JPH081131B2 - Internal combustion engine intake system - Google Patents

Internal combustion engine intake system

Info

Publication number
JPH081131B2
JPH081131B2 JP62098572A JP9857287A JPH081131B2 JP H081131 B2 JPH081131 B2 JP H081131B2 JP 62098572 A JP62098572 A JP 62098572A JP 9857287 A JP9857287 A JP 9857287A JP H081131 B2 JPH081131 B2 JP H081131B2
Authority
JP
Japan
Prior art keywords
control valve
intake
notch
swirl
intake port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62098572A
Other languages
Japanese (ja)
Other versions
JPS63266122A (en
Inventor
淳一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP62098572A priority Critical patent/JPH081131B2/en
Publication of JPS63266122A publication Critical patent/JPS63266122A/en
Publication of JPH081131B2 publication Critical patent/JPH081131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、制御弁を設けることにより吸気流動を制
御し、燃焼を改善させる内燃機関の吸気装置の提供を目
的とする。
Description: [Industrial application] The present invention has an object of providing an intake system for an internal combustion engine that controls a flow of intake air by providing a control valve to improve combustion.

[従来の技術] 一般に、内燃機関では機関の低負荷域では燃焼室内に
強力なスワールを生成させて吸気乱れを起こし、燃焼効
率を向上させる一方、高負荷域側ではスワールを抑えて
吸気充填効率を高め、出力の向上を図る必要がある。
[Prior Art] Generally, in an internal combustion engine, a strong swirl is generated in the combustion chamber in the low load region of the engine to cause intake turbulence to improve combustion efficiency, while the swirl is suppressed in the high load region to reduce intake charge efficiency. It is necessary to increase the output and to improve the output.

このため、従来では絞り弁下流の吸気通路に切欠部を
有するスワール制御弁を設け、この制御弁を低負荷域に
全閉として切欠部から吸気を導入して強力なスワールを
生成させる一方、高負荷域に制御弁を全開にして充填効
率の向上を図るものが提案されている。
For this reason, conventionally, a swirl control valve having a cutout portion is provided in the intake passage downstream of the throttle valve, and the control valve is fully closed in the low load region to introduce intake air from the cutout portion to generate a powerful swirl. It has been proposed that the control valve be fully opened in the load region to improve the charging efficiency.

例えば、特開昭61−112732号公報では、切欠部を備え
た制御弁の全閉時において、機関の冷機時には切欠部を
吸気ポートの下壁側に位置させて点火プラグへの燃焼の
付着による所謂かぶりを防止する一方、暖機時にはこの
状態から制御弁を反転させて全閉とし、切欠部を吸気ポ
ートの上壁側に位置させてより強力なスワールを生成さ
せるようにしている。
For example, in Japanese Patent Laid-Open No. 61-112732, when the control valve having the cutout portion is fully closed, the cutout portion is positioned on the lower wall side of the intake port when the engine is cold, and the combustion plug adheres to the ignition plug. While preventing so-called fogging, the control valve is reversed from this state during warm-up to be fully closed, and the notch is positioned on the upper wall side of the intake port to generate a stronger swirl.

上述した冷機時及び暖機時何れの状態においても、制
御弁は吸気に対し垂直ではなく傾斜しており、冷機時に
は吸気弁側に前傾しかつ切欠部は吸気ポートの下壁側に
位置し、一方暖機時には吸気弁に対し後傾した状態でか
つ切欠部は吸気ポートの上壁側に位置している。
In both the cold and warm states described above, the control valve is not perpendicular to the intake air, but is inclined to the intake valve side when cold, and the notch is located on the lower wall side of the intake port. On the other hand, during warm-up, the notch is located on the upper wall side of the intake port while being tilted backward with respect to the intake valve.

[発明が解決しようとする問題点] 上述した従来の吸気装置は、制御弁の全閉時での吸気
ポートに対する傾斜についてはスワールの点から特に考
慮しておらず、また切欠部の制御弁周方向位置について
も特に考慮はなされていないので、適正な吸気流動が得
にくく安定した燃焼が得られていないというが実情であ
る。
[Problems to be Solved by the Invention] In the conventional intake device described above, the inclination of the control valve with respect to the intake port when fully closed is not particularly considered from the viewpoint of swirl, and the control valve circumference of the cutout portion is not taken into consideration. Since the directional position is not particularly considered, it is difficult to obtain a proper intake flow and stable combustion is not obtained.

この発明は上記のような実情に鑑み創案されたもの
で、適正な吸気流動が得られ、燃焼を安定化させた吸気
装置の提供を目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an intake device in which a proper intake flow is obtained and combustion is stabilized.

[問題点を解決するための手段] 上記問題点を解決するためにこの発明は、切欠部を有
し制御弁軸の回転により吸気通路を開閉する制御弁を、
絞り弁下流の前記吸気通路に設け、前記制御弁をその全
閉時に前記吸気通路の中心線と垂直な面に対し吸気弁側
に前傾させると共に、吸気ポートの燃焼室側開口部にお
ける吸気ポート側と反対側の2分割部位のうちシリンダ
外周側の略4分割部位の円弧を第1の円弧とする一方、
前記制御弁の外周と前記制御弁軸との2つの交点のうち
シリンダ列方向と垂直なシリンダ中心線より少なくとも
遠い位置にある交点から前記吸気通路の上壁面側の前記
制御弁外周に沿った前記第1の円弧の長さと略等しい第
2の円弧を設定し、前記第2の円弧に対応する前記制御
弁の面積部位上に、前記切欠部を重心位置に設ける構成
とした。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a control valve having a cutout portion for opening and closing an intake passage by rotation of a control valve shaft,
The control valve is provided in the intake passage downstream of the throttle valve, and when the control valve is fully closed, the control valve is inclined forward to the intake valve side with respect to a plane perpendicular to the center line of the intake passage, and the intake port at the combustion chamber side opening of the intake port is provided. Of the two divided parts on the opposite side to the side, the arc of the substantially four divided parts on the outer peripheral side of the cylinder is set as the first circular arc,
Among the two intersections of the outer periphery of the control valve and the control valve shaft, the intersections along the outer periphery of the control valve on the upper wall surface side of the intake passage from the intersections that are at least distant from the cylinder center line perpendicular to the cylinder row direction. A second arc having a length substantially equal to the length of the first arc is set, and the notch is provided at the center of gravity on the area of the control valve corresponding to the second arc.

