JPS63265844A - Production of bent heat ray reflecting glass - Google Patents

Production of bent heat ray reflecting glass

Info

Publication number
JPS63265844A
JPS63265844A JP62099128A JP9912887A JPS63265844A JP S63265844 A JPS63265844 A JP S63265844A JP 62099128 A JP62099128 A JP 62099128A JP 9912887 A JP9912887 A JP 9912887A JP S63265844 A JPS63265844 A JP S63265844A
Authority
JP
Japan
Prior art keywords
glass
film
bending
cathode
heat ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62099128A
Other languages
Japanese (ja)
Other versions
JPH0735267B2 (en
Inventor
Yuji Yamamoto
裕司 山本
Haruo Hashizume
橋爪 春雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP62099128A priority Critical patent/JPH0735267B2/en
Publication of JPS63265844A publication Critical patent/JPS63265844A/en
Publication of JPH0735267B2 publication Critical patent/JPH0735267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0252Re-forming glass sheets by bending by gravity by gravity only, e.g. sagging
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/025Re-forming glass sheets by bending by gravity
    • C03B23/0258Gravity bending involving applying local or additional heating, cooling or insulating means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To obtain the title glass without generating a film defect and having an excellent optical characteristic by bending a glass substrate with an absorbing film including a metal nitride coated film on the surface in a nonoxidizing atmosphere. CONSTITUTION:A target 22 of Cr, etc., is fixed to the lower surface of a magnetron cathode 15 at the upper part of a grounded vacuum vessel 11, a target 23 of Ti, etc., is fixed to the lower surface of a magnetron cathode 16, and the glass substrate 26 is placed on the substrate holder 25 on a conveyor belt 21. A variable valve 12 is then opened to depressurize the inside of the vessel 11, N2 is supplied from a gas supply pipe 10, the valve 12 is closed, a negative voltage is impressed on the cathodes 15 and 16, the substrate 26 is moved below the cathode 15 and then below the cathode 16 to form the absorbing layer contg. a metal nitride and having 200-1,000Angstrom thickness on the substrate 26, and the heat ray reflecting glass 39 is obtained. The glass 39 is set on a bending stand 40 in an electric furnace and heated to 600-750 deg.C, gases are supplied from cylinders 33 and 34 to form a nonoxidizing atmosphere, and the glass is bent to obtain the product having 20-70cm radius of curvature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は曲げ熱線反射ガラスの製造方法に係り、特に高
特性の曲げ熱線反射ガラスを低コストで容易に製造する
ことができる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing bent heat ray reflective glass, and more particularly to a method for easily manufacturing bent heat ray reflective glass with high characteristics at low cost.

[従来の技術] 近年、ビル、住宅、自動車等の窓ガラスに、太陽光線を
反射する熱線反射ガラスが使用されつつある。熱線反射
ガラスは太陽熱を反射し、室内の温度上昇を防ぎ、直射
日光を遮断して眩しさを防いだり、外部の視線からプラ
イバシーを守る等の機能の他、建物に美観を付与するな
どの効果も有し、各種窓ガラス材として注目を集めてい
る。
[Background Art] In recent years, heat-reflecting glass that reflects sunlight has been used for window glasses of buildings, houses, automobiles, etc. Heat-reflecting glass reflects solar heat, prevents indoor temperatures from rising, blocks direct sunlight to prevent glare, protects privacy from outsiders, and has other effects such as adding aesthetic appeal to buildings. It is also attracting attention as a material for various window glass.

従来、熱線反射ガラスとしては、ガラス基板表面に窒化
クロム被膜等の吸収膜を形成したものが一般的である。
BACKGROUND ART Conventionally, heat-reflecting glass generally includes a glass substrate with an absorbing film such as a chromium nitride film formed on the surface of the glass substrate.

[発明が解決しようとする問題点コ 従来、提供されている熱線反射ガラスはいずれも平板状
であるが、施工対象によっては曲板状の熱線反射ガラス
が要求される場合もある。
[Problems to be Solved by the Invention] Conventionally, all of the heat-reflecting glasses provided are flat, but curved heat-reflecting glass may be required depending on the object of construction.

曲板状の熱線反射ガラスを製造する方法としては、次の
2方法が考えられる。
The following two methods can be considered as methods for manufacturing curved heat ray reflective glass.

■ 曲げ加工したガラス基板上に窒化クロム被膜等の吸
収膜を形成する。
■ Forming an absorbing film such as a chromium nitride film on a bent glass substrate.

■ 窒化クロム被膜等の吸収膜を形成した通常の熱線反
射ガラスを曲げ加工する。
■ Bending ordinary heat-reflecting glass coated with an absorbing film such as a chromium nitride film.

