JPS63266122A - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine

Info

Publication number
JPS63266122A
JPS63266122A JP62098572A JP9857287A JPS63266122A JP S63266122 A JPS63266122 A JP S63266122A JP 62098572 A JP62098572 A JP 62098572A JP 9857287 A JP9857287 A JP 9857287A JP S63266122 A JPS63266122 A JP S63266122A
Authority
JP
Japan
Prior art keywords
control valve
intake
notch
circular arc
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62098572A
Other languages
Japanese (ja)
Other versions
JPH081131B2 (en
Inventor
Junichi Yokoyama
淳一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP62098572A priority Critical patent/JPH081131B2/en
Publication of JPS63266122A publication Critical patent/JPS63266122A/en
Publication of JPH081131B2 publication Critical patent/JPH081131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To secure a proper suction flow by tilting a control valve, having a notch and opening or closing a suction passage by rotation of a valve stem, in a specific direction, while setting up a central position of the notch in a part corresponding to a specific circular arc in the control valve. CONSTITUTION:A suction port 3 formed in a cylinder head 1 is opened or closed by a swirl control valve 23, having a notch 21, with the rotation of a valve stem 25. In this case, the control valve 23 is tilted forward as far as the specified angle to the side of an intake valve to a perpendicular with a center line 28 of a suction passage 14 at time of its full close. A first circular arc l1 is set to a quadrisection part 29 at the cylinder outer circumferential side, while a second circular arc l3 is set up to an intersection point C equal to length of the first circular arc l1 along the circumference of the control valve 23 from an intersection point A distant from a cylinder center line 18 perpendicular with the cylinder bank direction. A central position of the notch 21 is set onto an areal part of the control valve 23 corresponding to the second circular arc l3.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、!IJ 611弁を設けることにより吸気
流動を制御し、燃焼を改善させる内燃機関の吸気装置の
提供を目的とする。 [従来の技術] 一般に、内燃機関では別図の低負荷域では燃焼室内に強
力なスワールを生成させて吸気乱れを起こし、燃焼効率
を向上させる一方、高負荷域側ではスワールを抑えて吸
気充填効率を高め、出力の向上を図る必要がある。 このため、従来では絞り弁下流の吸気通路に切欠部を有
するスワール制御弁を設け、この制御弁を低負荷域に全
開として切欠部から吸気を導入して強力なスワールを生
成させる一方、高負荷域にiNI御弁を全開にして充填
効率の向上を図るものが堤案されている。 例えば、特開昭61−112732号公報では、切欠部
を備えた制御弁の全閉時において、機関の冷機時には切
欠部を吸気ポートの下壁側に位置させて点火プラグへの
燃料の付着による所謂かぶりを防止する一方、暖橢時に
はこの状態から制御弁を反転させて全開とし、切欠部を
吸気ポートの上り側に位置させてより強力なスワールを
生成さけるようにしている。 −L述した冷機時及び暖目時何れの状態においても、制
御弁は吸気ポートに対し垂直ではなく傾斜しており、冷
機時には吸気弁側に前傾しかつり穴部は吸気ポートの下
壁側に位置し、−7’l暖機時には吸気弁に対し後傾し
た状態でかつ切欠部は吸気ポートの上壁側に位置してい
る。 [発明が解決しようとする問題点] 上)ホした従来の吸気装置は、制御弁の全閉時での吸気
ポートに対する傾斜についてはスワールの点から特に、
i;tilbでおらず、また切欠部の制御弁周方向位置
についても特に考慮はなされていないので、適正な吸気
流動が17にくく安定した燃焼が17られていないとい
うのが実情である。 この発明は上記のような実情に鑑み
[Industrial Application Field] This invention is! The object of the present invention is to provide an intake system for an internal combustion engine that controls the intake flow and improves combustion by providing an IJ 611 valve. [Prior art] In general, internal combustion engines generate a strong swirl in the combustion chamber to cause intake air turbulence in the low load range shown in the separate figure to improve combustion efficiency, while in the high load range the swirl is suppressed to improve intake air filling. It is necessary to increase efficiency and improve output. For this reason, in the past, a swirl control valve having a notch was provided in the intake passage downstream of the throttle valve, and this control valve was fully opened in the low load range to introduce intake air from the notch to generate a strong swirl. A proposal has been made to improve filling efficiency by fully opening the iNI control valve in the area. For example, in Japanese Patent Application Laid-Open No. 61-112732, when a control valve equipped with a notch is fully closed, when the engine is cold, the notch is located on the lower wall side of the intake port to prevent fuel from adhering to the spark plug. While preventing so-called fogging, the control valve is reversed from this state to fully open during warm-up, and the notch is positioned on the upward side of the intake port to avoid generating a stronger swirl. -L In both the cold and warm conditions mentioned above, the control valve is not perpendicular to the intake port, but is inclined; when the engine is cold, it is tilted forward toward the intake valve side, and the hole portion is on the lower wall side of the intake port. -7'l When warmed up, it is tilted backward with respect to the intake valve, and the notch is located on the upper wall side of the intake port. [Problems to be Solved by the Invention] The conventional intake system described above has problems with the inclination toward the intake port when the control valve is fully closed, especially from the viewpoint of swirl.
i; tilb, and no particular consideration is given to the position of the notch in the circumferential direction of the control valve, so the actual situation is that it is difficult to achieve proper intake air flow and stable combustion is not achieved. This invention was made in view of the above-mentioned circumstances.