更に、この発明は、前記制御弁下流に、制御弁の切欠
部の面積より小さな面積の切欠部を有し全閉時に吸気通
路の中心線に対し垂直な副制御弁を設ける構成としてあ
る。
Further, according to the present invention, a sub-control valve is provided downstream of the control valve, the cut-out having an area smaller than the cut-out of the control valve, and the sub-control valve being perpendicular to the center line of the intake passage when fully closed.

[作用] 制御弁全閉時に制御弁は吸気通路に対し吸気弁側に前
傾しているので、吸気は制御弁に案内されて前傾側先端
の切欠部より流出した後、吸気通路に沿って滑らかに燃
焼室に流入する。これにより、最適な吸気流動が得ら
れ、安定した燃焼が得られることになる。
[Operation] When the control valve is fully closed, the control valve leans forward to the intake valve side with respect to the intake passage, so the intake air is guided by the control valve and flows out through the notch at the tip of the forward leaning side, and then along the intake passage. It smoothly flows into the combustion chamber. As a result, an optimum intake flow can be obtained and stable combustion can be obtained.

[実施例] 以下、図面に基づきこの発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図乃至第11図は第1の実施例に係わり、第1図は
吸気装置の平断面図、第3図は同縦断面図である。シリ
ンダヘッド1には吸気ポート3及び排気ポート5がそれ
ぞれ形成され、各ポート3,5には吸気弁7,排気弁9がそ
れぞれ設けられている。吸気ポート3は燃焼室11の上部
の開口部13から上流側に向い徐々に湾曲し、吸気マニホ
ールド15付近でシリンダ中心軸線17に対し略直交する部
位19を形成している。この部位19に、切欠部21を有する
スワール制御弁23が制御弁軸25に支持された状態で、吸
気ポート3を開閉可能に設けられている。吸気マニホー
ルド15とシリンダヘッド1の吸気ポート3とで吸気通路
14を形成している。なお符号22は点火栓である。
1 to 11 relate to the first embodiment, FIG. 1 is a plan sectional view of an intake device, and FIG. 3 is a longitudinal sectional view thereof. An intake port 3 and an exhaust port 5 are formed in the cylinder head 1, and an intake valve 7 and an exhaust valve 9 are provided in the ports 3 and 5, respectively. The intake port 3 is gradually curved from the opening 13 at the upper portion of the combustion chamber 11 toward the upstream side, and forms a portion 19 near the intake manifold 15 that is substantially orthogonal to the cylinder center axis 17. A swirl control valve 23 having a cutout portion 21 is provided in this portion 19 so as to be able to open and close the intake port 3 while being supported by a control valve shaft 25. Intake passage with intake manifold 15 and intake port 3 of cylinder head 1
Forming fourteen. Reference numeral 22 is a spark plug.

上記スワール制御弁23は、全閉時に吸気通路14の中心
線28と垂直な面30に対し吸気弁7側にα゜前傾させてあ
る。また、吸気ポート3の燃焼室11側開口部13における
吸気ポート3側と反対側の半円形状の2分割部位のう
ち、シリンダ外周側の略4分割部位29の第1の円弧の長
さをl1とする一方、スワール制御弁23の外周と制御弁軸
25の中心軸線26との交点A,Bのうちシリンダ列方向(第
1図中で上下方向)と垂直なシリンダ中心線18より遠い
交点Aから、吸気通路14の上壁面16側のスワール制御弁
23外周に沿って、前記第1の円弧の長さl1と略等しくな
る点を点Cとして、交点Aと点Cとによって形成される
第2の円弧に対応する第2図に示すスワール制御弁23の
面積部位31上に切欠部21の重心位置を設けている。
The swirl control valve 23 is inclined forward by α ° toward the intake valve 7 side with respect to a plane 30 perpendicular to the center line 28 of the intake passage 14 when fully closed. In addition, the length of the first circular arc of a substantially four-divided portion 29 on the cylinder outer peripheral side of the semicircular two-divided portions on the side opposite to the intake port 3 side in the opening 13 on the combustion chamber 11 side of the intake port 3 is set. l 1 , while the outer circumference of the swirl control valve 23 and the control valve shaft
Of the intersections A and B with the central axis 26 of 25, the swirl control valve on the upper wall surface 16 side of the intake passage 14 from the intersection A farther from the cylinder center line 18 perpendicular to the cylinder row direction (vertical direction in FIG. 1).
23 A swirl control shown in FIG. 2 corresponding to a second circular arc formed by the intersection points A and C, with a point C that is substantially equal to the length l 1 of the first circular arc along the outer circumference. The center of gravity of the notch 21 is provided on the area portion 31 of the valve 23.

即ち、4分割部位29の第1の円弧の長さl1と、面積部
位31の円弧長さl2と、スワール制御弁23の点Aと点Cに
よって形成される第2の円弧の長さl3とは、互いに略等
しいものとなっている。
That is, the length l 1 of the first circular arc of the four-divided portion 29, the length l 2 of the circular arc of the area portion 31, and the length of the second circular arc formed by the points A and C of the swirl control valve 23. l 3 are almost equal to each other.

尚、27は、4分割部位29の吸気ポート3側と最も遠い
反対側における部位と面積部位31上の点Cを結んだ線を
示す。
Reference numeral 27 indicates a line connecting a portion of the 4-divided portion 29 on the side farthest from the intake port 3 side and a point C on the area portion 31.

第4図乃至第7図に切欠部21の具体例を示す。それぞ
れの切欠部21の重心をGで示す。この重心Gは何れも面
積部位31上に位置している。
4 to 7 show specific examples of the notch 21. The center of gravity of each notch 21 is indicated by G. The center of gravity G is located on the area portion 31.

