JPH0247573B2 - - Google Patents

Info

Publication number
JPH0247573B2
JPH0247573B2 JP59049495A JP4949584A JPH0247573B2 JP H0247573 B2 JPH0247573 B2 JP H0247573B2 JP 59049495 A JP59049495 A JP 59049495A JP 4949584 A JP4949584 A JP 4949584A JP H0247573 B2 JPH0247573 B2 JP H0247573B2
Authority
JP
Japan
Prior art keywords
intake
intake passage
valve
passage
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59049495A
Other languages
Japanese (ja)
Other versions
JPS6067719A (en
Inventor
Koichi Hatamura
Koji Asaumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59049495A priority Critical patent/JPS6067719A/en
Publication of JPS6067719A publication Critical patent/JPS6067719A/en
Publication of JPH0247573B2 publication Critical patent/JPH0247573B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • F02B31/085Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸気装置、特に2つの吸
気ポートをエンジンの燃焼室に開口させるととも
に、各吸気ポートに対してこれを開閉する吸気弁
を配置した型式の吸気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an engine intake system, particularly an intake valve that opens two intake ports into a combustion chamber of the engine, and opens and closes the intake ports for each intake port. This relates to a type of intake device in which a

(従来技術) 従来より、レシプロエンジンにおいて、各燃焼
室に対して、ほぼ均等な開口面積を有する2つの
吸気ポートを開口させて大きな開口面積を確保す
るとともに、シリンダヘツド内に形成する吸気通
路を各吸気ポートに燃焼室の軸方向に沿つた大角
度で接続して吸気を燃焼室にストレートに流入さ
せることにより、エンジンの充填効率を最大限向
上させ、エンジンの高出力化を図つたエンジンの
吸気構造はよく知られている。
(Prior art) Conventionally, in a reciprocating engine, two intake ports with approximately equal opening areas are opened for each combustion chamber to ensure a large opening area, and an intake passage formed in the cylinder head is By connecting each intake port at a large angle along the axial direction of the combustion chamber and allowing intake air to flow straight into the combustion chamber, the engine's filling efficiency is maximized and engine output is increased. The intake structure is well known.

かかる2ポート型式の吸気構造は、高負荷運転
時の高出力化を図るという点で有利であるが、そ
の反面、吸気量の少ない低負荷運転時には、吸気
流速が弱まり、燃焼性が低下し、燃費の面でも、
エミツシヨンの面でも不利となる欠点がある。
Such a two-port intake structure is advantageous in terms of achieving high output during high-load operation, but on the other hand, during low-load operation with a small amount of intake air, the intake flow velocity becomes weaker, resulting in a decrease in combustibility. In terms of fuel efficiency,
There is also a disadvantage in terms of emission.

かかる欠点を解消するため、低負荷用吸気通路
とシヤツターバルブを介設した高負荷用吸気通路
とを上記2つの吸気ポートに夫々接続し、エンジ
ンの低負荷運転時には、シヤツターバルブを閉じ
て、低負荷用吸気通路のみから吸気を行なうよう
にしたものが知られている(例えば、特開昭56−
44419号公報参照)。
In order to eliminate this drawback, a low-load intake passage and a high-load intake passage with a shutter valve interposed are connected to the above two intake ports, and the shutter valve is closed when the engine is operating at low load. , a device in which air is taken only from the low-load intake passage is known (for example, Japanese Patent Application Laid-Open No. 1989-1999)
(See Publication No. 44419).

しかしながら、かかる対策は低負荷対策として
必ずしも有効ではない。即ち、もともと高出力化
のため2つの吸気ポートの開口面積を最大限確保
するようにしたものであるため、1つの吸気ポー
トのみを使用するとしても吸気量が少ない極低負
荷運転時には、開口面積が依然大きすぎて吸気流
速を有効に向上させることができず、燃焼性の向
上に不可欠なスワールを有効に形成できない。
However, such measures are not necessarily effective as low-load measures. In other words, the opening area of the two intake ports was originally designed to be maximized in order to achieve high output, so even if only one intake port is used, during extremely low load operation where the amount of intake air is small, the opening area will be reduced. is still too large to effectively improve the intake flow velocity, and it is not possible to effectively form the swirl that is essential for improving combustibility.