上記■の方法は、既に実施されているが、吸収膜の形成
にあたり、通常の平板用の成膜装置を用いることができ
ず、装置に特別な工夫が要求され、装置コストが高くつ
く上に、その作動制御も複雑化し、生産性が悪くなる。
Method (2) above has already been implemented, but when forming an absorbing film, it is not possible to use a normal film forming apparatus for flat plates, and special measures are required for the apparatus, which increases the equipment cost. , its operation control becomes complicated and productivity deteriorates.

また、成膜の前処理として、ガラス基板の洗浄、乾燥等
を行なうにあたり、曲板に対しての処理が難しいことか
ら、十分な処理が行なえず、前処理の不完全による膜品
質の悪化、具体的には膜のピンホールの増加、膜の色ム
ラの増加、ヘイズの増加、膜付着力の低下等、が発生し
易くなり、しかも、元来、曲板に成膜することは極めて
難しく、基板上に特性のばらつきが出ることがあり、高
品質の製品を製造するのが極めて困難となる。
In addition, when cleaning and drying glass substrates as pretreatment for film formation, it is difficult to process curved plates, so sufficient treatment cannot be performed, resulting in deterioration of film quality due to incomplete pretreatment. Specifically, problems such as an increase in pinholes in the film, an increase in color unevenness in the film, an increase in haze, and a decrease in film adhesion tend to occur, and it is originally extremely difficult to form a film on a curved plate. , variations in characteristics may occur on the substrate, making it extremely difficult to manufacture high-quality products.

一方、■の方法では、上記の問題はないものの、吸収膜
を有するガラスを通常の透明ガラスと同様にして曲げ加
工すると、吸収膜が変色したり、熱線反射性能等の光学
特性が低下する問題があり、従って、■の方法は現在に
到るまで実用化されていない。
On the other hand, method (2) does not have the above problems, but when glass with an absorbing film is bent in the same way as ordinary transparent glass, the absorbing film changes color and optical properties such as heat ray reflection performance deteriorate. Therefore, method (2) has not been put into practical use to date.

[問題点を解決するための手段] 本発明は、通常の平板用成膜装置を用い、低コストで効
率的に製造することができ、しかも曲げ加工による光学
特性の低下も極めて少なく、高品質の製品とすることが
できる曲げ熱線反射ガラスの製造方法を提供するもので
あって、ガラス基板表面に、金属窒化物被膜を含む吸収
膜を形成した後、非酸化性雰囲気中で曲げ加工すること
を特徴とする曲げ熱線反射ガラスの製造方法を要旨とす
るものである。
[Means for Solving the Problems] The present invention can be manufactured efficiently at low cost using a normal film forming apparatus for flat plates, and there is extremely little deterioration in optical properties due to bending, resulting in high quality. Provided is a method for manufacturing bent heat ray reflective glass that can be used as a product, the method comprising forming an absorbing film containing a metal nitride film on the surface of a glass substrate, and then bending the glass in a non-oxidizing atmosphere. The gist of the present invention is a method for manufacturing bent heat ray reflective glass characterized by the following.

以下、本発明を図面を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明で製造される曲げ熱線反射ガラスの一実
施例を示す断面図である。
FIG. 1 is a sectional view showing one embodiment of the bent heat ray reflective glass manufactured by the present invention.

図示の如く、本発明で製造される曲げ熱線反射ガラス1
は、ガラス基板2の表面に金属窒化物被膜(以下、これ
を「第1の被膜」ということがある。)3が形成された
ものである。第1の被膜の金属窒化物としては窒化クロ
ム(c r XX ) 、窒化チタン(TiNx)又は
窒化チタンアルミニウム(T i AuNX)が好適で
ある。
As shown in the figure, bent heat ray reflective glass 1 manufactured according to the present invention
In this example, a metal nitride film (hereinafter sometimes referred to as "first film") 3 is formed on the surface of a glass substrate 2. As the metal nitride for the first film, chromium nitride (cr XX ), titanium nitride (TiNx), or titanium aluminum nitride (T i AuNX) is suitable.

本発明において、金属窒化物被膜3の厚さは、所望の熱
反射能が得られる厚さとなるように適宜決定されるが、
一般には200〜1000人程度とする。特に、金属窒
化物被膜3として窒化クロム被膜を形成する場合には2
00〜800人、窒化チタン被膜を形成する場合には3
00〜1000人程度の厚さとなるようにするのが良い
In the present invention, the thickness of the metal nitride coating 3 is appropriately determined so as to obtain the desired heat reflecting ability.
Generally, the number of participants is about 200 to 1,000. In particular, when forming a chromium nitride film as the metal nitride film 3,
00 to 800 people, 3 when forming a titanium nitride film
It is best to have a thickness of about 00 to 1000 people.

本発明においては、このような金属窒化物被膜3の上に
、第2図に示す如く、必要に応じて金属酸化物被膜4の
オーバーコート層(以下、「第2の被膜」ということが
ある。)を形成しても良い。この場合、金属酸化物とし
ては酸化チタン又は酸化スズが好適である。
In the present invention, as shown in FIG. 2, an overcoat layer (hereinafter sometimes referred to as a "second coating") of a metal oxide coating 4 is optionally provided on the metal nitride coating 3. .) may be formed. In this case, titanium oxide or tin oxide is suitable as the metal oxide.

このような金属酸化物被膜により、得られる曲げ熱線反
射ガラスの耐久性や光学特性等の改善が図られる。従っ
て、その厚さは、要求特性に応じて決定されるが、一般
には10〜500人程度とする。
Such a metal oxide coating improves the durability, optical properties, etc. of the obtained bent heat ray reflective glass. Therefore, the thickness is determined depending on the required characteristics, but is generally about 10 to 500 people.

このような曲げ熱線反射ガラスを本発明方法により製造
するには、まず平板状のガラス基板を用い、この表面に
常法により第1の被膜である金属窒化物被膜を形成し、
必要に応じてさらにその上に第2の被膜である金属酸化
物被膜を形成する。
In order to manufacture such bent heat ray reflective glass by the method of the present invention, first, a flat glass substrate is used, and a metal nitride film, which is the first film, is formed on the surface of the glass substrate by a conventional method.
If necessary, a second metal oxide film is further formed thereon.

被膜の形成方法としては真空蒸着法、スパッタリング法
等を採用することができるが、例えば、第3図に示すよ
うなスパッタリング装置を用い、第1及び第2の被膜を
連続的に形成するのが有利である。
Vacuum deposition method, sputtering method, etc. can be adopted as a method for forming the film, but for example, it is preferable to form the first and second films continuously using a sputtering apparatus as shown in FIG. It's advantageous.

第3図に示すスパッタリング装置は、アースされた真空
槽11の一部にバリアプルバルブ12を設けた排気口1
3を形成し、この排気口13を介して真空ポンプ14と
接続し、真空槽11内を減圧するように構成されている
。また、真空槽11の上部にはマグネトロンカソード1
5,16゜17が設けられ、これらは直流電源18と接
続している。またマグネトロンカソード15と16の間
には、バルブ19を備えたガス供給管20が設けられ、
真空槽11内にガスを供給するように構成されている。
The sputtering apparatus shown in FIG. 3 has an exhaust port 1 provided with a barrier pull valve 12 in a part of a grounded vacuum chamber 11.
3 and is connected to a vacuum pump 14 via this exhaust port 13 to reduce the pressure inside the vacuum chamber 11. In addition, a magnetron cathode 1 is placed at the top of the vacuum chamber 11.
5, 16° 17 are provided, and these are connected to a DC power source 18. Further, a gas supply pipe 20 equipped with a valve 19 is provided between the magnetron cathodes 15 and 16.
It is configured to supply gas into the vacuum chamber 11.

更に、各カソード15,16゜17の下方には往復動可
能な搬送ベルト21が配置されている。
Furthermore, a reciprocating conveyor belt 21 is disposed below each cathode 15, 16, 17.

このような構成のスパッタリング装置を用いて成膜を行
なうには、例えば次のような方法で行なう。
To form a film using a sputtering apparatus having such a configuration, for example, the following method is used.

カソード15の下面に第1の被膜形成のためのターゲッ
ト22(例えばCr)、カソード16の下面に第2の被
膜形成のためのターゲット23(例えばTi)を取り付
ける。一方、搬送ヘルド21上の基板ホルダー25にガ
ラス基板26を載置する。
A target 22 (for example, Cr) for forming a first film is attached to the lower surface of the cathode 15, and a target 23 (for example, Ti) for forming a second film is attached to the lower surface of the cathode 16. On the other hand, a glass substrate 26 is placed on the substrate holder 25 on the transport heald 21.

次いで、バリアプルバルブ12を開け、真空槽11内を
減圧とし、ガス供給管10より窒素を供給した後、バリ
アプルバルブ12を閉じ、真空槽11内の圧力を所定の
窒素雰囲気とする。
Next, the barrier pull valve 12 is opened to reduce the pressure inside the vacuum chamber 11, and after nitrogen is supplied from the gas supply pipe 10, the barrier pull valve 12 is closed and the pressure inside the vacuum chamber 11 is set to a predetermined nitrogen atmosphere.

次に、カソード15に負電圧を印加してガラス基板26
をカソード15下に6動させ、金属窒化物被膜を形成す
る。同様に、カソード16に負電圧を印加し、ガラス基
板26を6動させて、第2の被膜を形成する。
Next, a negative voltage is applied to the cathode 15 and the glass substrate 26 is
is moved under the cathode 15 six times to form a metal nitride film. Similarly, a negative voltage is applied to the cathode 16 and the glass substrate 26 is moved six times to form a second coating.

このようにして、第1の被膜、必要に応じて第2の被膜
を形成した熱線反射ガラスを、次いで非酸化性雰囲気中
にて曲げ加工する。
The heat-reflecting glass on which the first coating and, if necessary, the second coating have been formed in this way is then bent in a non-oxidizing atmosphere.

曲げ加工方法としては特に制限はないが、例えば第4図
に示す電気炉により、加熱して曲げ加工処理を行なうこ
とができる。
Although there are no particular limitations on the bending method, the bending process can be performed by heating, for example, using an electric furnace as shown in FIG.

第4図に示す電気炉は、ヒーター30によって昇温する
ようになっており、熱電対31により測定した温度から
温度コートローラー32により炉内の温度を調節する。
The electric furnace shown in FIG. 4 is heated by a heater 30, and the temperature inside the furnace is adjusted from the temperature measured by a thermocouple 31 by a temperature coat roller 32.

また、ガスはガスシリンダー33又は34のバルブ35
.36を流量計37の値から、所定の流量になるように
調節し、ガス供給管38から炉内に導入するようになっ
ている。
Also, the gas is supplied to the valve 35 of the gas cylinder 33 or 34.
.. 36 is adjusted to a predetermined flow rate based on the value of a flow meter 37, and the gas is introduced into the furnace through a gas supply pipe 38.

このような電気炉を用いて熱線反射ガラスを曲げるには
、電気炉を600〜750℃程度に昇温し、シリンダー
33及び/又は34より雰囲気ガスを炉内に供給し、熱
線反射ガラス39を曲げ台40の上にセットして所定時
間保持する。その後、熱線反射ガラス39を取り出し放
冷する。
To bend heat-reflective glass using such an electric furnace, heat the electric furnace to about 600 to 750°C, supply atmospheric gas into the furnace from the cylinders 33 and/or 34, and bend the heat-reflective glass 39. It is set on the bending table 40 and held for a predetermined time. Thereafter, the heat ray reflective glass 39 is taken out and left to cool.

本発明において、曲げ加工の程度は、ガラスの大きさや
厚さ、被膜の種類、厚さ等によっても異なるが、一般に
は曲率半径20〜70cm程度とする。
In the present invention, the degree of bending varies depending on the size and thickness of the glass, the type and thickness of the coating, etc., but generally the radius of curvature is about 20 to 70 cm.

なお、本発明において、このような曲げ加工を行なう際
の炉内の非酸化性雰囲気とは、例えばN2.N2及びA
r等の不活性ガスの1種又は2種以上よりなる雰囲気と
するのが良い。
In the present invention, the non-oxidizing atmosphere in the furnace during such bending is, for example, N2. N2 and A
It is preferable to use an atmosphere consisting of one or more inert gases such as r.

[作 用コ 金属窒化物被膜を吸収膜とする熱線反射ガラスを非酸化
性:囲気中で曲げ加工することにより、曲げ加工時の歪
発生、膜の色調の変化、熱線反射性能等の光学特性の低
下等が改善される。
[Function] Non-oxidizing heat-reflecting glass with a metal nitride absorption film: By bending it in an atmosphere, optical properties such as distortion during bending, changes in film color, and heat-reflection performance can be improved. This will improve the reduction in

このため、本発明によれば、熱線反射ガラスの品質に悪
影響を与えることなく、加熱により曲げ加工することが
可能となるので、成膜後、曲げ加工という工程をとるこ
とができる。このため、成膜は従来の平板用成膜装置を
用いて効率的かつ安価に製造することができ、曲げ熱線
反射ガラスのコストダウンを図れる。
Therefore, according to the present invention, it is possible to perform bending by heating without adversely affecting the quality of the heat-reflecting glass, so that a step of bending can be performed after film formation. Therefore, the film can be formed efficiently and inexpensively using a conventional film forming apparatus for flat plates, and the cost of the bent heat ray reflective glass can be reduced.

[実施例] 以下、実施例及び比較例について説明する。[Example] Examples and comparative examples will be described below.

実施例1 本発明の方法に従って、第1図に示す曲げ熱線反射ガラ
ス1を製造した。
Example 1 A bent heat-reflecting glass 1 shown in FIG. 1 was manufactured according to the method of the present invention.

まず、第3図に示すスパッタリング装置を用い、次の■
〜■の手順で第1及び第2の被膜を形成した。
First, using the sputtering equipment shown in Fig. 3, the following
The first and second coatings were formed in the steps of ~■.

■ カソード15の下面にCrをターゲット22として
取り付け、搬送ベルト21上の基板ホルダー25に洗浄
したガラス基板26を載置した。
(2) A Cr target 22 was attached to the lower surface of the cathode 15, and a cleaned glass substrate 26 was placed on the substrate holder 25 on the conveyor belt 21.

■ バリアプルバルブ12を開け、真空槽11内を5X
10−’Torr以下になるまで減圧し、ガス供給管2
0より窒素を供給して、バリアプルバルブ12を閉じ、
真空槽11内の圧力が2xto−”rorrになるよう
にした。
■ Open the barrier pull valve 12 and move the inside of the vacuum chamber 11 5X.
Reduce the pressure until it becomes 10-'Torr or less, and then connect the gas supply pipe 2.
Supply nitrogen from 0, close the barrier pull valve 12,
The pressure inside the vacuum chamber 11 was set to 2xto-''rorr.

■ 次にカソード15に500■の負電圧を印加し、ガ
ラス基板26をカソード15下を移動させることで、ガ
ラス基板26表面に厚さ500人の窒化クロム被膜、即
ち第1の被膜3を形成した。
■Next, by applying a negative voltage of 500μ to the cathode 15 and moving the glass substrate 26 under the cathode 15, a 500μ thick chromium nitride film, that is, the first film 3, is formed on the surface of the glass substrate 26. did.

次に、第4図に示す電気炉を用いて、次の■〜■の手順
で曲げ加工を行なった。
Next, using the electric furnace shown in FIG. 4, bending was performed according to the following steps (1) to (2).

■ 電気炉を約650℃まで昇温した後、シリンダー3
3より窒素ガスを送給し、ガス供給管38より炉内に導
入した。
■ After heating the electric furnace to approximately 650℃, cylinder 3
Nitrogen gas was supplied from 3 and introduced into the furnace through a gas supply pipe 38.

■ 窒素ガスが炉内に均質にいきわたった後、上記作成
した熱線反射ガラス39を曲げ台40の上にセットする
(2) After the nitrogen gas is uniformly distributed in the furnace, the heat ray reflective glass 39 prepared above is set on the bending table 40.

■ 約630℃で、3分間保持する。■ Hold at approximately 630℃ for 3 minutes.

■ ガラス39を電気炉の外に取り出し、自然数ン令さ
せる。
■ Take the glass 39 out of the electric furnace and let it cool down to a natural number.

(曲げ加工の程度二曲率半径42cm)得られた曲げ熱
線反射ガラスの透過スペクトルを第5図に示す。また、
曲げ加工前後の可視光透過率を第1表に示す。なお、比
較のため、曲げ加工前のものの透過スペクトルも第5図
に併記する。
The transmission spectrum of the obtained bent heat-reflecting glass (degree of bending: 2 curvature radius: 42 cm) is shown in FIG. Also,
Table 1 shows the visible light transmittance before and after bending. For comparison, the transmission spectrum of the sample before bending is also shown in FIG.

比較例1 曲げ加工を空気雰囲気で行なったこと以外は実施例1と
同様にして曲げ熱線反射ガラスを作成した。
Comparative Example 1 A bent heat ray reflective glass was produced in the same manner as in Example 1 except that the bending process was performed in an air atmosphere.

得られた曲げ熱線反射ガラスの透過スペクトルを第5図
に示す。また、曲げ加工前後の可視光透過率を第1表に
示す。
The transmission spectrum of the obtained bent heat-reflecting glass is shown in FIG. Table 1 also shows the visible light transmittance before and after bending.

実施例2 実施例1において、カソード16の下面にTiをターゲ
ット23として取り付け、成膜工程の■におて、カソー
ド16に550■の負電圧を印加し、ガラス基板26を
カソード16を移動させることにより、厚さ800人の
窒化チタン被膜を形成したこと以外は、実施例1と同様
にして曲げ熱線反射ガラス1を製造した。
Example 2 In Example 1, Ti is attached as a target 23 on the lower surface of the cathode 16, and in step (2) of the film forming process, a negative voltage of 550 mm is applied to the cathode 16, and the glass substrate 26 is moved. Thus, a bent heat ray reflective glass 1 was manufactured in the same manner as in Example 1, except that a titanium nitride coating having a thickness of 800 mm was formed.