このように構成することにより、スワール制御弁23の
全閉時吸気弁7が開くと、吸気マニホールド15を流れて
来る吸気はスワール制御弁23の切欠部21を通り、燃焼室
11側に流れる。このとき、スワール制御弁23は吸気弁7
側にα゜だけ前傾しているため、吸気ポート3の下壁側
の吸気はスワール制御弁23の傾斜に沿って切欠部21の設
けられた上壁面16に向って流れて切欠部21に達し、吸気
ポート3の上壁面16側を流れる吸気と共に切欠部21より
燃焼室11側にスムーズに流出するので、吸気ポート3内
壁に衝突することなく、しかも切欠部21の重心が、前述
したような位置にあるので、切欠部21を通過した吸気の
主流は吸気ポート3に沿って流れた後、吸気ポート3開
口部13の4分割部位29から燃焼室11の最深部に流れ込
む。このため、燃焼室11内にはスワール比の変化が均一
なスワールが生成され、圧縮行程後半までスワールの減
衰を最小限に保つことが可能となり、燃焼行程では火炎
伝播が阻害されることなく安定して進行し、大幅な燃焼
改善が図られ、燃費,エミッション,運転性が大きく向
上する。
With this configuration, when the intake valve 7 when the swirl control valve 23 is fully closed is opened, the intake air flowing through the intake manifold 15 passes through the cutout portion 21 of the swirl control valve 23 and enters the combustion chamber.
It flows to the 11 side. At this time, the swirl control valve 23 changes the intake valve 7
Since it is inclined forward by α ° to the side, the intake air on the lower wall side of the intake port 3 flows along the inclination of the swirl control valve 23 toward the upper wall surface 16 where the cutout portion 21 is provided and flows to the cutout portion 21. Since it reaches the combustion chamber 11 side smoothly from the cutout portion 21 along with the intake air flowing on the upper wall surface 16 side of the intake port 3, the center of gravity of the cutout portion 21 does not collide with the inner wall of the intake port 3 as described above. Since it is located at this position, the main flow of intake air that has passed through the notch 21 flows along the intake port 3 and then flows into the deepest part of the combustion chamber 11 from the four-divided portion 29 of the opening 13 of the intake port 3. Therefore, a swirl with a uniform change of swirl ratio is generated in the combustion chamber 11, and it becomes possible to keep the damping of the swirl to the minimum until the latter half of the compression stroke, and the flame propagation is stable in the combustion stroke without being obstructed. The fuel consumption, emission, and drivability are greatly improved.

そして、全負荷時になるとスワール制御弁23は全開
し、吸気充填効率か向上する。
Then, at the time of full load, the swirl control valve 23 is fully opened, and the intake charging efficiency is improved.

第8図は、機関回転数N=1400rpm,図示平均有効圧力
Pi=0.31MPa,空燃比A/E=22.5,点火進角がMBTの条件の
基で、第3図のIX矢視方向からの図に相当する第9図の
スワール制御弁32の傾斜角であるαが0゜,5゜,15゜,30
゜の各状態について、切欠部34の位置(θ゜で表わされ
る)による図示平均有効圧力の変動率を示している。切
欠部34の位置は、水平側の中心線33より上部側をプラス
(+)とし、下部側をマイナス(−)としてあり、また
垂直側の中心線35より右側(側)にあるときを各傾斜
角何れについても実線で示し、左側(側)にあるとき
を同じく破線で示している。
Fig. 8 shows engine speed N = 1400 rpm, indicated mean effective pressure
Pi = 0.31MPa, air-fuel ratio A / E = 22.5, ignition advance angle is MBT, and the tilt angle of swirl control valve 32 in Fig. 9, which corresponds to the view from the IX arrow direction in Fig. 3, Some α is 0 °, 5 °, 15 °, 30
For each state of °, the fluctuation rate of the indicated mean effective pressure depending on the position of the notch 34 (represented by θ °) is shown. The position of the notch 34 is positive (+) on the upper side of the horizontal center line 33, negative (-) on the lower side, and is on the right side (side) of the vertical center line 35. Each of the inclination angles is shown by a solid line, and the left side (side) is also shown by a broken line.

なお、実験では第9図に示すように、スワール制御弁
32は楕円形状であり、切欠位置θの角度は楕円の長軸
(水平側の中心線33)と交わる制御弁32周縁部から16mm
の位置を中心としてとっている。また、切欠部34は直径
26mmの円により切り取られた円弧状を呈している。更
に、吸気マニホールドの燃焼室側開口部の直径は32mmで
ある。
In the experiment, as shown in Fig. 9, the swirl control valve
32 is an elliptical shape, and the angle of the notch position θ is 16 mm from the peripheral portion of the control valve 32 that intersects with the major axis of the ellipse (the center line 33 on the horizontal side).
The position is taken as the center. Also, the notch 34 has a diameter
It has an arc shape cut out by a 26 mm circle. Furthermore, the diameter of the combustion chamber side opening of the intake manifold is 32 mm.

上述した第8図から明らかなように、図示平均有効圧
力の変動率が低く燃焼が安定するのは、α=15゜であ
り、しかも傾斜角αの如何に拘らず、切欠部34の位置は
θ=0゜〜90゜の範囲にあることが条件となる。したが
って、第1の実施例を示す第1図及び第2図に示したよ
うに、切欠部21の重心位置を、吸気ポート3の燃焼室11
側開口部13における吸気ポート3側と反対側の半円形状
の2分割部位のうち、シリンダ外周側の略4分割部位29
の第1の円弧の長さをl1とする一方、スワール制御弁23
の外周と制御弁軸25の中心軸線26との交点A,Bのうちシ
リンダ列方向(第1図中で上下方向)と垂直なシリンダ
中心線18より遠い交点Aから、吸気通路14の上壁面16側
のスワール制御弁23外周に沿って、前記第1の円弧の長
さl1と略等しくなる点を点Cとして、交点Aと点Cとに
よって形成される円弧に対応する第2図に示すスワール
制御弁23の面積部位31上に設けることにより、切欠部21
は実験による第9図中の水平側の中心線33より上側かつ
垂直側の中心線35より右側のθ=0゜〜90゜の範囲に位
置することになり、安定した燃焼が得られることにな
る。
As is clear from FIG. 8 described above, it is α = 15 ° that the fluctuation rate of the indicated mean effective pressure is low and the combustion is stable, and the position of the notch 34 is irrespective of the inclination angle α. The condition is that θ = 0 ° to 90 °. Therefore, as shown in FIG. 1 and FIG. 2 showing the first embodiment, the position of the center of gravity of the notch 21 is set to the combustion chamber 11 of the intake port 3.
Of the semicircular two-sided portion of the side opening 13 on the side opposite to the intake port 3 side, a substantially four-sided portion on the cylinder outer peripheral side 29
The length of the first circular arc of L1 is set to l 1 , while the swirl control valve 23
Of the intersections A and B between the outer periphery of the cylinder and the central axis 26 of the control valve shaft 25, which is farther from the cylinder center line 18 which is perpendicular to the cylinder row direction (vertical direction in FIG. 1), the upper wall surface of the intake passage 14 Along the outer circumference of the swirl control valve 23 on the 16th side, a point substantially equal to the length l 1 of the first circular arc is defined as a point C, and FIG. 2 corresponding to the circular arc formed by the intersection A and the point C is shown in FIG. By providing it on the area part 31 of the swirl control valve 23 shown, the notch 21
Is located in the range of θ = 0 ° to 90 ° on the upper side of the horizontal center line 33 and on the right side of the vertical center line 35 in FIG. 9 by the experiment, and stable combustion can be obtained. Become.