【す1案されたもの
で、適正な吸気流動が17られ、燃焼を安定(ヒさせた
吸気装置の提供を目的とする。 [問題烈を解決するための手段] 上記問題点を解決するためにこの発明は、切欠部を有し
制御弁軸の回転により吸気通路を開閉する制御弁を、絞
り弁下流の前記吸気通路に設け、前記1iII御弁をそ
の全閉時に前記吸気通路の中心線と垂直な面に対し吸気
弁側に前傾させると共に、吸気ポートの燃焼室側聞口部
における吸気ポート側と反対側の2分割部位のうちシリ
ンダ外周側の略4分割部位の円弧を第1の円弧とする一
方、前記制御弁の外周と前記制御弁軸との2つの交点の
うらシリンダ列方向と垂直なシリンダ中心線より少なく
とも遠い位置にある交点から前記吸気通路の土壁面側の
前記制御弁外周に沿った前記第1の円弧の長さと略等し
い第2の円弧を設定し、前記第2の円弧に対応する前記
、t、II On弁の面積部位上に、前記切欠部の重心
位置を設ける構成とした。 更に、この発明は、前記制御弁下流に、制御弁のり穴部
の面積より小さな面積のり穴部を有し全閉時に吸気通路
の中心線に対し垂直な副制御弁を設ける構成としである
。 [作用] 制御弁全閉時に制御弁は吸気通路に対し吸気弁側に前傾
しているので、吸気は制御弁に案内されて前傾側先端の
切欠部より流出した後、吸気通路に沿って滑らかに燃焼
室に流入する。これにより、最適な吸気流動が得られ、
安定した燃焼が1qられることになる。 [実施例コ 以下、図面に基づきこの発明の詳細な説明する。 第1図乃至第11図は第1の実施例に係わり、第1図は
吸気装置の平断面図、第3図は同縦断面図である。シリ
ンダヘッド1には吸気ポート3及び排気ポート5がそれ
ぞれ形成され、各ポート3゜5には吸気弁7.排気弁9
がそれぞれ設けられている。吸気ポート3は燃焼室11
の上部の開口部13から上流側に向い徐々に湾曲し、吸
気マニホールド15付近でシリンダ中心軸線17に対し
略直交する部位19を形成している。この部位19に、
切欠部21を有するスワール制御弁23が制徨口弁軸2
5に支持された状態で、吸気ポート3を開閉可能に設け
られている。吸気マニホールド15とシリンダヘッド1
の吸気ポート3とで吸気通路14を形成している。なお
符号22は点火栓である。 上記スワール制御弁23は、全閉時に吸気通路14の中
心線28と垂直な面30に対し吸気弁7側にα°前傾さ
Uである。また、吸気ポート3の燃焼室11側間口部1
3における吸気ポート3側と反対側の半円形状の2分割
部位のうち、シリンダ外周側の略4分割部位29の第1
の円弧の長さを愛1とする一方、スワール制御弁23の
外周と制御弁軸25の中心軸線26との交点A、Bのう
ちシリンダ列方向(第1図中で上下方向)と重直なシリ
ンダ中心線18より)遣い交点へから、吸気通路14の
上壁面16側のスワール制御弁23外周に沿って、前記
第1の円弧の長さIL+ と略等しくなる点を点Cとし
て、交点Aと点Cとによって形成される第2の円弧に対
応する第2図に示すスワール制御弁23の面積部位31
上に切欠部21の重心位置を設けている。 即ち、4分割部位2つの第1の円弧の長さ女1と、面積
部位31の円弧長J2と、スワール制御弁23の点Aと
点Cによって形成される第2の円弧の艮ざ斐3とは、互
いに略等しいものとなっている。 尚、27は、4分割部位29の吸気ポー1−3側と最も
遠い反対側における部位と面積部位31上の点Cを結ん
だ線を示す。 第4図乃至第7図に切欠部21の具体例を示ず。 それぞれの切欠部21の重心をGで示す。この重心Gは
何れも面積部位31上に位置している。 このように構成することにより、スワール制御弁23の
全閉時吸気弁7が開くと、吸気マニホールド15を流れ
て来る吸気は゛スワール制御弁23の切欠部21を通り
、燃焼室11側に流れる。このとき、スワール制御弁2
3は吸気弁7側にα。 だけ前傾しているため、吸気ポート3の下壁側の吸気は
スワール制御弁23の傾斜に沿って切欠部21の設けら
れた上壁面16側に向って流れて切欠部21に達し、吸
気ポート3の上壁面16側を流れる吸気と共に切欠部2
1より燃焼室11側にスムーズに流出するので、吸気ポ
ート3内壁に衝突することなく、しかも切欠部21の重
心が、前述したような位置にあるので、切欠部21を通
過した吸気の主流は吸気ポート3に沿って流れた後、吸
気ポート3開口部13の4分割部位29から燃焼室11
の最深部に流れ込む。このため、燃焼室11内にはスワ
ール比の変化が均一なスクールが生成され、圧縮行程後
半までスワールの減衰を最小限に保つことが可能となり
、燃焼行程では火炎伝播が阻害されることなく安定して
進行し、大幅な燃焼改善が図られ、燃費、エミッション
、運転性が大きく向上する。 そして、全負荷時になるとスワール制御弁23は全開し
、吸気充填効率が向上する。 第8図は、磯関回転数N=1400rpm、図示、平均
有効圧力P+ =0.31MPa 、空燃比A/F−2
2,5,点火進角がMBTの条件の基で、第3図の■矢
視方向からの図に相当する第9図のスワール制御弁32
の傾斜角であるαがOo、5°、15°、30°の各状
態について、切欠部34の位置(θ°で表わされる)に
よる図示平均有効圧力の変動率を示している。切欠部3
4の位置は、水平側の中心線33より上部側をプラス(
+)とし、下部側をマイナス(−)としてあり、また垂
直側の中心線35より右側〈■側)にあるときを各傾斜
角面れについても実線で示し、左o+q <■側)にあ
るときを同じく破線で示している。 なお、実験では第9図に示すように、スワール制御弁3
2は楕円形状であり、切欠位置θの角度は楕円の長軸(
水平側の中心Fi133)と交わる制御弁32周縁部か
ら16mmの位置を中心としてとっている。また、切欠
部34は直径2611111の円により切り取られた円
弧状を呈している。更に、吸気マニホールドの燃焼室側
開口部の直径は32m1Ilである。 上述した第8図から明らかなように、図示平均有効圧力
の変動率が低く燃焼が安定するのは、α=15°であり
、しかも傾斜角αの如何に拘らず、切欠部34の位置は
θ=O″′〜90’の範囲にあることが条件となる。し
たがって、第1の実施例を示す第1図及び第2図に示し
たように、切欠部21の重心位置を、吸気ポート3の燃
焼室11側間口部13における吸気ポート3側と反対側
の半円形状の2分割部位のうち、シリンダ外周側の略4
分割部位29の第1の円弧の良さを丈1とする一方、ス
ワールfi、IJ tit弁23の外周と制御弁軸25
の中心軸線26との交点A、Bのうちシリンダ列方向(
第1図中で上下方向)と垂直なシリンダ中心線18より
遠い交点Aから、吸気通路14の上壁面16側のスワー
ル制御弁23外周に沿って、前記第1の円弧の長さ更1
と略等しくなる点を点Cとして、交点Aと点Cとによっ
て形成される円弧に対応する第2図に示すスワール制御
弁23の面積部位31上に設けることにより、切欠部2
1は実験による第9図中の水平側の中心線33より上側
かつ垂直側の中心線35より右側の0−0゜〜90°の
範囲に位置することになり、安定した燃焼が得られるこ
とになる。 第10図は、機関回転数N=140Orpm、図示平均
有効圧力P* =0.31MPa 、点火進角がMBT
の条件の基に、空燃比A/Fの変化による図示燃!¥率
及び図示平均有効圧力の変動率を、第9図のスワール制
御弁32の傾斜角α−15゜で切欠部34の位置0=6
0”のときく実線図示)と、α−〇°でα=60°のと
き(一点鎖線図示)と、α−15°でθ−−20°のと
きく破線図示)との3通りについて示しである。上記第
10図によっても、前述した第8図の結果同様、スワー
ル制御弁32は15°前傾さulかつ切欠部34の位置
はθ−60’すなわち第1の実施例である第1図及び第
2図に示した位置がよく、このとき安定度、燃費共に大
きく改善されることになる。 なお、上述した第8図及び第10図のデータは、スワー
ル制御弁32と吸気ポート壁との隙間は一定で実験を行
なっており、低負荷時スワール制0a弁を直立状態で、
吸気ポートとの隙間を一定にし、負荷増大に伴ってスワ
ール制御弁の開度を増すシステムでは吸気ポートとの隙
間が大きくなってしまい、方向性のある均一なスワール
を得ることができず、安定した燃焼が得られないという
ことがわかった。 第11図は、機関回転数N=140Orpm、充填効率
ηC=40%の条件の基に、レー(アドップラ流速計で
燃焼室内のガス流動特性をα=15゜で0=60°のと
きと、α=O°でθ=60°のときと、α=15°でθ
=−20°のときとの3通りについて示したものである
。なお、図中で実線は吸気弁開き始めの上死点前60°
 (BTDC)、一点鎖線は同30’  (BTDC)
、破線は同0’  (BTDC)を示す。上記第11図
によっても、やはり第10図と同様α=15°でα−6
0°の条件が良く、他の条件に見られる圧縮行程での流
線の交わりもなく、点火時期から初期燃焼機関にかけて
均一なスワール比が19られる。 第12図及び第13図は第2の実施例を示す。 この実施例は第1の実施例の変形であり、吸気弁7が2
つある例で、吸気ポート形状をナイアミーズ型として燃
焼室11への吸気ポート3a、3bの開口部13a、1
3bを形成させたものである。 この場合も、スワール制御弁23は第1の実施例と同様
に前傾しており、切欠部21の重心位置も第1の実施例
と同様に、吸気ポート3の燃焼室11側開口部13aに
おける吸気ポート3側と反対側の半円形状の2分割部位
のうち、シリンダ外周側の略4分割部位29aの第1の
円弧の長さを吏1とする一方、スワール制御弁23の外
周と制御弁軸25の中心軸線26との交点A、Bのうち
、シリンダ列方向く第1図中で上下方向)と垂直なシリ
ンダ中心線18より遠い交点Aから、吸気通路14の上
壁面16側のスワール制υU弁23外周に沿って、前記
第1の円弧の長さ11と略等しく積部位31上設けであ
るので、スワール制御弁23仝閉時には吸気は切欠部2
1を通り、第1の実施例と同様な均一なスワールが得ら
れ、大幅な燃焼改善が図られる。 そして、全負荷時になるとスワール制御弁23は全開と
なり、吸気は2つの吸気ポート3a、3bを経て燃焼室
11に流入するため、吸気充填効率はより一層向上する
。 なお、上記第2の実施例では、切欠部21を図中で下側
の吸気ポート3b側に設けてもよい。これを破線で示す
。この切欠部21の重心位置は、間口部13aの4分割
部位29aと、図中で上下方向の対称位置に相当する開
口部13bの4分割部位29bにおける前述の対応部位
にあることは言うでもない。また、サイアミーズ型でな
くデュアルポート型としてもよく、この場合もどちらか
一方の吸気ポートに、所定位置に切欠部を形成したスワ
ール制御弁を設ければよい。更に、第2の実施例では排
気弁が2つある機関に適用してもよい。また、第1.第
2の各実施例共、スワールffill御弁23を吸気マ
ニホールド15に設けてもよい。 第14図及び第15図は第3の実施例を示す。 この実施例は、前述した第1.第2の各実施例と同様の
切欠部21を備えたスワール制御弁23を吸気マニホー
ルド15に設けると共に、その下流のシリンダヘッド1
内吸気ポート3に、弁軸37に固定された切欠部39を
有する副制御弁41を回動可能に設けたものである。ス
ワール制御弁23は第1の実施例と同様にα°前傾して
おり、切欠部21の重心位置も第1の実施例と同様な位
置に設けられている。一方、副制御弁41はその全閉時
に傾斜しておらず、吸気通路14の中心線28に対し略
垂直となっている。副制御弁41の切欠部39はスワー
ル制御弁23の切欠部21、吸気ポート3の開口部13
の4分割部位29とを結ぶ通路−Lにあり、その面積は
スワール制御弁23の切欠部21の面積より小さく形成
しである。 この場合、アイドリンクを含む極低負荷域にはスワール
制御弁23及び副制御弁41共に全開であり、このとき
副制御弁41は吸気ポート3に対し垂直となっている。 一方、第16図に示すように、機関回転数N=700r
pm、図示平均有効圧力Pi =、0.08MPa 、
空燃比A/F=15というアイドリンクを含む極低負荷
域条件下(実験装置は第8図乃至第11図のときと同じ
もの)では、第9図のスワール制御弁の傾斜角αが大き
くなるに従い切欠部の位置に拘らず、図示平均有効圧力
の変動率が高くなっている。なお、ここでは切欠部が第
9図の垂直側の中心線35の右側(■側)にあるときの
データを示しているが、これと反対側(■側)も同様の
傾向を示している。これはガス流動測定の結果、制御弁
直立状態(α=0°)では吸気ポート内流線が吸気ポー
ト壁に衝突する恰好で乱され、燃焼室内のガス流動の乱
れも増大し、燃焼改善されている理由による。 したがって、前述したように、極低負荷域に燃焼室11
側の副制御弁41を直立状態とすることにより、吸気マ
ニホールド5の上流から流入する吸気は、まず第1の実
施例と同様にしてスワール制御弁23の切欠部21を通
過し、その後直立状態(α=06)の副制御弁41の切
欠部39に向って流れ燃焼室11側に流出する。このと
き、副制御弁41の切欠部39はスワール制御弁23の
切欠部21より面積が小さく、しかも副制御弁41は直
立状態であるため、切欠部39から流出した吸気は前述
したように吸気ポート3内壁に一部衝突し′ながら強い
乱れを生じ、間口部13より燃焼v11に流入する。こ
の結果、燃焼室11内のガス流動の乱れ及びサイクル変
動は増大し、燃焼速度は速くなり大幅な燃焼改善が図れ
る。 次に、負荷が増大し部分負荷域に達すると、副制御弁4
1のみが開き、吸気はスワール制御弁23の切欠部21
を通って吸気ポート3に流出する。 その後の吸気の流れは第1の実施例と略同様であり、し
たがって、この場合は部分負荷域に適合した乱れが少な
くサイクル変動の小さい均一なスワールが生成され、大
幅な燃焼改善が図られる。 そして、全負荷域にはスワール制御弁23及び副制御弁
41共に全開となり、吸気充填効率が向上する。 以上によりこの実施例では、制御弁を2つ設けることに
より負荷状態に対応したより細かなスワール制御が可能
となる。 第17図及び第18図は第4の実施例を示す。 この実施例は第3の実施例の変形で第2の実施例と同様
に吸気弁が2つある例で、吸気ポート形状をサイアミー
ズ型として燃焼室11への吸気ポート3a 、3bの開
口部13a、13bを形成さけたものである。この場合
も、スワール制御弁23は第3の実施例と同様に前傾し
ており、切欠部21の重心位置も第2の実施例と同様で
ある。一方、】1制御弁41も第3の実施例と同様に全
閉時には傾斜しておらず、その切欠部39の面積もスワ
ール1b11御弁23の切欠部21の面積より小さいも
のとなっている。 したがって、このように構成された吸気装置でも、第3
の実施例と同様に極低負荷域及び部分負荷域で大幅な燃
焼改善が図れる。また、この場合全負荷域にはスワール
制御弁23及び副制御弁41共に全開し、吸気は2つの
吸気ポート3a、3bを通るので、吸気充填率がより向
上する。 なお、上記第4の実施例は、スワール制御弁23及び副
制御弁41の各切欠部21.39を図中で下側の吸気ポ
ート3b側に設けてもよく、また吸気ポート形状が独立
したデュアルポート型であってもよく、更に排気弁が2
つある殿関に適用してもよい。 第19図乃至第21図はそれぞれ第5″乃至第7の実施
例を示しているが、これらは何れも吸気ポート3の燃焼
室側開口部13の径とスワール制御弁23の径とが略同
−に形成されている。したがって第5乃至第7の各実施
例共、第19図及び第20図のような吸気装置の平断面
図において、吸気通路14の中心線28と、4分割部位
29の吸気ポート3側と最も遠い反対側における部位と
点Cとを結んだ線27とは重なっている。 第19図に示す第5の実施例は、吸気ポート3と排気ポ
ート5とが燃焼室11に対し互いに対向する方向に延長
され、かつ両者はシリンダ列方向に垂直なシリンダ中心
線18上に位置している。 したがって、この場合制御弁軸25の中心軸FA26と
スワール制御弁23の外周との交点A、Bは、シリンダ
中心線18から互いに略等しい距離に位置する。このた
め、燃焼室側開口部13における吸気ポート3側と反対
側の2分割部位のうち、シリンダ外周側の略4分割部位
29は2個所となり、切欠部21も各4分割部位29に
対応して2つ形成される。 第20図に示す第6の実施例は吸気ポート3と排気ポー
ト5とが同方向に延長され、かつ各ポート3.5の燃焼
室側開口部13がシリンダ列方向に配設された所謂カウ
ンタフロ一式の機関にこの考案を適用したものを示す。 第21図に示す第7の実施例は、吸気ポート3と吸気マ
ニホールド15との接合部付近の吸気通路14を傾斜さ
せ、斜め上方より吸気を導入するようにした機関にこの
考案を適用したものを示す。 上記第5乃至第7の各実施例共、スワール制御弁23の
全閉時には吸気は切欠部21を通って燃焼室11側にス
ムーズに流出し、第1の実施例と同様の効果が得られる
。 [発明の効果] 以上のようにこの発明によれば、(1)吸気ポートの燃
焼室側開口部における吸気ポート側と反対側の2分割部
位のうちシリンダ外周側の略4分割部位の円弧を第1の
円弧とし、制御弁の外周と制御弁軸との交点のうちシリ
ンダ列方向と垂直なシリンダ中心線より少なくとも遠い
交点から吸気通路の上壁面側の制御弁外周に沿った前記
第1の円弧の長さと略等しい第2の円弧を設定し、前記
第2の円弧に対応する制御弁の面積部位上に制御弁の切
欠部の小心位置を設けたため、均一なスワールが圧縮行
程後半まで殆んど減衰さけることなく維持され、火炎伝
播は安定して進行し、大幅な燃焼改善が図られ、燃費、
エミッション、運転性を大きく向上させることができる
。また、〈2)前記制御弁の下流に、制御弁の切欠部の
面積より小さな面積の切欠部を有し、全閉時に吸気通路
の中心線に対し垂直な副制御弁を設けたため、低負荷域
には吸気孔れの発生により、また部分負荷域には副制御
弁が開きサイクル変動の少ない均一なスワールにより、
共に大幅な燃焼改善を図ることができる。
[Means for solving the problems] In order to solve the above problems, In this invention, a control valve having a notch and opening and closing the intake passage by rotation of a control valve shaft is provided in the intake passage downstream of the throttle valve, and when the IIII control valve is fully closed, the center line of the intake passage is At the same time, the circular arc of the approximately quarter-divided portion on the cylinder outer circumferential side of the two-divided portion on the side opposite to the intake port side at the combustion chamber side mouth portion of the intake port is , and the control on the soil wall surface side of the intake passage from the intersection located at least farther from the cylinder center line perpendicular to the cylinder row direction behind the two intersections of the outer periphery of the control valve and the control valve shaft. A second circular arc approximately equal in length to the first circular arc along the outer periphery of the valve is set, and a center of gravity position of the notch is set on an area portion of the t, II On valve corresponding to the second circular arc. Further, the present invention provides a sub-control valve downstream of the control valve, which has a guide hole portion having an area smaller than the area of the control valve guide hole portion and is perpendicular to the center line of the intake passage when fully closed. [Operation] When the control valve is fully closed, the control valve is tilted forward toward the intake valve side with respect to the intake passage, so that the intake air is guided by the control valve and flows out from the notch at the tip of the forward tilt side. , flows smoothly into the combustion chamber along the intake passage.This provides optimal intake flow,
1q of stable combustion will be achieved. [Embodiment] The present invention will be described in detail below based on the drawings. 1 to 11 relate to a first embodiment, in which FIG. 1 is a plan sectional view of the intake device, and FIG. 3 is a longitudinal sectional view thereof. An intake port 3 and an exhaust port 5 are formed in the cylinder head 1, and each port 3.5 has an intake valve 7. Exhaust valve 9
are provided for each. Intake port 3 is combustion chamber 11
It gradually curves toward the upstream side from the opening 13 at the top of the cylinder, forming a portion 19 that is substantially orthogonal to the cylinder center axis 17 near the intake manifold 15. In this part 19,
A swirl control valve 23 having a notch 21 is connected to the control valve shaft 2.
The intake port 3 is provided so as to be openable and closable while being supported by the intake port 5. Intake manifold 15 and cylinder head 1
The intake port 3 forms an intake passage 14. Note that the reference numeral 22 is a spark plug. The swirl control valve 23 is tilted forward by α° U toward the intake valve 7 with respect to a plane 30 perpendicular to the center line 28 of the intake passage 14 when fully closed. In addition, the combustion chamber 11 side opening portion 1 of the intake port 3
Of the semicircular two-part parts on the side opposite to the intake port 3 in 3, the first part of the approximately four-part part 29 on the cylinder outer circumferential side
The length of the arc of is defined as love 1, while the intersection points A and B between the outer periphery of the swirl control valve 23 and the center axis 26 of the control valve shaft 25 are perpendicular to the cylinder row direction (vertical direction in FIG. 1). From the cylinder center line 18) to the intersection point, along the outer periphery of the swirl control valve 23 on the upper wall surface 16 side of the intake passage 14, a point that is approximately equal to the length of the first circular arc IL+ is set as a point C, and the intersection point is Area portion 31 of the swirl control valve 23 shown in FIG. 2 corresponding to the second circular arc formed by A and point C
The center of gravity of the notch 21 is located at the top. That is, the length 3 of the second arc formed by the first arc length 1 of the two 4-divided parts, the arc length J2 of the area part 31, and the points A and C of the swirl control valve 23. are approximately equal to each other. Note that 27 indicates a line connecting a point C on the area portion 31 with a portion on the side farthest from the intake port 1-3 side of the four-divided portion 29. Specific examples of the notch portion 21 are not shown in FIGS. 4 to 7. The center of gravity of each notch 21 is indicated by G. This center of gravity G is located on the area portion 31 in each case. With this configuration, when the fully closed intake valve 7 of the swirl control valve 23 opens, the intake air flowing through the intake manifold 15 passes through the notch 21 of the swirl control valve 23 and flows toward the combustion chamber 11. At this time, swirl control valve 2
3 is α on the intake valve 7 side. Since the intake port 3 is tilted forward, the intake air on the lower wall side of the intake port 3 flows along the slope of the swirl control valve 23 toward the upper wall surface 16 side where the notch 21 is provided, reaches the notch 21, and the intake air is Along with the intake air flowing on the upper wall surface 16 side of the port 3, the notch 2
1 to the combustion chamber 11 side, it does not collide with the inner wall of the intake port 3, and since the center of gravity of the notch 21 is at the position described above, the main flow of the intake air that has passed through the notch 21 is After flowing along the intake port 3, the combustion chamber 11 flows from the four-division part 29 of the intake port 3 opening 13.
flows into the deepest part of Therefore, a school with uniform swirl ratio changes is generated in the combustion chamber 11, making it possible to keep swirl attenuation to a minimum until the latter half of the compression stroke, and flame propagation is stable during the combustion stroke without being inhibited. This progresses and significantly improves combustion, resulting in significant improvements in fuel efficiency, emissions, and drivability. Then, at full load, the swirl control valve 23 is fully opened, improving the intake air filling efficiency. Figure 8 shows Isoseki rotational speed N = 1400 rpm, average effective pressure P+ = 0.31 MPa, air-fuel ratio A/F-2
2, 5. Under the condition that the ignition advance angle is MBT, the swirl control valve 32 in Fig. 9 corresponds to the view from the direction of arrow ◯ in Fig. 3.
The variation rate of the indicated mean effective pressure depending on the position of the notch 34 (expressed as θ°) is shown for each state in which α, which is the inclination angle of , is Oo, 5°, 15°, and 30°. Notch 3
The position of 4 is the upper side of the center line 33 on the horizontal side plus (
+), and the lower side is negative (-), and each inclination angle surface is also shown as a solid line when it is on the right side (<■ side) from the center line 35 on the vertical side, and when it is on the left o+q <■ side) The time is also indicated by a broken line. In addition, in the experiment, as shown in Fig. 9, the swirl control valve 3
2 has an elliptical shape, and the angle of the notch position θ is the long axis of the ellipse (
The center point is set at a position 16 mm from the peripheral edge of the control valve 32, which intersects with the horizontal center Fi133). Further, the cutout portion 34 has an arc shape cut out by a circle with a diameter of 2611111111. Furthermore, the diameter of the combustion chamber side opening of the intake manifold is 32mlIl. As is clear from FIG. 8 mentioned above, the fluctuation rate of the indicated mean effective pressure is low and combustion is stable when α = 15°, and regardless of the inclination angle α, the position of the notch 34 is The condition is that θ=O″ to 90′. Therefore, as shown in FIGS. 1 and 2 showing the first embodiment, the center of gravity of the notch 21 is set to Approximately 4 on the cylinder outer circumferential side of the semicircular two-divided portion on the side opposite to the intake port 3 in the combustion chamber 11 side opening 13 of No. 3.
While the length of the first arc of the divided portion 29 is set to 1, the outer circumference of the swirl fi, IJ tit valve 23 and the control valve shaft 25 are
Of the intersections A and B with the central axis 26 of the cylinder row direction (
The length of the first circular arc is further 1 along the outer periphery of the swirl control valve 23 on the upper wall surface 16 side of the intake passage 14 from the intersection A that is far from the cylinder center line 18 perpendicular to the vertical direction (in FIG. 1).
By setting a point substantially equal to point C on the area portion 31 of the swirl control valve 23 shown in FIG.
1 is located in the range of 0-0° to 90° above the center line 33 on the horizontal side and to the right of the center line 35 on the vertical side in Fig. 9 according to the experiment, and stable combustion can be obtained. become. In Fig. 10, engine speed N = 140 Orpm, indicated mean effective pressure P* = 0.31 MPa, and ignition advance angle is MBT.
Based on the conditions, the indicated fuel consumption due to changes in the air-fuel ratio A/F! The fluctuation rate of the yen rate and the indicated average effective pressure are set at the inclination angle α-15° of the swirl control valve 32 in FIG. 9 and the position of the notch 34 at 0=6
0" (solid line shown), α - 0° and α = 60° (dotted chain line shown), and α - 15° and θ - -20° (dashed line shown). As shown in FIG. 10, the swirl control valve 32 is tilted forward by 15 degrees ul and the position of the notch 34 is θ-60', which is the first embodiment. The positions shown in Figures 1 and 2 are good, and in this case both stability and fuel efficiency are greatly improved.The data shown in Figures 8 and 10 above are based on the swirl control valve 32 and the intake port. The experiment was conducted with the gap between the wall and the wall constant, and the swirl control 0a valve was in the upright position at low loads.
In a system where the gap with the intake port is kept constant and the opening of the swirl control valve is increased as the load increases, the gap with the intake port becomes large, making it impossible to obtain a directional and uniform swirl, resulting in a stable It was found that it was not possible to obtain the desired combustion. Figure 11 shows the gas flow characteristics in the combustion chamber using a Leigh (Adopler flowmeter) when α = 15° and 0 = 60°, based on the conditions of engine rotation speed N = 140 Orpm and charging efficiency ηC = 40%. When α=O° and θ=60°, and when α=15°, θ
This shows three cases when = -20°. In addition, the solid line in the figure is 60 degrees before top dead center when the intake valve starts to open.
(BTDC), the dashed line is 30' (BTDC)
, the broken line indicates 0' (BTDC). According to Fig. 11 above, α=15° and α-6 as in Fig. 10.
The 0° condition is good, and there is no intersection of streamlines in the compression stroke that occurs under other conditions, and a uniform swirl ratio of 19 is achieved from the ignition timing to the initial combustion engine. FIGS. 12 and 13 show a second embodiment. This embodiment is a modification of the first embodiment, in which the intake valve 7 is
In one example, the openings 13a, 1 of the intake ports 3a, 3b to the combustion chamber 11 are set to have a Niamize-type intake port shape.
3b is formed. In this case as well, the swirl control valve 23 is tilted forward as in the first embodiment, and the center of gravity of the notch 21 is also located at the opening 13a of the intake port 3 on the combustion chamber 11 side, as in the first embodiment. Among the semicircular two-part parts on the opposite side to the intake port 3 side, the length of the first circular arc of the approximately four-part part 29a on the cylinder outer circumferential side is 1, while the outer circumference of the swirl control valve 23 and Of the intersections A and B with the center axis 26 of the control valve shaft 25, from the intersection A farther from the cylinder centerline 18 perpendicular to the cylinder row direction (vertical direction in FIG. 1), the upper wall surface 16 side of the intake passage 14 Since the swirl control valve 23 is provided on the product part 31 along the outer periphery of the swirl control valve 23, which is approximately equal to the length 11 of the first circular arc, when the swirl control valve 23 is closed, the intake air flows through the notch 2.
1, a uniform swirl similar to that of the first embodiment is obtained, and combustion is significantly improved. Then, at full load, the swirl control valve 23 is fully opened and the intake air flows into the combustion chamber 11 through the two intake ports 3a and 3b, so that the intake air filling efficiency is further improved. In the second embodiment, the cutout 21 may be provided on the lower side of the intake port 3b in the drawing. This is shown by the dashed line. Needless to say, the center of gravity of this notch 21 is located at the corresponding portions of the four-division portion 29a of the frontage portion 13a and the four-division portion 29b of the opening 13b, which corresponds to the symmetrical position in the vertical direction in the figure. . Further, a dual port type may be used instead of the Siamese type, and in this case as well, a swirl control valve having a notch formed at a predetermined position may be provided in one of the intake ports. Furthermore, the second embodiment may be applied to an engine having two exhaust valves. Also, 1st. In each of the second embodiments, the swirl ffill control valve 23 may be provided in the intake manifold 15. FIGS. 14 and 15 show a third embodiment. This embodiment is based on the first example described above. A swirl control valve 23 having a notch 21 similar to that of the second embodiment is provided in the intake manifold 15, and the cylinder head 1 downstream thereof
A sub-control valve 41 having a notch 39 fixed to a valve shaft 37 is rotatably provided in the internal intake port 3 . The swirl control valve 23 is tilted forward by α° as in the first embodiment, and the center of gravity of the notch 21 is also provided at the same position as in the first embodiment. On the other hand, when the sub-control valve 41 is fully closed, it is not inclined and is substantially perpendicular to the center line 28 of the intake passage 14. The notch 39 of the sub-control valve 41 is the same as the notch 21 of the swirl control valve 23 and the opening 13 of the intake port 3.
The area is smaller than the area of the notch 21 of the swirl control valve 23. In this case, both the swirl control valve 23 and the sub-control valve 41 are fully open in the extremely low load range including the idle link, and the sub-control valve 41 is perpendicular to the intake port 3 at this time. On the other hand, as shown in Fig. 16, the engine speed N=700r
pm, indicated mean effective pressure Pi =, 0.08 MPa,
Under extremely low load conditions including an idle link with an air-fuel ratio A/F = 15 (the experimental equipment is the same as in Figures 8 to 11), the tilt angle α of the swirl control valve in Figure 9 is large. As this increases, the rate of variation in the indicated mean effective pressure increases regardless of the position of the notch. Note that although the data shown here is when the notch is on the right side (■ side) of the center line 35 on the vertical side in Fig. 9, the same tendency is shown on the opposite side (■ side). . This is because gas flow measurements have shown that when the control valve is upright (α = 0°), the flow line in the intake port collides with the intake port wall and is disturbed, which increases the turbulence in the gas flow in the combustion chamber and improves combustion. Depends on the reason. Therefore, as mentioned above, the combustion chamber 11
By setting the side sub-control valve 41 in the upright state, the intake air flowing from upstream of the intake manifold 5 first passes through the notch 21 of the swirl control valve 23 in the same manner as in the first embodiment, and then returns to the upright state. (α=06) flows toward the notch 39 of the sub-control valve 41 and flows out to the combustion chamber 11 side. At this time, the area of the notch 39 of the sub-control valve 41 is smaller than that of the notch 21 of the swirl control valve 23, and since the sub-control valve 41 is in an upright state, the intake air flowing out from the notch 39 is transferred to the intake air as described above. It partially collides with the inner wall of the port 3, causing strong turbulence, and flows into the combustion v11 from the frontage part 13. As a result, turbulence and cycle fluctuations in the gas flow within the combustion chamber 11 increase, the combustion speed increases, and combustion is significantly improved. Next, when the load increases and reaches the partial load range, the sub control valve 4
1 is open, and the intake air is connected to the notch 21 of the swirl control valve 23.
It flows out to the intake port 3 through the. The subsequent flow of intake air is substantially the same as in the first embodiment, and therefore, in this case, a uniform swirl with little turbulence and small cycle fluctuations, which is suitable for the partial load region, is generated, resulting in a significant improvement in combustion. In the full load range, both the swirl control valve 23 and the sub-control valve 41 are fully opened, improving the intake air filling efficiency. As described above, in this embodiment, by providing two control valves, more detailed swirl control corresponding to the load state can be performed. FIGS. 17 and 18 show a fourth embodiment. This embodiment is a modification of the third embodiment, and is an example in which there are two intake valves like the second embodiment, and the intake port shape is Siamese type, and the openings 13a of the intake ports 3a and 3b to the combustion chamber 11 are used. , 13b are avoided. In this case as well, the swirl control valve 23 is tilted forward as in the third embodiment, and the position of the center of gravity of the notch 21 is also the same as in the second embodiment. On the other hand, similarly to the third embodiment, the ]1 control valve 41 is not inclined when fully closed, and the area of its notch 39 is also smaller than the area of the notch 21 of the swirl 1b11 control valve 23. . Therefore, even in the intake device configured in this way, the third
Similar to the embodiment, significant combustion improvement can be achieved in the extremely low load range and partial load range. Further, in this case, both the swirl control valve 23 and the sub-control valve 41 are fully opened in the full load range, and the intake air passes through the two intake ports 3a and 3b, so that the intake air filling rate is further improved. In addition, in the fourth embodiment, the notches 21 and 39 of the swirl control valve 23 and the sub-control valve 41 may be provided on the lower intake port 3b side in the figure, and the intake ports may have independent shapes. It may be a dual port type, with two exhaust valves.
It may be applied to a certain palace. 19 to 21 respectively show fifth to seventh embodiments, in which the diameter of the combustion chamber side opening 13 of the intake port 3 and the diameter of the swirl control valve 23 are approximately the same. Therefore, in each of the fifth to seventh embodiments, in the plan sectional view of the intake device as shown in FIGS. 19 and 20, the center line 28 of the intake passage 14 The line 27 connecting point C with the part on the side farthest from the intake port 3 side of 29 overlaps with the line 27 that connects point C. In the fifth embodiment shown in FIG. They extend in directions facing each other with respect to the chamber 11, and both are located on the cylinder center line 18 perpendicular to the cylinder row direction.Therefore, in this case, the center axis FA26 of the control valve shaft 25 and the swirl control valve 23 are aligned. The intersection points A and B with the outer periphery are located at substantially equal distances from the cylinder center line 18. Therefore, of the two divided parts of the combustion chamber side opening 13 on the side opposite to the intake port 3 side, the intersection points A and B on the cylinder outer periphery side There are two approximately four-division parts 29, and two notches 21 are formed corresponding to each four-division part 29. In the sixth embodiment shown in FIG. 20, the intake port 3 and the exhaust port 5 are the same. This figure shows an application of this invention to a so-called counterflow engine in which the combustion chamber side openings 13 of each port 3.5 are arranged in the cylinder row direction. This embodiment shows an application of this invention to an engine in which the intake passage 14 near the joint between the intake port 3 and the intake manifold 15 is inclined to introduce intake air from diagonally above. In each of the seventh embodiments, when the swirl control valve 23 is fully closed, the intake air smoothly flows out to the combustion chamber 11 side through the notch 21, and the same effect as the first embodiment is obtained. [Effects] As described above, according to the present invention, (1) of the two-divided portion on the side opposite to the intake port side at the opening of the intake port on the combustion chamber side, the circular arc of the approximately quarter-divided portion on the cylinder outer circumferential side is The length of the first circular arc along the outer periphery of the control valve on the upper wall surface side of the intake passage from the intersection point of the outer periphery of the control valve and the control valve shaft that is at least farther from the cylinder center line perpendicular to the cylinder row direction. By setting a second circular arc that is approximately equal to flame propagation progresses stably and combustion is significantly improved, fuel efficiency and
Emissions and drivability can be greatly improved. In addition, (2) a sub-control valve is provided downstream of the control valve, which has a notch area smaller than the area of the notch part of the control valve, and is perpendicular to the center line of the intake passage when fully closed, resulting in a low load. Due to the occurrence of intake holes in the region, and the sub-control valve opens in the partial load region due to uniform swirl with little cycle fluctuation.
Both can significantly improve combustion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第11図はこの発明の第1の実施例に係わり
、第1図は吸気装置の平断面図、第2図は第1図の■矢
視図、第3図は吸気装置のl断面図、第4図乃至第7図
は制御弁の切欠部の具体例を示す説明図、第8図は切欠
部の位置による部分実験装置の説明図、第10図は空燃
比による図示燃費率及び図示平均有効圧力の変動率を示
す説明図、第11図はレーザドツプラ流速計によるガス
流動特性図、第12図は第2の実施例の吸気装置の平断
面図、第13図は第2の実施例の同縦断面図、第1 =
1図は第3の実施例の吸気装置の平断面図、第15図は
第3の実施例の同縦断面図、第16図は切欠部の位置に
よる低負荷域での図示平均有効圧力の変動率を示す説明
図、第17図は第4の実施例の吸気装置の平断面図、第
18図は第4の実施例の同縦断面図、第19図は第5の
実施例の同平断面図、第20図は第6の実施例の同平断
面図、第21図は第7の実施例のm断面図である。 3・−・吸気ポート    7・・・吸気弁11・・・
燃焼室      13・・・開口部14・・・吸気通
路     16・・・土壁面18・・・シリンダ中心
線  21・・・切欠部23・・・スワール制御弁  
25・・・制御弁軸28・・・吸気通路の中心線 29
・・・4分割部位30・・・垂直な而     37・
・・面積部位11・・・第1の円弧の長さ 13・・・第2の円弧の長さ A、B・・・交点代理人
  弁理士  三 好  保 男第3図 第4図      第5図 ■ 第6図      第7図 第9図 A/F 第10図 平均流速 第14図 八〇 第15図 第17図 1^ 第18図 第20図
1 to 11 relate to the first embodiment of the present invention, in which FIG. 1 is a plan sectional view of the intake device, FIG. 2 is a view taken in the direction of the ■ arrow in FIG. 1, and FIG. Figures 4 to 7 are explanatory diagrams showing specific examples of the notch of the control valve, Figure 8 is an explanatory diagram of the partial experimental device according to the position of the notch, and Figure 10 is the indicated fuel efficiency according to the air-fuel ratio. 11 is a gas flow characteristic diagram measured by a laser Doppler flowmeter, FIG. 12 is a cross-sectional plan view of the intake device of the second embodiment, and FIG. 13 is a diagram showing the fluctuation rate of the indicated mean effective pressure. The same longitudinal sectional view of the embodiment, 1st =
Figure 1 is a plan sectional view of the intake system of the third embodiment, Figure 15 is a longitudinal sectional view of the same, and Figure 16 is a diagram of the indicated mean effective pressure in the low load range depending on the position of the notch. An explanatory diagram showing the fluctuation rate, FIG. 17 is a plan sectional view of the intake device of the fourth embodiment, FIG. 18 is a longitudinal sectional view of the same of the fourth embodiment, and FIG. 19 is the same of the fifth embodiment. 20 is a plan sectional view of the sixth embodiment, and FIG. 21 is an m sectional view of the seventh embodiment. 3... Intake port 7... Intake valve 11...
Combustion chamber 13... Opening 14... Intake passage 16... Earth wall surface 18... Cylinder center line 21... Notch 23... Swirl control valve
25... Control valve shaft 28... Center line of intake passage 29
...four-division part 30...perpendicular 37.
... Area part 11 ... Length of the first arc 13 ... Length of the second arc A, B ... Intersection agent Patent attorney Yasuo Miyoshi Figure 3 Figure 4 Figure 5 ■ Figure 6 Figure 7 Figure 9 A/F Figure 10 Average flow velocity Figure 14 Figure 15 Figure 17 Figure 1^ Figure 18 Figure 20

Claims (2)

【特許請求の範囲】[Claims] (1)切欠部を有し制御弁軸の回転により吸気通路を開
閉する制御弁を、絞り弁下流の前記吸気通路に設け、前
記制御弁をその全閉時に前記吸気通路の中心線と垂直な
面に対し吸気弁側に前傾させると共に、吸気ポートの燃
焼室側開口部における吸気ポート側と反対側の2分割部
位のうちシリンダ外周側の略4分割部位の円弧を第1の
円弧とする一方、前記制御弁の外周と前記制御弁軸との
2つの交点のうちシリンダ列方向と垂直なシリンダ中心
線より少なくとも遠い位置にある交点から前記吸気通路
の上壁面側の前記制御弁外周に沿った前記第1の円弧の
長さと略等しい第2の円弧を設定し、前記第2の円弧に
対応する前記制御弁の面積部位上に、前記切欠部の重心
位置を設けたことを特徴とする内燃機関の吸気装置。
(1) A control valve that has a notch and opens and closes the intake passage by rotating the control valve shaft is provided in the intake passage downstream of the throttle valve, and when the control valve is fully closed, the control valve is perpendicular to the center line of the intake passage. It is tilted forward toward the intake valve side with respect to the surface, and among the two divided parts on the side opposite to the intake port side at the opening of the intake port on the combustion chamber side, the circular arc of the approximately four-divided part on the cylinder outer circumferential side is the first circular arc. On the other hand, along the outer periphery of the control valve on the upper wall surface side of the intake passage from the intersection that is at least farther from the cylinder center line perpendicular to the cylinder row direction among the two intersections between the outer periphery of the control valve and the control valve shaft. A second arc is set substantially equal to the length of the first arc, and the center of gravity of the notch is located on an area of the control valve corresponding to the second arc. Intake system for internal combustion engines.
(2)前記制御弁下流に、制御弁の切欠部の面積より小
さな面積の切欠部を有し全閉時に吸気通路の中心線に対
し垂直な副制御弁を設けたことを特徴とする内燃機関の
吸気装置。
(2) An internal combustion engine characterized in that an auxiliary control valve is provided downstream of the control valve, the sub-control valve having a notch having an area smaller than the area of the notch of the control valve and being perpendicular to the center line of the intake passage when fully closed. intake device.
JP62098572A 1987-04-23 1987-04-23 Internal combustion engine intake system Expired - Fee Related JPH081131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62098572A JPH081131B2 (en) 1987-04-23 1987-04-23 Internal combustion engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62098572A JPH081131B2 (en) 1987-04-23 1987-04-23 Internal combustion engine intake system

Publications (2)

Publication Number Publication Date
JPS63266122A true JPS63266122A (en) 1988-11-02
JPH081131B2 JPH081131B2 (en) 1996-01-10

Family

ID=14223387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62098572A Expired - Fee Related JPH081131B2 (en) 1987-04-23 1987-04-23 Internal combustion engine intake system

Country Status (1)

Country Link
JP (1) JPH081131B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806484A (en) * 1994-08-31 1998-09-15 Yamaha Hatsudoki Kabushiki Kaisha Induction control system for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806484A (en) * 1994-08-31 1998-09-15 Yamaha Hatsudoki Kabushiki Kaisha Induction control system for engine

Also Published As

Publication number Publication date
JPH081131B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JPS6052292B2 (en) Dual intake passage internal combustion engine
JPH03264727A (en) Intake system for multiple valve engine
JPS59122725A (en) Suction device of engine
JPS5950850B2 (en) Internal combustion engine intake system
JPH07119472A (en) Intake device for engine
JPH02176116A (en) Combustion chamber for internal combustion engine
JP3329935B2 (en) Intake device for internal combustion engine
JPS63266122A (en) Intake device for internal combustion engine
US20100037840A1 (en) Internal combustion engine
JP2501556Y2 (en) Internal combustion engine intake system
JP2639720B2 (en) Intake control device for internal combustion engine
JP3153598B2 (en) Engine intake system
JP2968066B2 (en) Engine intake system
JPH0531219Y2 (en)
JPH0433383Y2 (en)
JPH0439412Y2 (en)
JPH06213081A (en) Exhaust gas recirculation system of engine
JP3500701B2 (en) Engine intake system
JPH07279751A (en) Intake device for internal combustion engine
JPH0481522A (en) Intake device of engine
JPH07189702A (en) Stratified charge combustion type internal combustion engine
JPS5825855B2 (en) Intake throttle valve for in-cylinder fuel injection spark ignition engine
JPH0247573B2 (en)
JPH0236905Y2 (en)
JP2001159314A (en) Combustion chamber structure of internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees