JPS6326695B2 - - Google Patents

Info

Publication number
JPS6326695B2
JPS6326695B2 JP55020288A JP2028880A JPS6326695B2 JP S6326695 B2 JPS6326695 B2 JP S6326695B2 JP 55020288 A JP55020288 A JP 55020288A JP 2028880 A JP2028880 A JP 2028880A JP S6326695 B2 JPS6326695 B2 JP S6326695B2
Authority
JP
Japan
Prior art keywords
resin
curable resin
curing
core mold
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55020288A
Other languages
Japanese (ja)
Other versions
JPS56115220A (en
Inventor
Hiroshi Kusano
Satoshi Miura
Masao Niki
Hiroshi Okamoto
Terukuni Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2028880A priority Critical patent/JPS56115220A/en
Publication of JPS56115220A publication Critical patent/JPS56115220A/en
Publication of JPS6326695B2 publication Critical patent/JPS6326695B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 本発明はFRP管の製造法に関し、より詳細に
は、高品質のFRP管を高生産性のもとに製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing FRP pipes, and more particularly to a method for manufacturing high-quality FRP pipes with high productivity.

従来のFRP管製造法は、ロービングを樹脂
浴に含浸させた後順次芯型に巻装し、硬化させた
後芯型を脱型する方法と、予めロービングに樹
脂を含浸させたプリプレツグを作製し、これを芯
型に巻装した後樹脂を完全硬化させて芯型を脱型
する方法、に大別される。ところがの方法で
は、含浸工程でロービングに必要量以上の樹脂が
付着するから、ワインデイング時に該余剰樹脂分
を回収し樹脂浴に返還して循還使用する必要があ
り、ポツトライフの長い樹脂でなければ実用でき
ない。その為硬化に長時を要し、特に厚肉FRP
管の場合生産性は極端に悪くなる。また含浸工程
で樹脂量を調節すべくスキージローラ等を使用す
る方法も実施されているが、ローラ部分で樹脂が
硬化して含浸率が変動したり、場合によつては硬
化した樹脂によつてロービングの送給が不可能に
なることもある。従つて特にFRP管の連続成形
では、スキージローラや付帯機器を頻繁に取り代
えねばならず、また含浸樹脂全体を総入れ替えし
なければならないこともあり、作業性及び経済性
の面で多大な負担が強いられていた。尚スキージ
ローラ等を使用しない場合は、樹脂の含浸量が多
くなつてガラス含有率の低い製品しか得られず、
また気泡混入量の多い欠陥製品が多発するという
問題がある。
Conventional methods for producing FRP pipes include two methods: roving is impregnated in a resin bath, then wrapped around a core mold, and after hardening, the core mold is removed from the mold.The other method is to prepare prepregs in which roving is impregnated with resin in advance. There are two main methods: wrapping the resin around a core mold, completely curing the resin, and removing the core mold. However, with this method, more resin than required adheres to the roving during the impregnation process, so it is necessary to collect the excess resin during winding and return it to the resin bath for recycling, and the resin must have a long pot life. It is not practical. Therefore, it takes a long time to harden, especially for thick FRP.
In the case of pipes, productivity is extremely poor. In addition, a method of using a squeegee roller, etc. to adjust the amount of resin in the impregnation process has been implemented, but the resin hardens at the roller part and the impregnation rate fluctuates, and in some cases, the hardened resin may cause It may also be impossible to feed the roving. Therefore, especially in the continuous molding of FRP pipes, the squeegee roller and ancillary equipment must be frequently replaced, and the entire impregnated resin may also have to be replaced, which is a huge burden in terms of workability and economy. was forced. If you do not use a squeegee roller, etc., the amount of resin impregnated will be large and you will only be able to obtain a product with a low glass content.
Another problem is that defective products with a large amount of air bubbles frequently occur.

また前記の方法では、樹脂含浸ロービングを
予めプリプレツグ化する為の予備設備が必要で設
備面での負担が増大するし、またプリプレツグの
状態で一定のポツトライフを確保する必要がある
から硬化時間の短い樹脂の使用が困難であり、や
はり硬化時間は相当に長い。しかもプリプレツグ
を作製する為の樹脂含浸工程では、前記の方法
と同様含浸用設備・機器の交換、含浸樹脂の総入
れ替え等の経済的・肉体的負担が強いられる。
In addition, the above method requires preliminary equipment to prepare the resin-impregnated roving into prepreg, which increases the burden on the equipment.Also, it is necessary to ensure a certain pot life in the prepreg state, so the curing time is short. The resin is difficult to use and the curing time is also quite long. Moreover, the resin impregnation process for producing prepregs imposes economic and physical burdens, such as replacing impregnating equipment and equipment and completely replacing the impregnated resin, as in the above-mentioned method.

