JPS63265887A - Device for growing crystal in liquid phase - Google Patents

Device for growing crystal in liquid phase

Info

Publication number
JPS63265887A
JPS63265887A JP10060987A JP10060987A JPS63265887A JP S63265887 A JPS63265887 A JP S63265887A JP 10060987 A JP10060987 A JP 10060987A JP 10060987 A JP10060987 A JP 10060987A JP S63265887 A JPS63265887 A JP S63265887A
Authority
JP
Japan
Prior art keywords
thermal conductivity
liquid phase
solution
growth
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10060987A
Other languages
Japanese (ja)
Other versions
JP2548722B2 (en
Inventor
Hide Kimura
秀 木村
Ichiro Kume
久米 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62100609A priority Critical patent/JP2548722B2/en
Publication of JPS63265887A publication Critical patent/JPS63265887A/en
Application granted granted Critical
Publication of JP2548722B2 publication Critical patent/JP2548722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a device for growing crystal in liquid phase which is capable of growing the activated layer of a thin film with good reproducibility and controllability by constituting material of the part stored with a soln. that is used for growing the activated layer of the thin film succeeding the growth of a cladding layer of the material having thermal conductivity lower than material of the part stored with the other soln. CONSTITUTION:The temp. of the hydrogen atmosphere in the inside of a reaction tube 7 constituted of a quartz pipe is changed along the program of growth temp. shown in a chart by controlling electric source fed to a heater 8. Owning to such temp. reduction, the temp. of a soln. reservoir 2 and the soln. is slowly cooled by mass heat transfer to the hydrogen atmosphere purging the inside of the tube 7, thermal conduction and radiation to the tube 7. Therein when surrounding a soln. used in the case of growing an activated layer II by means of materials 12, 13 having low thermal conductivity, the reduction velocity of temp. of this soln. is lowered in comparison with the other soln. and shown in the dotted line of the chart. Therefore in case t1-t3 are difined as the growth time of a lower cladding layer, the growth time of the activated layer and the growth time of an upper cladding layer respectively, the growth temp. of the above-mentioned respective layers is made to T1-T3 and the growth temp. T21 of the activated layer can be preset independently for the other growth temp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は液相結晶成長装置に関し、特に組成の異なる
薄膜多層構成による半導体素子の液相成長を行う場合に
用いられる液相結晶成長装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a liquid phase crystal growth apparatus, and particularly relates to a liquid phase crystal growth apparatus used for liquid phase growth of semiconductor elements with a thin film multilayer structure having different compositions. It is something.

〔従来の技術〕[Conventional technology]

第3図は、従来の液相結晶成長装置を示す断面図であっ
て、同図において1は基板ホルダーであって、その上面
にはカーボンによって形成されると共に、底を基板ホル
ダー1の表面によって構成する溶液溜2が摺動自在に載
置されている。3は溶液溜2の蓋、4は基板ホルダー1
の表面部分でかつ溶液溜2の摺動範囲に形成された基板
装着位置、5は溶液溜2を基板ホルダー1に対して移動
させる押し棒、6は溶液溜2の移動方向を示す矢印、7
は成長装置を内部に収容して水素中に保持する石英管に
よって構成される反応管、8は温度をコントロールする
ヒーターである。また、9゜11は溶液溜2に収容され
た半導体レーザの下および上クラッド層を成長させると
きに使用する溶液、10は溶液溜2に収容された半導体
レーザの活性層を成長させるときに使用する溶液である
FIG. 3 is a cross-sectional view showing a conventional liquid phase crystal growth apparatus. In the figure, 1 is a substrate holder, the top surface of which is formed of carbon, and the bottom formed by the surface of the substrate holder 1. A constituting solution reservoir 2 is slidably mounted. 3 is the lid of the solution reservoir 2, 4 is the substrate holder 1
5 is a push rod for moving the solution reservoir 2 relative to the substrate holder 1; 6 is an arrow indicating the moving direction of the solution reservoir 2;
8 is a reaction tube constituted by a quartz tube that houses the growth device and holds it in hydrogen; 8 is a heater that controls the temperature. Further, 9°11 is a solution used when growing the lower and upper cladding layers of the semiconductor laser housed in the solution reservoir 2, and 10 is a solution used when growing the active layer of the semiconductor laser housed in the solution reservoir 2. It is a solution that

次に動作について説明する。この様に構成された液相結
晶成長装置においては、処理基板装着位置4に半導体基
板を装着した状態で成長装置を反応管7の内部に挿入し
て、水素雰囲気中に位置させる。そして、予め定められ
た時間毎に押し棒5によって基板ホルダー1をワンステ
ンプ移動させると、基板装着位置4に装着されている被
処理半導体基板の表面に溶液9が接して下クランド層の
液相結晶成長が行われる。次に、更に押し棒5によって
基板ホルダー1を矢印6方向に更にワンステップ移動さ
せて、溶液10を基板装着位置4に装着されている被処
理半導体基板上に位置させると、被処理半導体基板の表
面に溶液10が接して活性層の液相結晶成長が行われる
。更に、押し棒5によって基板ホルダー1を矢印6方向
にワンステップ移動させて、溶液11を基板装着位置4
に装着されている被処理半導体基板上に位置させると、
被処理半導体基板の表面に溶液11が接して上クラッド
層の液相結晶成長が行われる。一方、ヒーター8は、図
示しないコントローラによって、各処理工程における水
素雰囲気中の温度を第4図で示す温度プログラムに従っ
て徐々に温度を低下させることにより、溶解度差により
結晶を析出させて、液相結晶成長を行っている。なお、
第4図に示すT+、Tz、Tzは、ダブルへテロ構造を
有する半導体素子の下クラッド層成長温度、活性層成長
温度、上クラッド層成長温度をそれぞれ示し、LI+t
z、 tzは下クラッド層成長時間、活性層成長時間。
Next, the operation will be explained. In the liquid phase crystal growth apparatus configured in this manner, the growth apparatus is inserted into the reaction tube 7 with a semiconductor substrate mounted at the processing substrate mounting position 4, and placed in a hydrogen atmosphere. Then, when the substrate holder 1 is moved one step by the push rod 5 at predetermined intervals, the solution 9 comes into contact with the surface of the semiconductor substrate to be processed mounted at the substrate mounting position 4, and the liquid phase crystals of the lower ground layer are brought into contact with the surface of the semiconductor substrate to be processed. Growth takes place. Next, the substrate holder 1 is further moved one step in the direction of the arrow 6 by the push rod 5, and the solution 10 is placed on the semiconductor substrate to be processed mounted at the substrate mounting position 4. The liquid phase crystal growth of the active layer is performed with the solution 10 in contact with the surface. Furthermore, the substrate holder 1 is moved one step in the direction of the arrow 6 by the push rod 5, and the solution 11 is moved to the substrate mounting position 4.
When placed on the semiconductor substrate to be processed mounted on the
The solution 11 comes into contact with the surface of the semiconductor substrate to be processed, and liquid phase crystal growth of the upper cladding layer is performed. On the other hand, the heater 8 uses a controller (not shown) to gradually lower the temperature in the hydrogen atmosphere in each treatment step according to the temperature program shown in FIG. We are growing. In addition,
T+, Tz, and Tz shown in FIG. 4 indicate the lower cladding layer growth temperature, active layer growth temperature, and upper cladding layer growth temperature, respectively, of a semiconductor element having a double heterostructure, and LI+t
z and tz are lower cladding layer growth time and active layer growth time.

上クラッド層成長時間を示している。ここで、上記3層
のうちで、活性層のみは0.1 μm程度であって、こ
の層は特に制御性良く成長させなければならない。これ
に対して、活性層を制御性良く成長させる方法の一つと
しては、冷却速度を小さくする方法がある。
The growth time of the upper cladding layer is shown. Of the three layers mentioned above, only the active layer has a thickness of about 0.1 μm, and this layer must be grown with particularly good controllability. On the other hand, one method for growing the active layer with good control is to reduce the cooling rate.

しかし、現状のダブルへテロ構造の成長では、活性層の
成長の前に膜厚が厚い下クラッド層を成長させる必要が
あるために、ある一定収上の降温速度で下クラッド層を
成長させた後に、活、性層を成長させる必要がある。こ
の結果、活性層の降温速度を低下させようとしても、基
板ホルダーおよび溶液溜の熱容量が大きいために、温度
プログラムに温度が追従しない。
However, in the current growth of double heterostructures, it is necessary to grow a thick lower cladding layer before growing the active layer, so it is necessary to grow the lower cladding layer at a cooling rate above a certain yield. Later, it is necessary to grow the active and sexual layers. As a result, even if an attempt is made to reduce the temperature decreasing rate of the active layer, the temperature will not follow the temperature program because the heat capacities of the substrate holder and solution reservoir are large.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の液相結晶成長装置は以上のように構成されている
ので、活性層形成のための温度制御を高精度に行うこと
が出来ず、これに伴って薄膜成長の再現性および制御性
が極めて悪化する問題点があった。
Because the conventional liquid phase crystal growth apparatus is configured as described above, it is not possible to control the temperature for forming the active layer with high precision, and as a result, the reproducibility and controllability of thin film growth are extremely poor. There was a problem that was getting worse.

この発明は上記のような問題点を解消するためになされ
たものであって、薄膜の活性層を再現性および制御性良
く成長させることが出来る液相結晶成長装置を提供する
ことを目的とする。
This invention has been made to solve the above-mentioned problems, and an object thereof is to provide a liquid phase crystal growth apparatus that can grow a thin active layer with good reproducibility and controllability. .

〔問題点を解決するための手段] この発明に係る液相結晶成長装置は、クラッド層の成長
に続いて薄膜の活性層を成長させるために使用する溶液
を溜める部分の材質を他の溶液を溜める部分の材質より
も熱伝導率が低い材質によって構成したものである。
[Means for Solving the Problems] In the liquid phase crystal growth apparatus according to the present invention, the material of the part for storing the solution used to grow the active layer of the thin film following the growth of the cladding layer is made of a material other than that of another solution. It is made of a material with lower thermal conductivity than the material of the reservoir.

〔作用] この発明における液相結晶成長装置は、活性層を成長さ
せるために使用される溶液を溜める部分における材質の
熱伝導率を他の溶液を溜める部分における材質よりも熱
伝導率が小さい材質によって構成したものであるために
、徐冷すると該活性層を成長させるために使用する溶液
を溜める部分の熱抵抗が他の部分よりも大きくなること
から、該溶液溜内の溶液は温度プログラムによって設定
された冷却温度よりも少ない降温状態となり、これによ
って活性層を高精度にかつ再現性良く成長させるに適し
た溶液温度状態が確保されることになるものである。
[Function] The liquid phase crystal growth apparatus according to the present invention is characterized in that the thermal conductivity of the material in the part where the solution used to grow the active layer is stored is lower than that of the material in the part where other solutions are stored. Since the solution in the solution reservoir is slowly cooled, the thermal resistance of the part that stores the solution used to grow the active layer becomes larger than other parts. The temperature decreases to a level lower than the set cooling temperature, thereby ensuring a solution temperature condition suitable for growing the active layer with high precision and good reproducibility.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図および第2図において、第3図および第4図と同一部
分は同記号を用いてその説明を省略しである。同図にお
いて、12は活性層を成長させる時に使用する溶液1o
の周囲を取り囲む従来のカーボンよりも熱伝導率の低い
低熱伝導率材を示す。そして、この低熱伝導率材12と
しては、他の部分におけるカーボン材の熱伝導率が90
〜130 Kcal/ mhr℃であるのに対し、熱伝
導率が10Kcal/mhr℃以下のカーボン材または
熱伝導率が30Kcal/mhr℃以下のSiC等が使
用される。13は溶液溜2の蓋3における活性層を成長
させる場合に使用する溶液10が溜められている部分と
対向する部分を構成する低熱伝導率材であって、前記低
熱伝導率材12と同様に、熱伝導率が10Kcal/m
hr℃以下のカーボン材または熱伝導率が30Kcal
/mhr℃以下のSiC等が使用される。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figures and FIG. 2, the same parts as in FIGS. 3 and 4 are denoted by the same symbols, and the explanation thereof will be omitted. In the same figure, 12 is a solution 1o used when growing the active layer.
It is surrounded by a low thermal conductivity material that has a lower thermal conductivity than conventional carbon. As for this low thermal conductivity material 12, the thermal conductivity of the carbon material in other parts is 90.
~130 Kcal/mhr°C, whereas a carbon material with a thermal conductivity of 10 Kcal/mhr°C or less or SiC or the like with a thermal conductivity of 30 Kcal/mhr°C or the like is used. Reference numeral 13 denotes a low thermal conductivity material constituting a portion of the lid 3 of the solution reservoir 2 that faces the portion where the solution 10 used for growing the active layer is stored, and is similar to the low thermal conductivity material 12 described above. , thermal conductivity is 10Kcal/m
Carbon material below hr℃ or thermal conductivity is 30Kcal
/mhr°C or less SiC or the like is used.

以下動作を説明する。まず、電源を投入すると図示しな
い温度コントローラがヒーター8への電源供給を制御す
ることにより、石英管によって構成される反応管7の内
部における水素雰囲気温度を第2図に示す成長温度プロ
グラムに沿って変化させる。つまり、第2図に示すよう
に、一定温度まで上げた後に実線によって示すように降
温させる。このようにして温度を低下させて行くと、溶
液溜2および溶液の温度は、反応管7の内部をパージし
ている水素雰囲気との物質熱伝達1反応管7への熱伝導
および輻射によって徐冷して行く。
The operation will be explained below. First, when the power is turned on, a temperature controller (not shown) controls the power supply to the heater 8 to adjust the hydrogen atmosphere temperature inside the reaction tube 7 made of a quartz tube according to the growth temperature program shown in FIG. change. That is, as shown in FIG. 2, after raising the temperature to a certain level, the temperature is lowered as shown by the solid line. As the temperature is lowered in this way, the temperature of the solution reservoir 2 and the solution gradually decreases due to mass heat transfer 1 with the hydrogen atmosphere purging the inside of the reaction tube 1 and heat conduction and radiation to the reaction tube 7. Let it cool down.

ここで、低熱伝導率材12.13によって、活性層を成
長させる場合に使用する溶液を取り囲むと、この溶液が
他の溶液よりも温度の低下速度が現象して、第2図に点
線によって示すようになる。従って、t I 、t21
. t3をそれぞれ下クラッド層成長時間、活性層成長
時間、上クラッド層成長時間とすると、ダブルへテロ構
造を有する半導体素子の下クラッド層成長温度、活性層
成長温度、上クラッド層成長温度は、第2図からTl1
T211T3となって、活性層成長温度TZIが他の成
長温度に対して独立に設定することか可能になる。  
“ なお、低下した温度の低下速度に適合するように、溶液
の使用を予め変更して置く必要があることは言うまでも
ない。更に、上記実施例においては、スライドボード方
式による液相結晶成長装置に適用した場合についてのみ
説明したが、ブツシュアウトボード方式による液相結晶
成長装置に適用しても同様な効果かえられる。
When the solution used for growing the active layer is surrounded by a low thermal conductivity material 12.13, the temperature of this solution decreases faster than other solutions, as shown by the dotted line in Figure 2. It becomes like this. Therefore, t I , t21
.. If t3 is the lower cladding layer growth time, the active layer growth time, and the upper cladding layer growth time, the lower cladding layer growth temperature, the active layer growth temperature, and the upper cladding layer growth temperature of the semiconductor element having a double heterostructure are as follows. From Figure 2, Tl1
T211T3, making it possible to set the active layer growth temperature TZI independently of other growth temperatures.
“It goes without saying that it is necessary to change the solution used in advance to match the rate of decrease in temperature.Furthermore, in the above example, the slide board type liquid phase crystal growth apparatus Although only the case where the present invention is applied has been described, the same effect can be obtained even if it is applied to a liquid phase crystal growth apparatus using a bush outboard method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば液相結晶成長装
置における活性層成長用の溶液を収容する部分を低熱伝
導率材によって構成したものであるために、該溶液の温
度低下速度が他の溶液の温度低下速度よりも小さくなっ
て、活性層の再現性および制御性が大幅に向上する効果
がある。
As explained above, according to the present invention, since the part of the liquid phase crystal growth apparatus that accommodates the solution for growing the active layer is made of a material with low thermal conductivity, the rate of temperature decrease of the solution is lower than that of other materials. This has the effect of significantly improving the reproducibility and controllability of the active layer since the temperature decrease rate is lower than that of the solution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による液相結晶成長装置の
断面図、第2図は第1図に示す液相結晶成長装置を使用
した場合における成長温度プログラム特性を示す特性図
、第3図は従来の液相結晶成長装置を示す断面図、第4
図は第3図に示す液相結晶成長装置を使用した場合にお
ける成長温度プログラムを示す特性図である。 1は基板ホルダー、2は溶液溜、3は蓋、4は基板装着
位置、5は押し棒1.6は矢印、7は反応管、8はヒー
ター、9,10.11は溶液、1213は低熱伝導率材
。 なお、図中同一符号は同−又は相当部分を示す。 代理人  大 岩 増 雄 (外2名)1・・・基板ホ
ルダー  2・・・溶液溜  12.13・・・低熱伝
導率部材第2図
FIG. 1 is a sectional view of a liquid phase crystal growth apparatus according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing growth temperature program characteristics when the liquid phase crystal growth apparatus shown in FIG. 1 is used, and FIG. The figure is a cross-sectional view showing a conventional liquid phase crystal growth apparatus.
The figure is a characteristic diagram showing a growth temperature program when the liquid phase crystal growth apparatus shown in FIG. 3 is used. 1 is a substrate holder, 2 is a solution reservoir, 3 is a lid, 4 is a substrate mounting position, 5 is a push rod 1.6 is an arrow, 7 is a reaction tube, 8 is a heater, 9, 10.11 is a solution, 1213 is a low heat conductive material. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa (2 others) 1...Substrate holder 2...Solution reservoir 12.13...Low thermal conductivity member Figure 2

Claims (7)

【特許請求の範囲】[Claims] (1)組成の異なる複数の薄膜多層膜によって構成され
る半導体素子を液相成長によって構成する場合に、徐々
に温度を下げながら基板に溶解した溶液を順次接触させ
ることにより、溶解度差によって結晶を析出させる液相
結晶成長装置において、特定の溶液のみを他の溶液を収
容する部分を構成する部材よりも低い熱伝導率の低熱伝
導率材によって構成したことを特徴とする液相結晶成長
装置。
(1) When constructing a semiconductor device composed of multiple thin multilayer films with different compositions by liquid phase growth, by sequentially bringing a dissolved solution into contact with a substrate while gradually lowering the temperature, crystals can be grown due to solubility differences. A liquid phase crystal growth apparatus for precipitation, characterized in that only a specific solution is made of a low thermal conductivity material whose thermal conductivity is lower than that of members constituting parts that accommodate other solutions.
(2)溶液溜を使用温度における熱伝導率が90〜13
0Kcal/mhr℃であるカーボンによって構成する
と共に、特定の溶液を取り囲む部分には使用温度におい
て熱伝導率が10Kcal/mhr℃以下のカーボンを
使用したことを特徴とする特許請求の範囲第1項記載の
液相結晶成長装置。
(2) The thermal conductivity of the solution reservoir at the operating temperature is 90 to 13.
Claim 1, characterized in that it is made of carbon having a thermal conductivity of 0 Kcal/mhr°C, and carbon having a thermal conductivity of 10 Kcal/mhr°C or less at the operating temperature is used in the part surrounding the specific solution. liquid phase crystal growth equipment.
(3)特定の溶液を取り囲む部分をカーボン以外の材料
によって構成し、他の溶液を取り囲む部分をカーボンに
よって構成することを特徴とする特許請求の範囲第1項
記載の液相結晶成長装置。
(3) The liquid phase crystal growth apparatus according to claim 1, wherein a portion surrounding a specific solution is made of a material other than carbon, and a portion surrounding other solutions is made of carbon.
(4)溶液溜を使用温度における熱伝導率が90〜13
0Kcal/mhr℃であるカーボンによって構成する
と共に、特定の溶液を取り囲む部分には、使用温度にお
いて熱伝導率が30Kcal/mhr℃以下の部材を使
用したことを特徴とする特許請求の範囲第1項記載の液
相結晶成長装置。
(4) The thermal conductivity of the solution reservoir at the operating temperature is 90 to 13.
Claim 1 characterized in that it is made of carbon having a thermal conductivity of 0 Kcal/mhr°C and a member having a thermal conductivity of 30 Kcal/mhr°C or less at the operating temperature is used in the part surrounding the specific solution. The liquid phase crystal growth apparatus described above.
(5)溶液溜を使用温度における熱伝導率が90〜13
0Kcal/mhr℃であるカーボンによって構成する
と共に、特定の溶液を取り囲む部分には、使用温度にお
いて熱伝導率が30Kcal/mhr℃以下のSiC部
材を使用したことを特徴とする特許請求の範囲第1項記
載の液相結晶成長装置。
(5) The thermal conductivity of the solution reservoir at the operating temperature is 90 to 13.
Claim 1, characterized in that it is made of carbon having a thermal conductivity of 0 Kcal/mhr°C, and a SiC member having a thermal conductivity of 30 Kcal/mhr°C or less at the operating temperature is used for the part surrounding the specific solution. The liquid phase crystal growth apparatus described in 2.
(6)特定の溶液を収容する溶液溜を使用温度における
熱伝導率が30Kcal/mhr℃以下のカーボン以外
の部材によって構成すると共に、他の溶液を収容する溶
液溜を熱伝導率が90〜130Kcal/mhr℃であ
るカーボン以外の部材によって構成したことを特徴とす
る特許請求の範囲第1項記載の液相結晶成長装置。
(6) The solution reservoir that accommodates a specific solution is made of a material other than carbon that has a thermal conductivity of 30 Kcal/mhr°C or less at the operating temperature, and the solution reservoir that accommodates other solutions has a thermal conductivity of 90 to 130 Kcal. 2. The liquid phase crystal growth apparatus according to claim 1, characterized in that the liquid phase crystal growth apparatus is constructed of a member other than carbon, which has a temperature of /mhr°C.
(7)溶液溜を使用温度における熱伝導率が90〜13
0Kcal/mhr℃であるカーボン以外の部材によっ
て構成し、かつ特定の溶液を取り囲む部分に使用温度に
おける熱伝導率が30Kcal/mhr℃以下のカーボ
ン以外の部材を配置したことを特徴とする特許請求の範
囲第1項記載の液相結晶成長装置。
(7) The thermal conductivity of the solution reservoir at the operating temperature is 90 to 13.
0Kcal/mhr°C or less, and a member other than carbon having a thermal conductivity of 30Kcal/mhr°C or less at the operating temperature is disposed in a portion surrounding a specific solution. A liquid phase crystal growth apparatus according to scope 1.
JP62100609A 1987-04-22 1987-04-22 Liquid phase crystal growth equipment Expired - Lifetime JP2548722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62100609A JP2548722B2 (en) 1987-04-22 1987-04-22 Liquid phase crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100609A JP2548722B2 (en) 1987-04-22 1987-04-22 Liquid phase crystal growth equipment

Publications (2)

Publication Number Publication Date
JPS63265887A true JPS63265887A (en) 1988-11-02
JP2548722B2 JP2548722B2 (en) 1996-10-30

Family

ID=14278588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100609A Expired - Lifetime JP2548722B2 (en) 1987-04-22 1987-04-22 Liquid phase crystal growth equipment

Country Status (1)

Country Link
JP (1) JP2548722B2 (en)

Also Published As

Publication number Publication date
JP2548722B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US3632431A (en) Method of crystallizing a binary semiconductor compound
JPH11209199A (en) Synthesis method of gallium nitride single crystal
US4022652A (en) Method of growing multiple monocrystalline layers
JPS63209122A (en) Method and apparatus for vapor phase thin film crystal growth
JPS63265887A (en) Device for growing crystal in liquid phase
US4869776A (en) Method for the growth of a compound semiconductor crystal
US4824520A (en) Liquid encapsulated crystal growth
EP0088579B1 (en) Apparatus for performing solution growth relying on temperature difference technique
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JPH0697180A (en) Heat treatment for compound semiconductor substrate
JPS63224229A (en) Liquid phase crystal growth device
JPS63159290A (en) Liquid phase epitaxial growth and device therefor
JP3515858B2 (en) Boat for liquid phase epitaxial growth
JP2645491B2 (en) Method for growing compound semiconductor single crystal
JP2508726B2 (en) Liquid phase epitaxial growth method
JPH026383A (en) Apparatus for growing semiconductor crystal
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPH02255592A (en) Method and device for producing silicon single crystal
JPS5834925A (en) Liquid phase epitaxial growth device
JP2825974B2 (en) Molecular beam source container
JPS63144186A (en) Unidirectional solidification apparatus
JPS5941959B2 (en) Liquid phase epitaxial growth equipment
JPH03214621A (en) Heat-treatment apparatus of compound semiconductor substrate
Minkov et al. Growth characteristics of GaAlAs layers obtained by long term finite melt liquid phase epitaxy
JPS5919916B2 (en) Liquid phase epitaxial growth method