かかる不具合は、低負荷用吸気通路の通路面積
を絞れば、それで解消しうるように思えるが、高
出力化を図る目的から吸気通路のポート接続部は
前述したように、燃焼室の軸方向に沿つた方向に
形成されているため、吸気流速を早めることによ
つて燃焼室内に流速の早い流れが生成されたとし
ても燃焼室の周方向に沿つた有効なスワールとし
て生成されない。このため、この吸気の流れは圧
縮行程において早期に減衰されてしまうといつた
問題がある。そうかといつて、流速をできるだけ
高めようとして、低負荷用吸気通路を絞りすぎれ
ば、それだけ賄いうる負荷範囲が制限され、比較
的低い負荷域でシヤツターバルブを開いて高負荷
用吸気通路からも吸気を供給する必要が生ずる。
その場合、2つの吸気ポートは、燃焼室の水平方
向中心線に関して対向的に形成されているため、
低負荷用吸気ポートから吸入される吸気流と高負
荷用吸気ポートから吸入される吸気流とが衝突し
て、スワールが消滅されないまでもますます弱め
られてしまい、スワールによる良好な燃焼性を確
保し難い欠点がある。
It seems that this problem can be solved by narrowing down the passage area of the low-load intake passage, but for the purpose of achieving high output, the port connection part of the intake passage should be oriented in the axial direction of the combustion chamber, as mentioned above. Because it is formed along the circumferential direction of the combustion chamber, even if a high-velocity flow is generated within the combustion chamber by increasing the intake flow rate, it will not be generated as an effective swirl along the circumferential direction of the combustion chamber. Therefore, there is a problem in that this intake air flow is attenuated early in the compression stroke. However, if you restrict the low-load intake passage too much in an attempt to increase the flow velocity as much as possible, the load range that can be covered will be limited accordingly, and if you open the shutter valve in a relatively low load range, you can also use the high-load intake passage. It becomes necessary to supply intake air.
In that case, since the two intake ports are formed opposite to each other with respect to the horizontal center line of the combustion chamber,
The intake air flow taken in from the low-load intake port and the intake air flow taken in from the high-load intake port collide, and the swirl is further weakened, if not eliminated, ensuring good combustion performance due to the swirl. There are some drawbacks that are difficult to overcome.

(発明の目的) 本発明は、エンジンの高出力化をねらつた2吸
気ポート方式を実質的に変更することなしに、エ
ンジンの低負荷運転時において燃焼室内に燃焼性
の向上を図るのに有効なスワールを生成すること
ができる吸気構造を備えたエンジンの吸気装置に
おいて、吸気量を制御する制御弁の動きに影響さ
れることなしに応答性よく燃料を供給することが
できる燃料供給構造を提供せんとするものであ
る。
(Objective of the Invention) The present invention is effective in improving combustibility within the combustion chamber during low-load operation of the engine without substantially changing the two-intake port system, which aims to increase the output of the engine. Provided is a fuel supply structure that can supply fuel with good responsiveness without being affected by the movement of a control valve that controls the amount of intake air in an engine intake system equipped with an intake structure that can generate a swirl. This is what I am trying to do.

(発明の構成) このため、本発明は、2つの吸気ポートをエン
ジンの燃焼室にそれぞれ開口させ、各吸気ポート
を吸気弁で開閉するようにし、2つの吸気ポート
に接続されるように下流で分岐された共通の吸気
通路の上流に制御弁を配設して、この制御弁を低
負荷運転時には閉じ高負荷運転時には開くように
エンジンの運転状態に応じて上記吸気通路の通路
面積を増減制御する一方、上記開閉弁よりも上流
の吸気通路から分岐し、上記吸気ポートのいずれ
か一つに接続される補助吸気通路を設け、該補助
吸気通路は吸気通路の分岐部近くにおいて吸気通
路の底壁部分にその断面が気筒の軸方向に短い偏
平形状に形成されるとともに、上記共通吸気通路
の制御弁より下流で分岐部より上流の範囲に燃料
噴射弁を配設したことを基本的な特徴としてい
る。
(Structure of the Invention) For this reason, the present invention opens two intake ports into the combustion chamber of the engine, opens and closes each intake port with an intake valve, and connects the two intake ports downstream. A control valve is disposed upstream of the branched common intake passage, and the passage area of the intake passage is controlled to increase or decrease depending on the engine operating condition so that the control valve closes during low load operation and opens during high load operation. On the other hand, an auxiliary intake passage is provided which branches from the intake passage upstream of the on-off valve and is connected to one of the intake ports, and the auxiliary intake passage is connected to the bottom of the intake passage near the branching part of the intake passage. The basic characteristics are that the wall section is formed in a flat shape with a short cross section in the axial direction of the cylinder, and the fuel injection valve is arranged in the range downstream from the control valve and upstream from the branch part of the common intake passage. It is said that

即ち、本発明にかかる吸気構造おいては、制御
弁が閉じられるエンジンの低負荷運転時、吸気は
専ら、底壁を通る偏平な補助吸気通路からこの通
路が接続された吸気ポートを介して早い流速でエ
ンジンの燃焼室に供給される。その場合、補助吸
気通路は、燃焼室の周方向に旋回するスワールを
生成する。
That is, in the intake structure according to the present invention, during low-load operation of the engine when the control valve is closed, the intake air is exclusively taken from the flat auxiliary intake passage passing through the bottom wall through the intake port to which this passage is connected. It is supplied to the combustion chamber of the engine at a flow rate. In that case, the auxiliary intake passage generates a swirl that swirls in the circumferential direction of the combustion chamber.

また、制御弁が開かれるエンジンの高負荷運転
時には、複数の吸気ポートから充填効率よく吸気
が吸入され、本来の高出力を保証することができ
る。
Furthermore, when the control valve is opened during high-load operation of the engine, intake air is drawn in from the plurality of intake ports with good charging efficiency, thereby ensuring the original high output.

本発明は、上記の吸気構造において、制御弁の
下流の共通吸気通路に燃料噴射弁を配設し、制御
弁の開閉に無関係に、燃料を2つの吸気ポートを
介して燃焼室に供給しうるようにしたものであ
る。
In the above-mentioned intake structure, the present invention disposes a fuel injection valve in the common intake passage downstream of the control valve, and can supply fuel to the combustion chamber through two intake ports regardless of whether the control valve is opened or closed. This is how it was done.

(発明の効果) したがつて、本発明によれば、上記吸気構造自
体の利点に加えて、制御弁の下流から燃料が噴射
されるので、制御弁の動きに影響されることな
く、また、噴射された燃料が制御弁に衝突するこ
とがなく、吸気ポートに近い位置から燃料を供給
することができ、燃料供給の応答性を向上するこ
とができる。
(Effects of the Invention) Therefore, according to the present invention, in addition to the advantages of the intake structure itself, since fuel is injected from downstream of the control valve, it is not affected by the movement of the control valve; The injected fuel does not collide with the control valve, and the fuel can be supplied from a position close to the intake port, thereby improving the responsiveness of fuel supply.

(実施例) 以下、本発明の実施例についてより具体的に説
明する。
(Example) Hereinafter, an example of the present invention will be described in more detail.

第1図に示すように、エンジンEの1つの気筒
1の燃焼室2には、エンジンEのシリンダブロツ
ク(第2図の3参照)の幅方向中心線lに関して
ほぼ対称に、ほぼ同径の第1,第2の吸気ポート
4,5が開口され、長手方向中心線mをはさんで
第2吸気ポート5と対向する位置には、排気ポー
ト6が開口されている。
As shown in Fig. 1, the combustion chamber 2 of one cylinder 1 of the engine E is provided with a cylinder of approximately the same diameter, which is approximately symmetrical with respect to the widthwise center line l of the cylinder block of the engine E (see 3 in Fig. 2). The first and second intake ports 4 and 5 are opened, and an exhaust port 6 is opened at a position facing the second intake port 5 across the longitudinal centerline m.

第1,第2吸気ポート4,5に吸気を供給する
共通の吸気通路7は、シリンダヘツド(第2図の
8参照)内において徐々に分岐され、第1,第2
吸気ポート4,5の手前では、上記幅方向中心線
lにほぼ沿つて突出するように形成された仕切壁
9によつて二叉に分岐され、これら分岐吸気通路
10,11が、第1,第2吸気ポート4,5にそ
れぞれ接続されている。図示の如く、共通の吸気
通路7の中心線l′は、前記幅方向中心線lに対し
て第1吸気ポート4側に僅かに偏心させて、第2
吸気ポート5に比して第1吸気ポート4にストレ
ートに接続される設定とし、その上流側には制御
弁としてのシヤツターバルブ12を介設してい
る。このシヤツターバルブ12は具体的に図示し
ないが、周知の開閉制御機構(例えば、スロツト
ルバルブに連結されるリンク機構)によりエンジ
ンEの低負荷運転時には共通の吸気通路7を閉
じ、高負荷運転時には、負荷に応じて開くように
その開閉が制御される。そして、共通の吸気通路
7のシヤツターバルブ12より上流側には、共通
の吸気通路7の中心線l′に関して、第2吸気ポー
ト5側にかた寄せて補助吸気通路13の上流側開
口13aを吸気通路7の底壁に開口させている。
この補助吸気通路13は、第1吸気ポート4に近
接して開口した下流側開口13bを有し、上記中
心線l′を横切るようにゆるやかに湾曲して、上流
側開口13aと下流側開口13bとを連通する。
この補助吸気通路13は、第2図により具体的に
示すように、共通の吸気通路7の底部を形成する
底壁14に形成され、その下流側開口13bは上
記仕切壁9の上流側端部、即ち分岐吸気通路1
0,11の分岐点より下流で吸気弁15によつて
開閉される第1吸気ポート4にできるだけ接近し
た位置に設定されている。このため、補助吸気通
路13を流下する吸気の全量は、第1吸気ポート
4から燃焼室2内に流入することとなる。そし
て、補助吸気通路13は、第1吸気ポート4の直
上流で気筒1の軸方向に大きな曲率で湾曲されて
いる分岐吸気通路10に対し、シリンダブロツク
3とシリンダヘツド8との合せ面Aに対して僅か
な傾き角をなすように交差しており、したがつ
て、燃焼室2の周方向に指向した方向性を有する
ようになる。
A common intake passage 7 that supplies intake air to the first and second intake ports 4 and 5 is gradually branched within the cylinder head (see 8 in Fig. 2).
In front of the intake ports 4, 5, the branched intake passages 10, 11 are branched into two by a partition wall 9 formed to protrude substantially along the width direction center line l, and these branched intake passages 10, 11 are divided into two branches. They are connected to second intake ports 4 and 5, respectively. As shown in the figure, the center line l' of the common intake passage 7 is slightly eccentric to the first intake port 4 side with respect to the widthwise center line l, and
It is set to be connected straight to the first intake port 4 compared to the intake port 5, and a shutter valve 12 as a control valve is provided on the upstream side thereof. Although this shutter valve 12 is not specifically shown, a well-known opening/closing control mechanism (for example, a link mechanism connected to a throttle valve) closes the common intake passage 7 during low load operation of the engine E, and closes the common intake passage 7 during high load operation. Sometimes its opening and closing is controlled so that it opens depending on the load. On the upstream side of the shutter valve 12 of the common intake passage 7, an upstream opening 13a of the auxiliary intake passage 13 is arranged toward the second intake port 5 side with respect to the center line l' of the common intake passage 7. is opened at the bottom wall of the intake passage 7.
The auxiliary intake passage 13 has a downstream opening 13b that opens close to the first intake port 4, and is gently curved to cross the center line l'. communicate with.
As specifically shown in FIG. 2, this auxiliary intake passage 13 is formed in a bottom wall 14 forming the bottom of the common intake passage 7, and its downstream opening 13b is located at the upstream end of the partition wall 9. , that is, branch intake passage 1
It is set at a position as close as possible to the first intake port 4 which is opened and closed by the intake valve 15 downstream of the branch point 0 and 11. Therefore, the entire amount of intake air flowing down the auxiliary intake passage 13 flows into the combustion chamber 2 from the first intake port 4. The auxiliary intake passage 13 is located at the mating surface A between the cylinder block 3 and the cylinder head 8, whereas the branch intake passage 10 is curved with a large curvature in the axial direction of the cylinder 1 immediately upstream of the first intake port 4. They intersect with each other at a slight angle of inclination with respect to the combustion chamber 2, and thus have directionality in the circumferential direction of the combustion chamber 2.

上記補助吸気通路13の上流側開口13aより
僅か下流には、吸気通路7を開閉するシヤツター
バルブ12を下流に向つて斜め下向きに傾斜させ
て配設し、さらにシヤツターバルブ12より僅か
下流の共通の吸気通路7の上壁16に予め設けた
取付部16aには、燃料噴射弁17を取付けてい
る。この場合、燃料噴射口18は、シヤツターバ
ルブ12の回転軸12aより僅か下流側でかつ共
通の吸気通路7の中心線l′上に位置するように設
定している(第1図参照)。よく知られているよ
うに、燃料噴射弁17によつて噴射された燃料
は、ある距離までは拡がらずに直進し、それ以後
コーン状に拡散する。したがつて、上記のよう
に、燃料噴射口18を共通の吸気通路7の中心線
l′上に設定すれば、中心線l′が、第1吸気ポート
4側に予め偏心されているため、コーン状に拡散
する燃料の第1,第2吸気ポート4,5に対する
配分比は、第1吸気ポート4側で多くなる。
Slightly downstream of the upstream opening 13a of the auxiliary intake passage 13, a shutter valve 12 for opening and closing the intake passage 7 is provided so as to be inclined obliquely downward toward the downstream. A fuel injection valve 17 is attached to a mounting portion 16a provided in advance on the upper wall 16 of the common intake passage 7. In this case, the fuel injection port 18 is located slightly downstream of the rotating shaft 12a of the shutter valve 12 and on the center line l' of the common intake passage 7 (see FIG. 1). As is well known, the fuel injected by the fuel injection valve 17 travels straight without spreading until a certain distance, and then spreads out in a cone shape. Therefore, as described above, the fuel injection ports 18 are aligned with the center line of the common intake passage 7.
If the center line l' is set on the first intake port 4 side, the distribution ratio of the cone-shaped fuel to the first and second intake ports 4 and 5 is as follows. It increases on the first intake port 4 side.

このため、第1吸気ポート4から専ら吸気が行
なわれるエンジンEの低負荷運転時において、よ
り多くの燃料が吸気とミキシングされることとな
り、混合気の燃焼性が向上される。
Therefore, during low-load operation of the engine E when air is taken exclusively from the first intake port 4, more fuel is mixed with the intake air, and the combustibility of the air-fuel mixture is improved.

しかしながら、高負荷運転時における燃料の各
吸気ポートへの均等分配性を考慮した場合、燃料
噴射弁17は第1,第2吸気ポート4,5に関す
る対称線であるシリンダブロツクの幅方向中心線
l上に配設することが好ましい。要は、いずれの
要求を重視するかの問題である。
However, when considering the uniform distribution of fuel to each intake port during high-load operation, the fuel injection valve 17 is aligned with the centerline in the width direction of the cylinder block, which is the line of symmetry with respect to the first and second intake ports 4 and 5. Preferably, it is disposed on top. The key point is which request to prioritize.

また、シヤツターバルブ12を補助吸気通路1
3の上流側開口13aと燃料噴射口18との間
で、斜め下方に傾けて配置して、第2図に実線で
示す閉じ位置イから仮想線で示す全開位置ロまで
時針廻りに開く設定とすれば、シヤツターバルブ
12の閉時におけるシヤツターバルブ下流の吸気
通路ボリユームを最小限とすることができる。燃
料噴射弁17の設置位置は、第1,第2吸気ポー
ト4,5の仕切壁9の上流側で、燃料を両方の分
岐吸気通路10,11にまたがつてコーン状に分
散させる必要があることから、むやみに下流に設
定することはできないが、その上流側に設置する
必要があるシヤツターバルブ12を上記のように
配設すれば、燃料噴射弁17に最も近接し、しか
も最小の専有スペースでシヤツターバルブ12を
設置することができるため、シヤツターバルブ1
2の閉時デツドボリユームとなるシヤツターバル
ブ12下流の吸気通路ボリユームを最小限とする
ことができる。
Also, the shutter valve 12 is connected to the auxiliary intake passage 1.
It is arranged between the upstream opening 13a of No. 3 and the fuel injection port 18, tilted diagonally downward, and is set to open in the direction of the hour hand from the closed position A shown by the solid line in FIG. 2 to the fully open position B shown by the imaginary line. This allows the intake passage volume downstream of the shutter valve 12 to be minimized when the shutter valve 12 is closed. The installation position of the fuel injection valve 17 is on the upstream side of the partition wall 9 of the first and second intake ports 4 and 5, and it is necessary to distribute the fuel in a cone shape across both branch intake passages 10 and 11. Therefore, if the shutter valve 12, which needs to be installed upstream of the shutter valve 12, cannot be set downstream unnecessarily, but is arranged as described above, it will be closest to the fuel injection valve 17 and will occupy the smallest amount of exclusive use. Since the shutter valve 12 can be installed in the space, the shutter valve 1
The volume of the intake passage downstream of the shutter valve 12, which becomes the dead volume when the shutter valve 2 is closed, can be minimized.

なお、第1吸気ポート4を開閉する吸気弁1
5、第2吸気ポート5を開閉する吸気弁(図示せ
ず)および排気ポート6を開閉する排気弁19
は、周知のオーバーヘツドカム機構20により、
エンジンEの回転に同期した所定のタイミングで
夫々開閉駆動される。
Note that the intake valve 1 that opens and closes the first intake port 4
5. An intake valve (not shown) that opens and closes the second intake port 5 and an exhaust valve 19 that opens and closes the exhaust port 6
By the well-known overhead cam mechanism 20,
They are each driven to open and close at a predetermined timing synchronized with the rotation of the engine E.

また、第1図に示すように、点火プラグ21
は、第1,第2吸気ポート4,5および排気ポー
ト6が設けられていない部分、より具体的には、
補助吸気通路13が開口する第1吸気ポート4に
燃焼室2の縦方向中心線mをはさんで対向する位
置に配置する。
Further, as shown in FIG. 1, the spark plug 21
is a part where the first and second intake ports 4 and 5 and the exhaust port 6 are not provided, more specifically,
The auxiliary intake passage 13 is disposed at a position opposite to the first intake port 4 through which the auxiliary intake passage 13 opens, with the longitudinal center line m of the combustion chamber 2 interposed therebetween.

このプラグ配置では、補助吸気通路13によつ
て形成されるスワールの旋回軌跡上に点火プラグ
21が位置することになるため、点火プラグ21
によつて混合気を良好な着火性でもつて着火させ
ることができる。
In this plug arrangement, the spark plug 21 is located on the swirl locus formed by the auxiliary intake passage 13, so the spark plug 21
This allows the air-fuel mixture to be ignited with good ignitability.

次に、第3図1〜9に、第4図の断面1〜9に
対応した共通の吸気通路7のシリンダヘツド8内
の断面形状の変化を示すように、最初円形断面の
共通の吸気通路7は、下流に向かうにしたがつ
て、楕円形状からかいこ形状に変化して、最後は
2つの円形断面を有する分岐吸気通路10,11
に分岐される。
Next, as shown in FIGS. 3 1 to 9, changes in the cross-sectional shape within the cylinder head 8 of the common intake passage 7 corresponding to cross sections 1 to 9 in FIG. 4 are shown. 7 is a branched intake passage 10, 11 which changes from an elliptical shape to a hooked shape as it goes downstream, and finally has two circular cross sections.
It is branched into.

そして、共通の吸気通路7の下側に位置する偏
平な長方形状の断面を有し、かつ共通の吸気通路
7の通路断面積に比して十分小さい通路断面積を
有する補助吸気通路13は、最初共通の吸気通路
7の第2吸気ポート5側(図の右側)に偏心した
位置から、徐々に第1吸気ポート4側(図の左
側)に変位していき、第1吸気ポート4に接続さ
れる分岐吸気通路10の底面に交わつて最終的に
は、第1吸気ポート4の直上流で開口する。
The auxiliary intake passage 13 has a flat rectangular cross section located below the common intake passage 7 and has a passage cross-sectional area sufficiently smaller than that of the common intake passage 7. Initially, the position is eccentric to the second intake port 5 side (right side in the figure) of the common intake passage 7, and then it gradually shifts to the first intake port 4 side (left side in the figure) and connects to the first intake port 4. It intersects with the bottom surface of the branched intake passage 10 and finally opens immediately upstream of the first intake port 4.

第4図に示すように、共通の吸気通路7の底面
を形成する底壁14内に補助吸気通路13を形成
することにより、補助吸気通路13は、シリンダ
ブロツク3とシリンダヘツド8との合せ面Aに対
して比較的小さい傾斜角度に形成され、また平面
形状としてみたときに、第2吸気ポート5側から
第1吸気ポート4側にクロスしてなめらかに湾曲
されていることにより、特に、シヤツターバルブ
12が全閉されているエンジンEの低負荷運転時
において、専ら補助吸気通路13を通して流下す
る吸気は絞り込まれて流速を早め、燃焼室2の周
方向を指向しつつ第1吸気ポート4から燃焼室2
内に流れ込んで、燃焼室2内に周方向のスワール
を生成する。
As shown in FIG. 4, by forming the auxiliary intake passage 13 in the bottom wall 14 that forms the bottom surface of the common intake passage 7, the auxiliary intake passage 13 is formed on the mating surface of the cylinder block 3 and the cylinder head 8. The shaft is formed at a relatively small inclination angle with respect to A, and is smoothly curved from the second intake port 5 side to the first intake port 4 side when viewed as a planar shape. During low-load operation of the engine E when the tar valve 12 is fully closed, the intake air flowing down exclusively through the auxiliary intake passage 13 is narrowed down to increase its flow velocity, and is oriented in the circumferential direction of the combustion chamber 2 while being directed to the first intake port 4. From combustion chamber 2
The fuel flows into the combustion chamber 2 and generates a circumferential swirl within the combustion chamber 2.

このスワールは、周方向に形成されているた
め、容易には減衰されず、圧縮行程終期におい
て、点火プラグ21の点火により良好に着火燃焼
する。
Since this swirl is formed in the circumferential direction, it is not easily attenuated, and is successfully ignited and burned by the ignition of the spark plug 21 at the end of the compression stroke.

また、燃料噴射弁17から噴射される燃料は、
シヤツターバルブ12が閉じられていても、これ
に影響されることなく、第1,第2吸気ポート
4,5から燃焼室2に供給することができ、燃料
は、運転状態に応じて燃料噴射量が正確に制御さ
れる燃料噴射弁17から応答性よく供給される。
この燃料供給の応答性は、シヤツターバルブ12
が開かれる高負荷運転時においても良好に維持さ
れる。
Moreover, the fuel injected from the fuel injection valve 17 is
Even if the shutter valve 12 is closed, fuel can be supplied to the combustion chamber 2 from the first and second intake ports 4 and 5 without being affected by this, and fuel can be injected depending on the operating condition. The fuel is supplied with good response from the fuel injection valve 17 whose amount is accurately controlled.
The responsiveness of this fuel supply is determined by the shutter valve 12.
It is maintained well even during high load operation when the valve is opened.

以上の実施例では、補助吸気通路13を第2吸
気ポート5側から第1吸気ポート4側にクロスさ
せて形成したが、本発明はこれに限定されるもの
ではない。
In the above embodiment, the auxiliary intake passage 13 was formed by crossing from the second intake port 5 side to the first intake port 4 side, but the present invention is not limited to this.

即ち、第5図に示すように、補助吸気通路23
を第1吸気ポート4に接続される分岐吸気通路1
0の延長線に沿つてストレートに形成してもよ
い。
That is, as shown in FIG.
A branch intake passage 1 connected to the first intake port 4
It may be formed straight along the extension line of 0.

なお、第5図において、第1図と同じものに
は、同一番号を付して、これ以上の説明を省略す
る。
In FIG. 5, the same parts as in FIG. 1 are given the same numbers, and further explanation will be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すエンジンの要部
断面説明図、第2図は第1図の−線方向の縦
断面図、第3図1〜9は吸気通路断面形状の変化
を示す各断面説明図、第4図は第3図1〜9の各
断面位置を示す縦断面説明図、第5図は本発明の
他の実施例を示す第1図と同様のエンジンの要部
断面説明図である。 2…燃焼室、4,5…第1,第2吸気ポート、
7…共通の吸気通路、10,11…分岐吸気通
路、12…シヤツターバルブ(制御弁)、13…
補助吸気通路、15…吸気弁、17…燃料噴射
弁、18…燃料噴射口。
Fig. 1 is an explanatory sectional view of the main parts of an engine showing an embodiment of the present invention, Fig. 2 is a longitudinal sectional view taken in the - line direction of Fig. 1, and Figs. 3 1 to 9 show changes in the cross-sectional shape of the intake passage. Each cross-sectional explanatory diagram, FIG. 4 is a vertical cross-sectional explanatory diagram showing the respective cross-sectional positions of FIGS. 3 1 to 9, and FIG. It is an explanatory diagram. 2... Combustion chamber, 4, 5... First and second intake ports,
7... Common intake passage, 10, 11... Branch intake passage, 12... Shutter valve (control valve), 13...
Auxiliary intake passage, 15...Intake valve, 17...Fuel injection valve, 18...Fuel injection port.

Claims (1)

【特許請求の範囲】[Claims] 1 それぞれ吸気弁により開閉される2つの吸気
ポートを燃焼室に開口させるとともに、低負荷運
転時閉じ高負荷運転時開く制御弁によつてその通
路面積を可変制御され、該制御弁の下流で分岐さ
れ、各分岐端が吸気ポートにそれぞれ接続された
吸気通路を備え、上記制御弁よりも上流の吸気通
路から分岐し、上記吸気ポートのいずれか一つに
接続される補助吸気通路を設け、該補助吸気通路
は吸気通路の分岐部近くにおいて吸気通路の底壁
部分にその断面が気筒の軸方向に短い偏平形状に
形成されるとともに、上記制御弁下流の吸気通路
に燃料噴射弁を設置したことを特徴とするエンジ
ンの吸気装置。
1 Two intake ports, each opened and closed by an intake valve, are opened to the combustion chamber, and their passage area is variably controlled by a control valve that closes during low-load operation and opens during high-load operation, and is branched downstream of the control valve. an auxiliary intake passage branched from the intake passage upstream of the control valve and connected to any one of the intake ports; The auxiliary intake passage is formed in the bottom wall of the intake passage near the branching part of the intake passage in a flat shape with a cross section that is short in the axial direction of the cylinder, and a fuel injection valve is installed in the intake passage downstream of the control valve. An engine intake system featuring:
JP59049495A 1984-03-14 1984-03-14 Intake device for engine Granted JPS6067719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049495A JPS6067719A (en) 1984-03-14 1984-03-14 Intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049495A JPS6067719A (en) 1984-03-14 1984-03-14 Intake device for engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58176776A Division JPS60101224A (en) 1983-09-24 1983-09-24 Intake-air device in engine

Publications (2)

Publication Number Publication Date
JPS6067719A JPS6067719A (en) 1985-04-18
JPH0247573B2 true JPH0247573B2 (en) 1990-10-22

Family

ID=12832726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049495A Granted JPS6067719A (en) 1984-03-14 1984-03-14 Intake device for engine

Country Status (1)

Country Link
JP (1) JPS6067719A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517404Y2 (en) * 1986-10-24 1993-05-11
US6267096B1 (en) * 2000-01-07 2001-07-31 Ford Global Technologies, Inc. Three-valve cylinder head system
JP2002058525A (en) * 2000-08-17 2002-02-26 Key Tranding Co Ltd Cosmetic case

Also Published As

Publication number Publication date
JPS6067719A (en) 1985-04-18

Similar Documents

Publication Publication Date Title
US4702207A (en) Intake arrangement for internal combustion engine
US4625687A (en) Intake arrangement for internal combustion engine
EP0769610B1 (en) A fuel injection system for a lean burn engine
JPH0247573B2 (en)
JP3612874B2 (en) In-cylinder injection engine
JP3694963B2 (en) Direct in-cylinder spark ignition engine
JP2501556Y2 (en) Internal combustion engine intake system
JP3551572B2 (en) Intake device for internal combustion engine
JPH10231729A (en) Intake device for internal combustion engine
JPH0236905Y2 (en)
JPH0217689B2 (en)
JPH09317476A (en) Cylinder fuel injection type engine
JPH0555691B2 (en)
JPH0217690B2 (en)
JP3030413B2 (en) In-cylinder injection internal combustion engine
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JPH0252090B2 (en)
JPH0480210B2 (en)
JP2882265B2 (en) Intake device for internal combustion engine
JPH0217691B2 (en)
JPH036854Y2 (en)
JPH0694855B2 (en) Engine intake system
JP3500701B2 (en) Engine intake system
JP3340470B2 (en) Engine fuel supply control device
JPH0330697B2 (en)