第10図は、機関回転数N=1400rpm、図示平均有効圧
力Pi=0.31MPa,点火進角がMBTの条件の基に、空燃比A/F
の変化による図示燃費及び図示平均有効圧力の変動率
を、第9図のスワール制御弁32の傾斜角α=15゜で切欠
部34の位置θ=60゜のとき(実線図示)と、α=0゜で
α=60゜のとき(一点鎖線図示)と、α=15゜でθ=−
20゜のとき(破線図示)との3通りについて示してあ
る。上記第10図によっても、前述した第8図の結果同
様、スワール制御弁32は15゜前傾させ、かつ切欠部34の
位置はθ=60゜すなわち第1の実施例である第1図及び
第2図に示した位置がよく、このとき安定度、燃費共に
大きく改善されることになる。
FIG. 10 shows the air-fuel ratio A / F under the conditions of engine speed N = 1400 rpm, indicated mean effective pressure Pi = 0.31 MPa, and ignition advance angle MBT.
When the inclination angle α of the swirl control valve 32 in FIG. 9 is α = 15 ° and the position of the notch 34 is θ = 60 ° (shown by the solid line), α = When α = 60 ° at 0 ° (dashed line), θ = − at α = 15 °
It is shown for three cases, at 20 ° (shown by a broken line). According to FIG. 10 as well, similar to the result of FIG. 8 described above, the swirl control valve 32 is tilted forward by 15 ° and the position of the notch 34 is θ = 60 °, that is, FIG. 1 and FIG. The position shown in FIG. 2 is good, at which time both stability and fuel economy are greatly improved.

なお、上述した第8図及び第10図のデータは、スワー
ル制御弁32と吸気ポート壁との隙間は一定で実験を行な
っており、低負荷時スワール制御弁を直立状態で、吸気
ポートとの隙間を一定にし、負荷増大に伴ってスワール
制御弁の開度を増すシステムでは吸気ポートとの隙間が
大きくなってしまい、方向性のある均一なスワールを得
ることができず、安定した燃焼が得られないということ
がわかった。
In addition, the data of FIG. 8 and FIG. 10 described above are obtained by conducting an experiment with the gap between the swirl control valve 32 and the intake port wall being constant, and the swirl control valve at the time of low load being in the upright state and being connected to the intake port. In a system in which the gap is fixed and the opening of the swirl control valve increases as the load increases, the gap with the intake port becomes large, and it is not possible to obtain a directional and uniform swirl, and stable combustion is obtained. I knew I couldn't.

第11図は、機関回転数N=1400rpm,充填効率ηc=40
%の条件の基に、レーザドップラ流速計で燃焼室内のガ
ス流動特性をα=15゜でθ=60゜のときと、α=0゜で
θ=60゜のときと、α=15゜でθ=−20゜のときとの3
通りについて示したものである。なお、図中で実線は吸
気開き始めの上死点前60゜(BTDC),一点鎖線は同30゜
(BTDC),破線は同0゜(BTDC)を示す。上記第11図に
よっても、やはり第10図と同様α=15゜でθ=60゜の条
件が良く、他の条件に見られる圧縮行程での流線の交わ
りもなく、点火時期から初期燃焼機関にかけて均一なス
ワール比が得らる。
FIG. 11 shows the engine speed N = 1400 rpm and the charging efficiency ηc = 40.
% Of the gas flow characteristics in the combustion chamber with a laser Doppler velocity meter at α = 15 ° and θ = 60 °, at α = 0 ° and θ = 60 °, and at α = 15 °. 3 with θ = -20 °
It shows the street. In the figure, the solid line shows 60 ° (BTDC) before the top dead center when the intake opening begins, the dashed line shows 30 ° (BTDC), and the broken line shows 0 ° (BTDC). According to FIG. 11 also, as in FIG. 10, the condition of α = 15 ° and θ = 60 ° is good, there is no intersection of streamlines in the compression stroke, which is seen in other conditions, and the initial combustion engine from the ignition timing. A uniform swirl ratio is obtained over time.

第12図及び第13図は第2の実施例を示す。この実施例
は第1の実施例の変形であり、吸気弁7が2つある例
で、吸気ポート形状をサイアミーズ型として燃焼室11へ
の吸気ポート3a,3bの開口部13a,13bを形成させたもので
ある。この場合も、スワール制御弁23は第1の実施例と
同様に前傾しており、切欠部21の重心位置も第1の実施
例と同様に、吸気ポート3の燃焼室11側開口部13aにお
ける吸気ポート3側と反対側の半円形状の2分割部位の
うち、シリンダ外周側の略4分割部位29aの第1の円弧
の長さをl1とする一方、スワール制御弁23の外周と制御
弁軸25の中心軸線26との交点A,Bのうち、シリンダ列方
向(第1図中で上下方向)と垂直なシリンダ中心線18よ
り遠い交点Aから、吸気通路14の上鬼面16側のスワール
制御弁23外周に沿って、前記第1の円弧の長さl1と略等
しくなる点を点Cとして、交点Aと点Cとによって形成
される第2の円弧に対応するスワール制御弁23の面積部
位31上に設けてあるので、スワール制御弁23全閉時には
吸気は切欠部21を通り、第1の実施例と同様な均一なス
ワールが得られ、大幅な燃焼改善が図られる。
12 and 13 show a second embodiment. This embodiment is a modification of the first embodiment, and is an example in which there are two intake valves 7. In this embodiment, the intake port shape is a Siamese type and the openings 13a, 13b of the intake ports 3a, 3b to the combustion chamber 11 are formed. It is a thing. Also in this case, the swirl control valve 23 is tilted forward as in the first embodiment, and the center of gravity of the notch 21 is also the opening 13a of the intake port 3 on the side of the combustion chamber 11 as in the first embodiment. In the semicircular divided portion on the side opposite to the intake port 3 side, the length of the first circular arc of the substantially divided 4 portion 29a on the cylinder outer peripheral side is set to l 1 , while the outer circumference of the swirl control valve 23 Of the intersections A and B with the center axis 26 of the control valve shaft 25, from the intersection A farther from the cylinder center line 18 which is perpendicular to the cylinder row direction (vertical direction in FIG. 1), the upper surface 16 side of the intake passage 14 is located. Along the outer circumference of the swirl control valve 23, the point that becomes substantially equal to the length l 1 of the first arc is a point C, and the swirl control valve corresponding to the second arc formed by the intersection A and the point C. Since the swirl control valve 23 is fully closed, the intake air passes through the notch portion 21 because it is provided on the area portion 31 of 23, which is the same as in the first embodiment. Such a uniform swirl can be obtained, and the combustion can be greatly improved.

そして、全負荷時になるとスワール制御弁23は全開と
なり、吸気は2つの吸気ポート3a,3bを経て燃焼室11に
流入するため、吸気充填効率はより一層向上する。
Then, at the time of full load, the swirl control valve 23 is fully opened, and the intake air flows into the combustion chamber 11 through the two intake ports 3a and 3b, so that the intake charging efficiency is further improved.

なお、上記第2の実施例では、切欠部21を図中で下側
の吸気ポート3b側に設けてもよい。これを破線で示す。
この切欠部21の重心位置は、開口部13aの4分割部位29a
と、図中で上下方向の対称位置に相当する開口部13bの
4分割部位29bにおける前述の対応部位にあることは言
うでもない。また、サイアミーズ型でなくデュアルポー
ト型としてもよく、この場合もどちらか一方の吸気ポー
トに、所定位置に切欠部を形成したスワール制御弁を設
ければよい。更に、第2の実施例では排気弁が2つある
機関に適用してもよい。また、第1,第2の各実施例共、
スワール制御弁23を吸気マニホールド15に設けてもよ
い。
In the second embodiment, the cutout 21 may be provided on the lower intake port 3b side in the drawing. This is indicated by a broken line.
The position of the center of gravity of the cutout portion 21 is the four-divided portion 29a of the opening 13a.
Needless to say, it is located at the above-mentioned corresponding portion in the four-divided portion 29b of the opening 13b corresponding to the symmetrical position in the vertical direction in the figure. Further, a dual port type may be used instead of the Siamese type, and in this case, either one of the intake ports may be provided with a swirl control valve having a notch at a predetermined position. Furthermore, the second embodiment may be applied to an engine having two exhaust valves. Also, in each of the first and second embodiments,
The swirl control valve 23 may be provided in the intake manifold 15.

第14図及び第15図は第3の実施例を示す。この実施例
は、前述した第1,2の各実施例と同様の切欠部21を備え
たスワール制御弁23を吸気マニホールド15に設けると共
に、その下流のシリンダヘッド1内吸気ポート3に、弁
軸37に固定された切欠部39を有する副制御弁41を回動可
能に設けたものである。スワール制御弁23は第1の実施
例と同様にα゜前傾しており、切欠部21の重心位置も第
1の実施例と同様な位置に設けられている。一方、副制
御弁41はその全閉時に傾斜しておらず、吸気通路14の中
心線28に対し略垂直となっている。副制御弁41の切欠部
39はスワール制御弁23の切欠部21、吸気ポート3の開口
部13の4分割部位29とを結ぶ通路上にあり、その面積は
スワール制御弁23の切欠部21面の面積より小さく形成し
てある。
14 and 15 show a third embodiment. In this embodiment, a swirl control valve 23 having a cutout 21 similar to that of the first and second embodiments is provided in the intake manifold 15, and the valve shaft is provided in the intake port 3 in the cylinder head 1 downstream thereof. A sub control valve 41 having a notch 39 fixed to 37 is rotatably provided. The swirl control valve 23 is inclined forward by α ° as in the first embodiment, and the position of the center of gravity of the notch 21 is also provided at the same position as in the first embodiment. On the other hand, the sub control valve 41 is not inclined when it is fully closed, and is substantially perpendicular to the center line 28 of the intake passage 14. Sub control valve 41 notch
39 is on the passage that connects the notch 21 of the swirl control valve 23 and the four-divided portion 29 of the opening 13 of the intake port 3, and its area is smaller than the area of the notch 21 surface of the swirl control valve 23. is there.

この場合、アイドリングを含む極低負荷域にはスワー
ル制御弁23及び副制御弁41共に全閉であり、このとき副
制御弁41は吸気ポート3に対し垂直となっている。一
方、第16図に示すように、機関回転数N=700rpm,図示
平均有効圧力Pi=0.08MPa,空燃比A/F=15というアイド
リングを含む極低負荷域条件下(実験装置は第8図乃至
第11図のときと同じもの)では、第9図のスワール制御
弁の傾斜角αが大きくなるに従い切欠部の位置に拘ら
す、図示平均有効圧力の変動率が高くなっている。な
お、ここでは切欠部が第9図の垂直側の中心線35の右側
(側)にあるときのデータを示しているが、これと反
対側(側)も同様の傾向を示している。これはガス流
動測定の結果、制御弁直立状態(α=0゜)では吸気ポ
ート内流線が吸気ポート壁に衝突する格好で乱され、燃
焼室内のガス流動の乱れも増大し、燃焼改善されている
理由による。
In this case, both the swirl control valve 23 and the sub control valve 41 are fully closed in the extremely low load range including idling, and at this time, the sub control valve 41 is perpendicular to the intake port 3. On the other hand, as shown in FIG. 16, the engine speed N = 700 rpm, the indicated mean effective pressure Pi = 0.08 MPa, and the air-fuel ratio A / F = 15, which are extremely low load conditions including idling (the experimental device is shown in FIG. 11 to 13), the fluctuation rate of the indicated mean effective pressure in the notch position increases as the tilt angle α of the swirl control valve in FIG. 9 increases. Here, the data is shown when the notch is on the right side (side) of the center line 35 on the vertical side in FIG. 9, but the opposite side (side) shows the same tendency. As a result of gas flow measurement, when the control valve is upright (α = 0 °), the flow line in the intake port is disturbed by collision with the wall of the intake port, and the turbulence in the gas flow in the combustion chamber is also increased to improve combustion. It depends on the reason.

したがって、前述したように、極低負荷域に燃焼室11
側の副制御弁41を直立状態とすることにより、吸気マニ
ホールド5の上流から流入する吸気は、まず第1の実施
例と同様にしてスワール制御弁23の切欠部21を通過し、
その後直立状態(α=0゜)の副制御弁41の切欠部39に
向って流れ燃焼室11側に流出する。このとき、副制御弁
41の切欠部39はスワール制御弁23の切欠部21より面積が
小さく、しかも副制御弁41は直立状態であるため、切欠
部39から流出した吸気は前述したように吸気ポート3内
壁に一部衝突しながら強い乱れを生じ、開口部13より燃
焼室11に流入する。この結果、燃焼室11内のガス流動の
乱れ及びサイクル変動は増大し、燃焼速度は速くなり大
幅な燃焼改善が図れる。
Therefore, as described above, in the extremely low load region, the combustion chamber 11
By setting the sub control valve 41 on the side upright, the intake air flowing in from the upstream side of the intake manifold 5 first passes through the cutout portion 21 of the swirl control valve 23 in the same manner as in the first embodiment.
After that, it flows toward the notch 39 of the sub control valve 41 in the upright state (α = 0 °) and flows out to the combustion chamber 11 side. At this time, the sub control valve
The notch 39 of 41 has a smaller area than the notch 21 of the swirl control valve 23, and since the sub control valve 41 is in the upright state, the intake air flowing out of the notch 39 is partially in the inner wall of the intake port 3 as described above. While colliding, strong turbulence is generated and flows into the combustion chamber 11 through the opening 13. As a result, the turbulence of the gas flow in the combustion chamber 11 and the cycle fluctuation increase, the combustion speed increases, and significant combustion improvement can be achieved.

次に、負荷が増大し部分負荷域に達すると、副制御弁
41のみが開き、吸気はスワール制御弁23の切欠部21を通
って吸気ポート3に流出する。その後の吸気の流れは第
1の実施例と略同様であり、したがって、この場合は部
分負荷域に適合した乱れが少なくサイクル変動の小さい
均一なスワールが生成され、大幅な燃焼改善が図られ
る。
Next, when the load increases and reaches the partial load range, the sub control valve
Only 41 is opened and the intake air flows into the intake port 3 through the notch 21 of the swirl control valve 23. The flow of the intake air thereafter is substantially the same as that in the first embodiment. Therefore, in this case, uniform swirl with small turbulence and small cycle fluctuation adapted to the partial load region is generated, and a great improvement in combustion is achieved.

そして、全負荷域にはスワール制御弁23及び副制御弁
41共に全開となり、吸気充填効率が向上する。
The swirl control valve 23 and the sub control valve are
Both 41 are fully opened, improving the intake charging efficiency.

以上によりこの実施例では、制御弁を2つ設けること
により負荷状態に対応したより細かなスワール制御が可
能となる。
As described above, in this embodiment, by providing two control valves, finer swirl control corresponding to the load state becomes possible.

第17図及び第18図は第4の実施例を示す。この実施例
は第3の実施例の変形で第2の実施例と同様に吸気弁が
2つある例で、吸気ポート形状をサイアミーズ型として
燃焼室11への吸気ポート3a,3bの開口部13a,13bを形成さ
せたものである。この場合も、スワール制御弁23は第3
の実施例と同様に前傾しており、切欠部21の重心位置も
第2の実施例と同様である。一方、副制御弁41も第3の
実施例と同様に全閉時には傾斜しておらず、その切欠部
39の面積もスワール制御弁23の切欠部21の面瀬より小さ
いものとなっている。
17 and 18 show a fourth embodiment. This embodiment is a modification of the third embodiment and has two intake valves as in the case of the second embodiment. The intake port shape is a Siamese type and the openings 13a of the intake ports 3a, 3b to the combustion chamber 11 are formed. , 13b are formed. Also in this case, the swirl control valve 23 has the third
Like the second embodiment, it is tilted forward, and the position of the center of gravity of the cutout portion 21 is also the same as in the second embodiment. On the other hand, the sub-control valve 41 is not inclined when fully closed as in the third embodiment, and the cutout portion thereof is not formed.
The area of 39 is also smaller than the face of the notch 21 of the swirl control valve 23.

したがって、このように構成された吸気装置でも、第
3の実施例と同様に極低負荷域及び部分負荷域で大幅な
燃焼改善が図れる。また、この場合全負荷域にはスワー
ル制御弁23及び副制御弁41共に全開し、吸気は2つの吸
気ポート3a,3bを通るので、吸気充填率がより向上す
る。
Therefore, even with the intake device configured as described above, as in the third embodiment, the combustion can be greatly improved in the extremely low load region and the partial load region. Further, in this case, both the swirl control valve 23 and the sub control valve 41 are fully opened in the full load range, and the intake air passes through the two intake ports 3a and 3b, so that the intake charge rate is further improved.

なお、上記第4の実施例は、スワール制御弁23及び副
制御弁41の各切欠部21,39を図中で下側の吸気ポート3b
側に設けてもよく、また吸気ポート形状が独立したデュ
アルポート型であってもよく、更に排気弁が2つある機
関に適用してもよい。
In the fourth embodiment, the notch portions 21 and 39 of the swirl control valve 23 and the sub control valve 41 are connected to the lower intake port 3b in the figure.
May be provided on the side, a dual port type in which the intake port shape is independent, or may be applied to an engine having two exhaust valves.

第19図乃至第21図はそれぞれ第5乃至第7の実施例を
示しているが、これらは何れも吸気ポート3の燃焼室側
開口部13の径とスワール制御弁23の径とが略同一に形成
されている。したがって第5乃至第7の各実施例共、第
19図及び第20図のような吸気装置の平断面図において、
吸気通路14の中心線28と、4分割部位29の吸気ポート3
側と最も遠い反対側における部位と点Cとを結んだ線27
とは重なっている。
FIGS. 19 to 21 show fifth to seventh embodiments, respectively, in which the diameter of the combustion chamber side opening 13 of the intake port 3 and the diameter of the swirl control valve 23 are substantially the same. Is formed in. Therefore, in each of the fifth to seventh embodiments,
In the plan sectional view of the intake device as shown in FIGS. 19 and 20,
The center line 28 of the intake passage 14 and the intake port 3 of the four-divided portion 29
A line connecting the point on the farthest opposite side and the point C
Overlaps with.

第19図に示す第5の実施例は、吸気ポート3と排気ポ
ート5とが燃焼室11に対し互いに対向する方向に延長さ
れ、かつ両者はシリンダ列方向に垂直なシリンダ中心線
18上に位置している。したがって、この場合制御弁軸25
の中心軸線26とスワール制御弁23の外周との交点A,B
は、シリンダ中心線18から互いに略等しい距離に位置す
る。このため、燃焼室側開口部13における吸気ポート3
側と反対側の2分割部位のうち、シリンダ外周側の略4
分割部位29は2個所となり、切欠部21も各4分割部位29
に対応して2つ形成される。
In the fifth embodiment shown in FIG. 19, the intake port 3 and the exhaust port 5 are extended in the direction opposite to each other with respect to the combustion chamber 11, and both are arranged in a cylinder center line perpendicular to the cylinder row direction.
Located on the 18th. Therefore, in this case the control valve shaft 25
Of the central axis 26 of the and the outer circumference of the swirl control valve 23
Are located at substantially equal distances from the cylinder centerline 18. Therefore, the intake port 3 in the combustion chamber side opening 13
Of the two divided parts on the side opposite to the side, approximately 4 on the cylinder outer peripheral side
There are two divisions 29, and each notch 21 has four divisions 29.
Two are formed corresponding to.

第20図に示す第6の実施例は吸気ポート3と排気ポー
ト5とが同方向に延長され、かつ各ポート3,5の燃焼室
側開口部13がシリンダ列方向に配設された所謂カウンタ
フロー式の機関にこの考案を適用したものを示す。
The sixth embodiment shown in FIG. 20 is a so-called counter in which the intake port 3 and the exhaust port 5 are extended in the same direction, and the combustion chamber side openings 13 of the ports 3 and 5 are arranged in the cylinder row direction. A flow type engine to which the present invention is applied is shown.

第21図に示す第7の実施例は、吸気ポート3と吸気マ
ニホールド15との接合部付近の吸気通路14を傾斜させ、
斜め上方より吸気を導入するようにした機関にこの考案
を適用したものを示す。
In the seventh embodiment shown in FIG. 21, the intake passage 14 near the joint between the intake port 3 and the intake manifold 15 is inclined,
An application of this invention to an engine in which intake air is introduced obliquely from above is shown.

上記第5乃至第7の各実施例共、スワール制御弁23の
全閉時には吸気は切欠部21を通って燃焼室11側にスムー
ズに流出し、第1の実施例と同様の効果が得られる。
In each of the fifth to seventh embodiments, when the swirl control valve 23 is fully closed, the intake air smoothly flows out to the combustion chamber 11 side through the cutout portion 21, and the same effect as that of the first embodiment is obtained. .

[発明の効果] 以上のようにこの発明によれば、(1)吸気ポートの
燃焼室側開口部における吸気ポート側と反対側の2分割
部位のうちシリンダ外周側の略4分割部位の円弧を第1
の円弧とし、制御弁の外周と制御弁軸との交点のうちシ
リンダ列方向と垂直なシリンダ中心線より少なくとも遠
い交点から吸気通路の上壁面側の制御弁外周に沿った前
記第1の円弧の流さと略等しい第2の円弧を設定し、前
記第2の円弧に対応する制御弁の面積部位上に制御弁の
切欠部の重心位置を設けたため、均一なスワールが圧縮
行程後半まで殆んど減衰させることなく維持され、火炎
伝播は安定して進行し、大幅な燃焼改善が図られ、燃
費,エミッション,運転性を大きく向上させることがで
きる。また、(2)前記制御弁の下流に、制御弁の切欠
部の面積より小さな面積の切欠部を有し、全閉時に吸気
通路の中心線に対し垂直な副制御弁を設けたため、低負
荷域には吸気乱れの発生により、また部分負荷域には副
制御弁が開きサイクル変動の少ない均一なスワールによ
り、共に大幅な燃焼改善を図ることができる。
EFFECTS OF THE INVENTION As described above, according to the present invention, (1) the arc of the substantially four-divided portion on the cylinder outer peripheral side among the two-divided portions on the side opposite to the intake port side in the combustion chamber-side opening of the intake port is formed. First
Of the first arc along the outer periphery of the control valve on the upper wall surface side of the intake passage from the intersection of the outer periphery of the control valve and the control valve shaft that is at least far from the cylinder center line perpendicular to the cylinder row direction. A second arc substantially equal to the flow is set, and the center of gravity of the cutout portion of the control valve is provided on the area of the control valve corresponding to the second arc, so that a uniform swirl is almost obtained until the latter half of the compression stroke. It is maintained without being damped, flame propagation proceeds stably, combustion is greatly improved, and fuel efficiency, emissions, and drivability can be greatly improved. (2) A low control load is provided because a notch having an area smaller than that of the notch of the control valve is provided downstream of the control valve, and the sub-control valve which is perpendicular to the center line of the intake passage when the valve is fully closed is provided. Due to the occurrence of intake turbulence in the region, and the sub-control valve is opened in the partial load region, a uniform swirl with little cycle fluctuation can both significantly improve combustion.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第11図はこの発明の第1の実施例に係わり、
第1図は吸気装置の平断面図、第2図は第1図のII矢視
図、第3図は吸気装置の縦断面図、第4図乃至第7図は
制御弁の切欠部の具体例を示す説明図、第8図は切欠部
の位置による部分負荷域での図示平均有効圧力の変動率
を示す説明図、第9図は第3図IXの矢方向からの図に相
当する実験装置の説明図、第10図は空燃比による図示燃
費率及び図示平均有効圧力の変動率を示す説明図、第11
図はレーザドップラ流速計によるガス流動特性図、第12
図は第2の実施例の吸気装置の平断面図、第13図は第2
の実施例の同縦断面図、第14図は第3の実施例の吸気装
置の平断面図、第15図は第3の実施例の同縦断面図、第
16図は切欠部の位置による低負荷域での図示平均有効圧
力の変動率を示す説明図、第17図は第4の実施例の吸気
装置の平断面図、第18図は第4の実施例の同縦断面図、
第19図は第5の実施例の同平断面図、第20図は第6の実
施例の同平断面図、第21図は第7の実施例の縦断面図で
ある。 3……吸気ポート、7……吸気弁 11……燃焼室、13……開口部 14……吸気通路、16……上壁面 18……シリンダ中心線、21……切欠部 23……スワール制御弁、25……制御弁軸 28……吸気通路の中心線、29……4分割部位 30……垂直な面、31……面積部位 l1……第1の円弧の長さ l3……第2の円弧の長さ、A,B……交点
1 to 11 relate to the first embodiment of the present invention,
FIG. 1 is a plan sectional view of the intake device, FIG. 2 is a view taken in the direction of arrow II in FIG. 1, FIG. 3 is a vertical sectional view of the intake device, and FIGS. 4 to 7 are specific cutout portions of the control valve. FIG. 8 is an explanatory view showing an example, FIG. 8 is an explanatory view showing the variation rate of the indicated mean effective pressure in the partial load region depending on the position of the notch, and FIG. 9 is an experiment corresponding to the view from the arrow direction in FIG. 3 IX. FIG. 10 is an explanatory view of the device, FIG. 10 is an explanatory view showing the fluctuation rate of the indicated fuel efficiency and the indicated average effective pressure depending on the air-fuel ratio, the 11th
The figure shows the gas flow characteristics with a laser Doppler velocimeter, No. 12
FIG. 13 is a plan sectional view of the air intake system of the second embodiment, and FIG.
FIG. 14 is a vertical sectional view of the embodiment, FIG. 14 is a plan sectional view of the intake device of the third embodiment, and FIG. 15 is a vertical sectional view of the third embodiment.
FIG. 16 is an explanatory diagram showing the fluctuation rate of the indicated mean effective pressure in the low load region depending on the position of the cutout portion, FIG. 17 is a plan sectional view of the intake device of the fourth embodiment, and FIG. 18 is the fourth embodiment. The same longitudinal section of the example,
FIG. 19 is a plan sectional view of the fifth embodiment, FIG. 20 is a plan sectional view of the sixth embodiment, and FIG. 21 is a longitudinal sectional view of the seventh embodiment. 3 ... intake port, 7 ... intake valve 11 ... combustion chamber, 13 ... opening 14 ... intake passage, 16 ... upper wall 18 ... cylinder center line, 21 ... notch 23 ... swirl control Valve, 25 ...... Control valve shaft 28 ...... Intake passage center line, 29 ...... 4-division part 30 ...... Vertical surface, 31 ...... Area part l 1 ...... Length of first arc l 3 ...... Length of the second arc, A, B ... Intersection

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】切欠部を有し制御弁軸の回転により吸気通
路を開閉する制御弁を、絞り弁下流の前記吸気通路に設
け、前記制御弁をその全閉時に前記吸気通路の中心線と
垂直な面に対し吸気弁側に前傾させると共に、吸気ポー
トの燃焼室側開口部における吸気ポート側と反対側の2
分割部位のうちシリンダ外周側の略4分割部位の円弧を
第1の円弧とする一方、前記制御弁の外周と前記制御弁
軸との2つの交点のうちシリンダ列方向と垂直なシリン
ダ中心線より少なくとも遠い位置にある交点から前記吸
気通路の上壁面側の前記制御弁外周に沿った前記第1の
円弧の長さと略等しい第2の円弧を設定し、前記第2の
円弧に対応する前記制御弁の面積部位上に、前記切欠部
の重心位置を設けたことを特徴とする内燃機関の吸気装
置。
1. A control valve having a cutout portion, which opens and closes an intake passage by rotation of a control valve shaft, is provided in the intake passage downstream of a throttle valve, and when the control valve is fully closed, the control valve is connected to the center line of the intake passage. Inclining forward to the intake valve side with respect to the vertical plane, and at the side opposite to the intake port side at the combustion chamber side opening of the intake port
An arc of approximately four divided parts on the outer peripheral side of the cylinder among the divided parts is defined as a first circular arc, and at the two intersections of the outer circumference of the control valve and the control valve shaft, from a cylinder center line perpendicular to the cylinder row direction. A second circular arc that is substantially equal to the length of the first circular arc along the outer periphery of the control valve on the upper wall surface side of the intake passage is set from an intersection located at a far position, and the control corresponding to the second circular arc is set. An intake system for an internal combustion engine, wherein the center of gravity of the cutout is provided on the area of the valve.
【請求項2】前記制御弁下流に、制御弁の切欠部の面積
より小さな面積の切欠部を有し前閉時に吸気通路の中心
線に対し垂直な副制御弁を設けたことを特徴とする特許
請求の範囲第1項記載の内燃機関の吸気装置。
2. A sub-control valve is provided downstream of the control valve, the sub-control valve having a notch area smaller than the notch area of the control valve and being perpendicular to the center line of the intake passage when closed. An intake system for an internal combustion engine according to claim 1.
JP62098572A 1987-04-23 1987-04-23 Internal combustion engine intake system Expired - Fee Related JPH081131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62098572A JPH081131B2 (en) 1987-04-23 1987-04-23 Internal combustion engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62098572A JPH081131B2 (en) 1987-04-23 1987-04-23 Internal combustion engine intake system

Publications (2)

Publication Number Publication Date
JPS63266122A JPS63266122A (en) 1988-11-02
JPH081131B2 true JPH081131B2 (en) 1996-01-10

Family

ID=14223387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62098572A Expired - Fee Related JPH081131B2 (en) 1987-04-23 1987-04-23 Internal combustion engine intake system

Country Status (1)

Country Link
JP (1) JPH081131B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874585A (en) * 1994-08-31 1996-03-19 Yamaha Motor Co Ltd Intake controller of four-cycle engine

Also Published As

Publication number Publication date
JPS63266122A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
JPH07119472A (en) Intake device for engine
JPS59122725A (en) Suction device of engine
JP2639721B2 (en) Combustion chamber of internal combustion engine
JPS6052292B2 (en) Dual intake passage internal combustion engine
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
US6065444A (en) Direct-injection spark-ignition engine
US6062192A (en) Internal combustion engine with spark ignition
JPH081131B2 (en) Internal combustion engine intake system
US20100037840A1 (en) Internal combustion engine
JP6264882B2 (en) Combustion chamber structure of a spark ignition internal combustion engine
JP2639720B2 (en) Intake control device for internal combustion engine
JPS5933848Y2 (en) exhaust cleaning engine
JP2501556Y2 (en) Internal combustion engine intake system
JPS6335167Y2 (en)
JPH0133792Y2 (en)
JPS588902Y2 (en) engine intake system
JPH07279751A (en) Intake device for internal combustion engine
JPS5825855B2 (en) Intake throttle valve for in-cylinder fuel injection spark ignition engine
JP2001159314A (en) Combustion chamber structure of internal combustion engine
JPH0439412Y2 (en)
JPH0531219Y2 (en)
JPS603341Y2 (en) Internal combustion engine mixture supply system
JP3500701B2 (en) Engine intake system
JPS6335165Y2 (en)
JP2713447B2 (en) Engine combustion chamber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees