film magnetic head for use with magneto-optic disk drive
US5402293A (en) * 1990-12-27 1995-03-28 Sony Electronics Inc. Magneto-optical head having a thin film coil recessed into a magnetic substrate
EP0742557A2 (en) * 1990-12-27 1996-11-13 Sony Corporation Of America Thin film magnetic head for use with magneto-optic disc drive
EP0742557A3 (en) * 1990-12-27 1996-11-27 Sony Corp America
US5650983A (en) * 1993-04-28 1997-07-22 Sony Corporation Printed circuit board magnetic head for magneto-optical recording device
EP0716411A1 (en) * 1994-12-05 1996-06-12 Aiwa Co., Ltd. Method for fabricating a planer thin film structure
US5800967A (en) * 1994-12-05 1998-09-01 Aiwa Research And Development, Inc. Method for fabricating a planar thin film structure

Also Published As

Publication number Publication date
JPH0810481B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US6445536B1 (en) Dielectric stencil-defined write head for MR, GMR, and spin valve high density recording heads
US5700380A (en) Simplified method of making vias for merged MR head
JPS63268110A (en) Manufacture of thin film magnetic head
US6560864B1 (en) Process for manufacturing a flat coil
US5695656A (en) Method for fabricating a magnetic thin-film head
JPH09129644A (en) Patterning of metal layer
JP2002197612A (en) Method for forming embedded pattern, and method for manufacturing magnetic head
JP3366582B2 (en) Thin film magnetic head and method of manufacturing the same
JPH10340426A (en) Thin film magnetic head and its production
JP2740698B2 (en) Thin film magnetic head
JPH07105507A (en) Manufacturing process of thin film magnetic head
JPH05303719A (en) Thin-film magnetic head and its production
JPH07110917A (en) Thin film magnetic head and manufacture thereof
JPH1074307A (en) Production of composite magnetic head
JPH07296330A (en) Thin film magnetic head and its manufacture
JPS63249920A (en) Production of thin film magnetic head
JPH0370848B2 (en)
JPH0411311A (en) Production of thin-film magnetic head
JPH11306512A (en) Thin film magnetic head and its manufacture
JPH0916907A (en) Thin-film magnetic head and its manufacture
JPH0628629A (en) Production of thin film magnetic head
JPH06195634A (en) Production of thin film magnetic head
JPH06259737A (en) Production of floating type magnetic head
JPH0567307A (en) Manufacture of thin film magnetic head
JPH0289208A (en) Production of thin-film magnetic head