本発明者等は前述の様な事情に着目し、作業
性、生産性及び性能のすべてを満足し得る様な
FRP管の製造法を提供すべく鋭意研究を進めて
きた。その結果以下に示す方法を採用すれば上記
の目的が見事に達成されることを知り、茲に本発
明の完成をみた。
The inventors of the present invention focused on the above-mentioned circumstances and developed a system that satisfies all aspects of workability, productivity, and performance.
We have been conducting intensive research to provide a manufacturing method for FRP pipes. As a result, it was found that the above object could be successfully achieved by adopting the method shown below, and the present invention was finally completed.

即ち本発明に係るFRP管の製造法の構成とは、
芯型上でFRP層を形成するに当り、実質的に硬
化性樹脂を含まない硬化促進剤組成物が付着され
てなるガラス繊維を芯型上に巻回し、この巻回前
に予め芯型上に塗布されていた及び/若しくは巻
回後に塗布される、実質的に硬化性樹脂と硬化剤
を含む硬化性樹脂組成物を、芯型上において前記
ガラス繊維層に付着浸透させるところに要旨が存
在する。
In other words, the configuration of the FRP pipe manufacturing method according to the present invention is as follows:
In forming the FRP layer on the core mold, a glass fiber coated with a curing accelerator composition that does not substantially contain a curable resin is wound onto the core mold, and before winding, the FRP layer is preliminarily coated on the core mold. The gist lies in allowing a curable resin composition substantially containing a curable resin and a curing agent, which has been applied to the core mold and/or which is applied after winding, to adhere and penetrate into the glass fiber layer on the core mold. do.

本発明では、硬化性樹脂と硬化剤を含む硬化性
樹脂組成物を芯型上に塗布した後、実質的に硬化
性樹脂を含まない硬化促進剤組成物が付着されて
なるガラス繊維を巻回するか、或は前記ガラス繊
維を巻回した後前記硬化性樹脂組成物を塗布し、
芯型上において硬化促進剤組成物の付着したガラ
ス繊維に硬化性樹脂と硬化剤を含む硬化性樹脂組
成物を付着浸透させて硬化させる。ここで含浸等
によつて予めガラス繊維に付着させる硬化促進剤
組成物はそれ自体では全く硬化しないから、含浸
装置内で硬化する恐れがなく含浸からワインデイ
ングに至る工程を極めて円滑に行なうことができ
る。また硬化性樹脂組成物は巻回されたガラス繊
維層に付着浸透させていくもので、供給量さえ適
正に調整してやれば余剰樹脂は一切生じない。し
かも使用量に応じた硬化性樹脂には、供給直前に
適量の硬化剤を混合すればよいから、ポツトライ
フが比較的短い硬化性樹脂組成物であつても何ら
支障なく使用できる。加えてこの硬化性樹脂組成
物は、付着浸透と共に硬化促進剤組成物と接触し
て反応し急速に硬化するから、従前のFRP管製
造法に比べて硬化に要する時間が大幅に短縮さ
れ、生産性を飛躍的に高めることができる。
In the present invention, after a curable resin composition containing a curable resin and a curing agent is applied onto a core mold, a glass fiber to which a curing accelerator composition substantially free of a curable resin is attached is wound. or applying the curable resin composition after winding the glass fiber,
A curable resin composition containing a curable resin and a curing agent is allowed to adhere to and penetrate the glass fibers to which the curing accelerator composition is attached on the core mold, and is cured. Since the hardening accelerator composition that is previously attached to the glass fibers by impregnation or the like does not harden at all by itself, there is no risk of hardening in the impregnating equipment, and the process from impregnation to winding can be carried out extremely smoothly. can. Furthermore, the curable resin composition is attached to and permeated into the wound glass fiber layer, and if the supply amount is properly adjusted, no excess resin will be produced. Moreover, since it is sufficient to mix an appropriate amount of curing agent with the curable resin depending on the amount used immediately before supplying, even a curable resin composition with a relatively short pot life can be used without any problem. In addition, as this curable resin composition adheres and penetrates, it also reacts with the curing accelerator composition and rapidly cures, so the time required for curing is significantly shortened compared to the conventional FRP pipe manufacturing method, reducing production costs. You can dramatically improve your sexuality.

ところで上記方法に類似した方法として、まず
ガラス繊維を単独で巻装し、次いで硬化性樹脂に
硬化剤及び硬化促進剤を配合した速硬性樹脂を付
着浸透させる方法が考えられるが、本発明方法は
更に優れた方法である。即ち一般に2液硬化型の
樹脂を使用する場合は、「樹脂と硬化促進剤との
混合物(A液)」と「樹脂と硬化剤との混合物
(B液)」とを準備しておき、使用直前にA液とB
液を混合する方法が採用されるが、A・B混合液
のポツトライフが短い場合はスプレーガンやフロ
ーコーター等の塗装具内で樹脂が硬化し易い等メ
ンテナンス上の問題がある。しかもA液とB液を
1:1で混合する様な場合には、B液の方に2倍
量の硬化剤を配合しておかねばならず、メチルエ
チルケトンパーオキシド等の硬化剤では不飽和ポ
リエステル樹脂等のポツトライフが短くなつてB
液自体の安定性が著しく損なわれる。
By the way, as a method similar to the above method, a method can be considered in which glass fiber is first wound alone and then a fast-curing resin containing a curing agent and a curing accelerator is attached and penetrated into the curable resin, but the method of the present invention This is an even better method. In other words, when using a two-component curing resin, a mixture of resin and curing accelerator (liquid A) and a mixture of resin and curing agent (liquid B) are prepared before use. Liquid A and B just before
A method of mixing liquids is adopted, but if the pot life of the A/B mixture is short, there are maintenance problems such as the resin easily curing in a coating tool such as a spray gun or flow coater. Moreover, when mixing parts A and B at a ratio of 1:1, twice the amount of curing agent must be added to part B, and curing agents such as methyl ethyl ketone peroxide cannot be used with unsaturated polyesters. B The pot life of resins etc. is getting shorter.
The stability of the liquid itself is significantly impaired.

これに対し本発明では、先に述べた如く硬化促
進剤は予めガラス繊維に付着させておき、硬化剤
は、消費量に応じて硬化性樹脂に配合して順次使
用する方法であるから、塗装具内で樹脂が硬化す
る様な恐れも殆んどない。
On the other hand, in the present invention, as mentioned above, the curing accelerator is attached to the glass fibers in advance, and the curing agent is mixed with the curable resin according to the consumption amount and used sequentially. There is almost no fear that the resin will harden inside the filling.

尚本発明で使用する硬化性樹脂とは、不飽和ポ
リエステル樹脂、エポキシ樹脂、フエノール樹
脂、ビニルエステル樹脂等従来から知られた
FRP材用樹脂或はそれらの改良樹脂がすべて使
用でき、硬化剤及び硬化促進剤は前記硬化性樹脂
の種類に応じて適宜選択して決定される。このう
ちFRP材用樹脂として最も一般的な不飽和ポリ
エステル樹脂用の硬化剤としては、メチルエチル
ケトンパーオキシド、過酸化ベンゾイル、シクロ
ヘキサンパーオキシド、クメンヒドロパーオキシ
ド、ラウロイルパーオキシド等の過酸化物が例示
され、硬化促進剤としてはコバルト、マンガン、
バナジウム等の金属石けん、第3級アミン、第4
級アンモニウム塩等が例示される。これら硬化性
樹脂組成物は常温硬化性或は熱硬化性等の如何を
問わず全て使用できるが、本発明の特徴に鑑みれ
ば、常温乃至比較的低温で速硬化性を有するポツ
トライフの短い樹脂を使用することによりその特
徴を最も有効に発揮する。
The curable resin used in the present invention includes conventionally known curable resins such as unsaturated polyester resin, epoxy resin, phenolic resin, and vinyl ester resin.
Any resin for FRP materials or improved resins thereof can be used, and the curing agent and curing accelerator are appropriately selected and determined depending on the type of the curable resin. Among these, peroxides such as methyl ethyl ketone peroxide, benzoyl peroxide, cyclohexane peroxide, cumene hydroperoxide, and lauroyl peroxide are exemplified as curing agents for unsaturated polyester resins, which are the most common resins for FRP materials. , as hardening accelerators cobalt, manganese,
Metal soaps such as vanadium, tertiary amines, quaternary
Examples include grade ammonium salts. All of these curable resin compositions can be used regardless of whether they are room temperature curable or thermosetting, but in view of the characteristics of the present invention, resins with short pot lives that are quick curable at room temperature or relatively low temperatures are preferred. By using it, its characteristics will be most effectively demonstrated.

本発明は概略以上の様に構成されており、その
効果を要約すれば下記の通りである。
The present invention is roughly constructed as described above, and its effects can be summarized as follows.

硬化促進剤を予めガラス繊維に付着させて巻
回し、芯型上において硬化性樹脂組成物を付着
浸透させる方法であるから、最終調合物として
はポツトライフの短い樹脂でも支障なく使用す
ることができ、硬化時間が大幅に短縮され生産
性を著しく高めることができる。
Since this is a method in which a curing accelerator is attached to glass fibers in advance and wound, and the curable resin composition is allowed to adhere and penetrate onto the core mold, even resins with a short pot life can be used without any problems in the final formulation. Curing time can be significantly shortened and productivity can be significantly increased.

樹脂と硬化剤は必要量をその都度調合し順次
すべてが消費されるから、硬化性樹脂の無駄が
ない。
Since the resin and curing agent are mixed in the required amounts each time and all are consumed one after the other, there is no wastage of the curing resin.

樹脂の最終的な硬化反応は、硬化性樹脂組成
物が、ガラス繊維に付着されている硬化促進剤
と接触した時点から急速に進行するから、塗装
器具内等で硬化する恐れがなくメンテナンスの
うえでも優れている。従つて作業員に対する負
担が少なく、生産管理及び設備管理のうえでも
極めて有利である。
The final curing reaction of the resin proceeds rapidly from the moment the curable resin composition comes into contact with the curing accelerator attached to the glass fibers, so there is no risk of curing in painting equipment, etc., and maintenance is easy. But it's excellent. Therefore, the burden on workers is small, and it is extremely advantageous in terms of production management and equipment management.

ガラス繊維層に対する樹脂の供給は、含浸法
と付着浸透法の組み合わせによつて行なわれる
から、FRP層への空気の混入が少なく、気泡
の少ない高性能のFRP管が得られる。
Since the resin is supplied to the glass fiber layer by a combination of an impregnation method and an adhesion/penetration method, a high-performance FRP pipe with less air entering the FRP layer and fewer air bubbles can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 FRP管を製造する方法であつて、FRP層の
形成に当り、実質的に硬化性樹脂を含まない硬化
促進剤組成物が付着されてなるガラス繊維を芯型
上に巻回し、この巻回前に予め芯型上に塗布され
ていた及び/若しくは巻回後に塗布される、実質
的に硬化性樹脂と硬化剤を含む硬化性樹脂組成物
を、芯型上で前記ガラス繊維層に付着浸透させる
ことを特徴とするFRP管の製造法。
1 A method for manufacturing an FRP pipe, in which, in forming an FRP layer, a glass fiber coated with a curing accelerator composition that does not substantially contain a curable resin is wound around a core mold, and this winding is performed. A curable resin composition comprising substantially a curable resin and a curing agent, previously applied on the core mold and/or applied after winding, adheres to and penetrates the glass fiber layer on the core mold. A method for manufacturing FRP pipes characterized by:
JP2028880A 1980-02-19 1980-02-19 Manufacture of frp tube Granted JPS56115220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2028880A JPS56115220A (en) 1980-02-19 1980-02-19 Manufacture of frp tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2028880A JPS56115220A (en) 1980-02-19 1980-02-19 Manufacture of frp tube

Publications (2)

Publication Number Publication Date
JPS56115220A JPS56115220A (en) 1981-09-10
JPS6326695B2 true JPS6326695B2 (en) 1988-05-31

Family

ID=12022973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2028880A Granted JPS56115220A (en) 1980-02-19 1980-02-19 Manufacture of frp tube

Country Status (1)

Country Link
JP (1) JPS56115220A (en)

Also Published As

Publication number Publication date
JPS56115220A (en) 1981-09-10

Similar Documents

Publication Publication Date Title
KR101271454B1 (en) Method for manufacturing glass fiber reinforced plastic storage tank using air mixing spray and storage tank manufactured by the same
CN103121291A (en) Internal mold release
RU2012144654A (en) FIBER-REINFORCED MOLDING COMPOSITION, DEVICE AND METHOD FOR ITS PRODUCTION, DEVICE AND METHOD FOR PRODUCING LAMINATED MATERIALS AND OTHER FINISHED PRODUCTS FROM THE SPECIFIED FRAMEWORK
JPS6326695B2 (en)
JPS60162612A (en) Composite pipe and manufacture
JPS6349622B2 (en)
JPS6359861B2 (en)
JPH1044254A (en) Molding with multi-layer structure and its preparation
CN109501350A (en) A kind of manufacture craft of high-strength polyester fiber, glass fibre anchor pole
JP2000061959A (en) Method for forming hollow molded product and core
DE2064111C3 (en) Manufacturing process for molded parts made of plastic reinforced with metal threads
JP3360745B2 (en) Manufacturing method of fiber-reinforced plastic molded product
JP3271919B2 (en) Manufacturing method of FRP molded product and FRP molded product
JPH04369529A (en) Manufacture of long frp molded product
JP3496206B2 (en) Manufacturing method of fiber-reinforced plastic molded product
JPH04240265A (en) Fiber for reinforcing thermosetting resin
GB1353200A (en) Method for making fibre reinforced resin materials
JPS5833425A (en) Contenuous forming method
JPS5845024A (en) Manufacture of fiber reinforced plastic article
EP1234647A1 (en) Method of producing models by using a water soluble core
JPS5818221B2 (en) Sheet molding compound
JPS61195827A (en) Molding method of fiber reinforced plastic spring
JPH08183104A (en) Production of fiber reinforced resin product
JPH04329123A (en) Continuous pultrusion method of phenolic resin impregnated fiber
JPS5953165B2 (en) Manufacturing method of reinforced plastic tube