得られた曲げ熱線反射ガラスの透過スペクトルを第6図
に示す。また、曲げ加工前後の可視光透過率を第1表に
示す。なお、比較のため、曲げ加工前のものの透過スペ
クトルも第6図に併記する。
The transmission spectrum of the obtained bent heat-reflecting glass is shown in FIG. Table 1 also shows the visible light transmittance before and after bending. For comparison, the transmission spectrum of the sample before bending is also shown in FIG.

比較例2 曲げ加工を空気雰囲気で行なったこと以外は実施例2と
同様にして曲げ熱線反射ガラスを作成した。
Comparative Example 2 A bent heat-reflecting glass was produced in the same manner as in Example 2, except that the bending process was performed in an air atmosphere.

得られた曲げ熱線反射ガラスの透過スペクトルを第6図
に示す。また、曲げ加工前後の可視光透過率を第1表に
示す。
The transmission spectrum of the obtained bent heat-reflecting glass is shown in FIG. Table 1 also shows the visible light transmittance before and after bending.

実施例3 実施例1において、カソード15の下面にCrをターゲ
ット22として、またカソード16の下面にTiをター
ゲット23として取り付け、成膜工程■〜@に続いて、
下記■、■の工程を経て成膜を行なったこと以外は同様
にして第2図に示すような第2の被膜として酸化チタン
被膜を有する曲げ熱線反射ガラス1を製造した。
Example 3 In Example 1, Cr was attached to the lower surface of the cathode 15 as a target 22, and Ti was attached to the lower surface of the cathode 16 as a target 23, and following the film forming steps ① to @,
A bent heat ray reflective glass 1 having a titanium oxide coating as a second coating as shown in FIG. 2 was produced in the same manner as shown in FIG. 2, except that the film was formed through the steps (1) and (2) below.

■ カソード15のパワーを切り、再び5×10−”T
 o r r以下の真空に引いた後、ガス供給管20か
ら酸素を導入し、真空槽11内の圧力が2X10−’T
orrになるようにした。
■ Turn off the power of cathode 15 and reconnect to 5×10-”T.
After creating a vacuum below o r r, oxygen is introduced from the gas supply pipe 20, and the pressure inside the vacuum chamber 11 is reduced to 2X10-'T.
I made it so that it becomes orr.

■ 次にカソード16に450vの負電圧を印加し、ガ
ラス基板26をカソード16下を移動させることで、窒
化クロム被膜3上に第2の被膜4として酸化チタン被膜
を60人厚さに形成した。
■ Next, by applying a negative voltage of 450 V to the cathode 16 and moving the glass substrate 26 under the cathode 16, a titanium oxide film was formed as the second film 4 on the chromium nitride film 3 to a thickness of 60 mm. .

得られた曲げ熱線反射ガラスの透過スペクトルを第7図
に示す。また、曲げ加工前後の可視光透過率を第1表に
示す。なお、比較のため、曲げ加工前のものの透過スペ
クトルも第7図に併記する。
The transmission spectrum of the obtained bent heat-reflecting glass is shown in FIG. Table 1 also shows the visible light transmittance before and after bending. For comparison, the transmission spectrum of the sample before bending is also shown in FIG.

比較例3 曲げ加工を空気雰囲気で行なったこと以外は実施例3と
同様にして曲げ熱線反射ガラスを作成した。
Comparative Example 3 A bent heat ray reflective glass was produced in the same manner as in Example 3 except that the bending process was performed in an air atmosphere.

得られた曲げ熱線反射ガラスの透過スペクトルを第7図
に示す。また、曲げ加工前後の可視光透過率を第1表に
示す。
The transmission spectrum of the obtained bent heat-reflecting glass is shown in FIG. Table 1 also shows the visible light transmittance before and after bending.

実施例4 実施例3において、カソード16の下面にSnをターゲ
ット23として取り付け、第2の被膜として酸化スズ被
膜を形成したこと以外は同様にして曲げ熱線反射ガラス
1を製造した。
Example 4 A bent heat ray reflective glass 1 was manufactured in the same manner as in Example 3, except that Sn was attached as the target 23 to the lower surface of the cathode 16 and a tin oxide film was formed as the second film.

得られた曲げ熱線反射ガラスの曲げ加工前後の可視光透
過率を第1表に示す。
Table 1 shows the visible light transmittance of the obtained bent heat ray reflective glass before and after bending.

比較例4 曲げ加工を空気雰囲気で行なったこと以外は実施例4と
同様にして曲げ熱線反射ガラスを作成した。
Comparative Example 4 A bent heat-reflecting glass was produced in the same manner as in Example 4, except that the bending process was performed in an air atmosphere.

得られた曲げ熱線反射ガラスの曲げ加工前後の可視光透
過率を第1表に示す。
Table 1 shows the visible light transmittance of the obtained bent heat ray reflective glass before and after bending.

第  1  表 第5図〜第7図並びに第1表より、本発明の方法によれ
ば、曲げ加工による可視光透過率の変化が小さく、熱線
反射性能が良好に保たれることが明らかである。
Table 1 From Figures 5 to 7 and Table 1, it is clear that according to the method of the present invention, changes in visible light transmittance due to bending are small and good heat ray reflection performance is maintained. .

[発明の効果] 以上詳述した通り、本発明の曲げ熱線反射ガラスの製造
方法は、ガラス基板表面に、金属窒化物被膜を含む吸収
膜を形成した後、非酸化性雰囲気中で曲げ加工すること
を特徴とするものであって、 ■ 通常の平板用成膜装置を用いて吸収膜の成膜を行な
うことができ、装置コストが安価となり、また制御作業
も容易で、短時間で成膜できる。
[Effects of the Invention] As detailed above, the method for manufacturing bent heat ray reflective glass of the present invention involves forming an absorbing film containing a metal nitride film on the surface of a glass substrate, and then bending the glass in a non-oxidizing atmosphere. It is characterized by the following: ■ Absorbing film can be formed using ordinary flat plate film forming equipment, equipment cost is low, control work is easy, and film can be formed in a short time. can.

■ 平板ガラスに成膜するため、膜欠陥が発生する可能
性が極めて低い。
■ Since the film is formed on flat glass, the possibility of film defects occurring is extremely low.

■ 曲げ加工により歪が発生したり、色調が変化したり
することがなく、光学特性の低下も著しく小さい。
■ There is no distortion or change in color tone due to bending, and the deterioration of optical properties is extremely small.

等の優れた効果を有する。It has excellent effects such as

従って、本発明によれば、低コストで高い生産性のもと
に、高特性曲げ熱線反射ガラスを提供することができ、
本発明の工業的有用性は極めて高い。
Therefore, according to the present invention, it is possible to provide a high-performance bent heat ray reflective glass at low cost and high productivity.
The industrial utility of the present invention is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は各々本発明で製造される曲げ熱線反
射ガラスの一実施例を示す断面図である。第3図は本発
明の方法の実施に好適なスパッタリング装置の構成を示
す概略図、第4図は本発明の実施に好適な電気炉の構成
を示す概略図である。第5図は実施例1及び比較例1の
結果を示すグラフ、第6図は実施例2及び比較例2の結
果を示すグラフ、第7図は実施例3及び比較例3の結果
を示すグラフである。 1・・・曲げ熱線反射ガラス、 2・・・ガラス基板、 3・・・金属窒化物被膜、 4・・・金属酸化物被膜。 代理人  弁理士  重 野  剛 第3図 第4図 波  長(nm) 波  長 (nm)
FIG. 1 and FIG. 2 are sectional views each showing an embodiment of the bent heat ray reflective glass manufactured by the present invention. FIG. 3 is a schematic diagram showing the configuration of a sputtering apparatus suitable for implementing the method of the present invention, and FIG. 4 is a schematic diagram showing the configuration of an electric furnace suitable for implementing the present invention. Fig. 5 is a graph showing the results of Example 1 and Comparative Example 1, Fig. 6 is a graph showing the results of Example 2 and Comparative Example 2, and Fig. 7 is a graph showing the results of Example 3 and Comparative Example 3. It is. DESCRIPTION OF SYMBOLS 1...Bent heat ray reflective glass, 2...Glass substrate, 3...Metal nitride coating, 4...Metal oxide coating. Agent Patent Attorney Tsuyoshi Shigeno Figure 3 Figure 4 Wavelength (nm) Wavelength (nm)

Claims (5)

【特許請求の範囲】[Claims] (1)ガラス基板表面に、金属窒化物被膜を含む吸収膜
を形成した後、非酸化性雰囲気中で曲げ加工することを
特徴とする曲げ熱線反射ガラスの製造方法。
(1) A method for producing bent heat-reflective glass, which comprises forming an absorbing film containing a metal nitride film on the surface of a glass substrate, and then bending the glass in a non-oxidizing atmosphere.
(2)非酸化性雰囲気が、N_2、Ar及びH_2より
なる群から選ばれる1種又は2種以上よりなる雰囲気で
あることを特徴とする特許請求の範囲第1項に記載の方
法。
(2) The method according to claim 1, wherein the non-oxidizing atmosphere is an atmosphere consisting of one or more selected from the group consisting of N_2, Ar, and H_2.
(3)金属窒化物が窒化クロム、窒化チタン又は窒化チ
タンアルミニウムであることを特徴とする特許請求の範
囲第1項又は第2項に記載の方法。
(3) The method according to claim 1 or 2, wherein the metal nitride is chromium nitride, titanium nitride, or titanium aluminum nitride.
(4)吸収膜が金属窒化被膜とその上に形成された金属
酸化物被膜とからなることを特徴とする特許請求の範囲
第1項ないし第3項のいずれか1項に記載の方法。
(4) The method according to any one of claims 1 to 3, wherein the absorbing film comprises a metal nitride film and a metal oxide film formed thereon.
(5)金属酸化物が酸化チタン又は酸化スズであること
を特徴とする特許請求の範囲第1項ないし第4項のいず
れか1項に記載の方法。
(5) The method according to any one of claims 1 to 4, wherein the metal oxide is titanium oxide or tin oxide.
JP62099128A 1987-04-22 1987-04-22 Method for manufacturing bent heat ray reflective glass Expired - Fee Related JPH0735267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62099128A JPH0735267B2 (en) 1987-04-22 1987-04-22 Method for manufacturing bent heat ray reflective glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62099128A JPH0735267B2 (en) 1987-04-22 1987-04-22 Method for manufacturing bent heat ray reflective glass

Publications (2)

Publication Number Publication Date
JPS63265844A true JPS63265844A (en) 1988-11-02
JPH0735267B2 JPH0735267B2 (en) 1995-04-19

Family

ID=14239116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099128A Expired - Fee Related JPH0735267B2 (en) 1987-04-22 1987-04-22 Method for manufacturing bent heat ray reflective glass

Country Status (1)

Country Link
JP (1) JPH0735267B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316926A (en) * 1989-06-15 1991-01-24 Daido Steel Co Ltd Production of large-sized curved glass having metal coating on surface
JPH0355832U (en) * 1989-10-03 1991-05-29
WO2004002908A1 (en) * 2002-06-28 2004-01-08 Guardian Industries Corp Apparatus and method for bending coated glass using microwaves
WO2024041799A1 (en) 2022-08-22 2024-02-29 Saint-Gobain Glass France Vehicle window having an opaque coating

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
CN107735697B (en) 2015-09-14 2020-10-30 康宁股份有限公司 Antireflection article and display device including the same
EP3837223A1 (en) 2018-08-17 2021-06-23 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316926A (en) * 1989-06-15 1991-01-24 Daido Steel Co Ltd Production of large-sized curved glass having metal coating on surface
JPH0355832U (en) * 1989-10-03 1991-05-29
WO2004002908A1 (en) * 2002-06-28 2004-01-08 Guardian Industries Corp Apparatus and method for bending coated glass using microwaves
US7140204B2 (en) 2002-06-28 2006-11-28 Guardian Industries Corp. Apparatus and method for bending glass using microwaves
WO2024041799A1 (en) 2022-08-22 2024-02-29 Saint-Gobain Glass France Vehicle window having an opaque coating

Also Published As

Publication number Publication date
JPH0735267B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US4790922A (en) Temperable low emissivity and reflective windows
JP2786400B2 (en) Heat-treated coated glass and method for producing the same
US4861669A (en) Sputtered titanium oxynitride films
KR920001387B1 (en) Low emissivity film for automotive heat load reduction
JP4031760B2 (en) Substrates with low emissivity coating
JPH01301537A (en) Highly permeable low radiation article and production thereof
JPS62148344A (en) Composite organic mineral compound accumulated on glass substrate coated with optional more than one thin film metallayer
JPS63265844A (en) Production of bent heat ray reflecting glass
KR20100057442A (en) Low emissivity glass having improved durability
JPS63265846A (en) Bent heat ray reflection glass and production thereof
JPS5918134A (en) Manufacture of heat reflecting laminate having oxide film
JP3746525B2 (en) Method for producing carrier for surface plasmon resonance analysis
NO123144B (en)
JP3792738B2 (en) Method for producing carrier for surface plasmon resonance analysis
JPH0325506B2 (en)
JPS6042253A (en) Heat-ray reflecting glass
JPH0460061B2 (en)
CN111830604A (en) Anti-reflection and anti-reflection composite film for glass substrate and preparation method thereof
JPH07188925A (en) Preparation of carrier for resonance analysis of surface plasmon
CN206886961U (en) A kind of high antioxidant heat-protecting glass
CN113998900B (en) Manufacturing method of magnetron sputtering solar control film toughened glass
JP2574008B2 (en) Highly durable heat ray shielding glass and method for producing the same
US5955153A (en) Production of carriers for surface plasmon resonance
JPH01261242A (en) Transparent heat-reflecting plate
JPH0430039Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees