JPS63265160A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS63265160A
JPS63265160A JP62100388A JP10038887A JPS63265160A JP S63265160 A JPS63265160 A JP S63265160A JP 62100388 A JP62100388 A JP 62100388A JP 10038887 A JP10038887 A JP 10038887A JP S63265160 A JPS63265160 A JP S63265160A
Authority
JP
Japan
Prior art keywords
plate
sealing plate
oxygen sensor
oxygen
operating temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62100388A
Other languages
Japanese (ja)
Other versions
JPH0743341B2 (en
Inventor
Takeshi Nagai
彪 長井
Yu Fukuda
祐 福田
Kenzo Ochi
謙三 黄地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62100388A priority Critical patent/JPH0743341B2/en
Priority to EP87118697A priority patent/EP0273304B1/en
Priority to DE8787118697T priority patent/DE3780433T2/en
Priority to AU82669/87A priority patent/AU580726B2/en
Priority to CA000554746A priority patent/CA1276230C/en
Priority to US07/135,093 priority patent/US4808293A/en
Priority to KR1019870014550A priority patent/KR900005222B1/en
Publication of JPS63265160A publication Critical patent/JPS63265160A/en
Publication of JPH0743341B2 publication Critical patent/JPH0743341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make the operating temperature of an oxygen sensor to agree with a specified temperature and to facilitate the detection of the operating temperature, by arranging a sealing plate consisting of conductive ceramics so as to face a solid state electrolytic plate on a spiral spacer. CONSTITUTION:Electrode films 2 are formed on both surfaces of a solid-state electrolytic plate 1 having oxygen ion conductivity. A spiral spacer 6, which surrounds the electrode films 2 and has an interval between the starting end and the terminating end, is arranged on one surface of the electrolytic plate 1. A sealing plate 7 is further arranged. A spiral diffusing hole 8 is formed with a spiral space, which is surrounded with the facing partitioning walls of the spacer 6, the electrolytic plate 1 and the sealing plate 7. Oxygen diffuses into the electrode films 2 through the diffusing hole 8 from an outer space. The sealing plate consists of any one kind of bismuth oxide-based ceramics and vanadium oxide based ceramics. Thus the operating temperature of an oxygen sensor is made to agree with a specified temperature at which the resistance value of the sealing plate 7 decreases rapidly, and the operating temperature is readily detected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は雰囲気ガス中の酸素濃度を測定するための酸素
センサに関し、特に、酸素イオン伝導性固体電解質を利
用した限界電流式酸素センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an oxygen sensor for measuring the oxygen concentration in an atmospheric gas, and particularly relates to a limiting current type oxygen sensor using an oxygen ion conductive solid electrolyte. .

従来の技術 従来この種の酸素センサは、第2図に示すように、酸素
イオン伝導性を有する例えばジルコニア系セラミックか
らなる固体電解質板1の両面に白金などの金属による電
極膜2(陽極2a、陰極2b)を形成し、さらに前記陰
極2b側の固体電解質板1の上に密閉空間を形成するた
めのU字状の蓋体3を配置し、さらに蓋体3に外部空間
と密閉空間を連通する酸素の拡散孔4を設けた構成とな
っている。なお、この拡散孔4は陰極2bの酸素送出能
力よりも少量の酸素を拡散させる大きさに形成されてい
る。
2. Description of the Related Art Conventionally, this type of oxygen sensor has electrode films 2 (anode 2a, anode 2a, A U-shaped lid 3 is arranged on the solid electrolyte plate 1 on the cathode 2b side to form a sealed space, and the lid 3 communicates the external space with the sealed space. It has a structure in which oxygen diffusion holes 4 are provided. Note that the diffusion hole 4 is formed in a size that allows a smaller amount of oxygen to be diffused than the oxygen delivery capacity of the cathode 2b.

この構成において、酸素センサを動作可能な温度に加熱
した後、電極2間に直流電圧を印加すると、陰極2bで
酸素分子のイオン化反応が起こり、イオン化した酸素イ
オンが固体電解質板1中を陽極2aに向かって移動し、
陽極2aで酸素イオンの分子化反応が起こシ外部空間へ
排出される。一方、密閉空間への酸素の流入は蓋体3に
設けられた拡散孔4により制限され、陰極2bへの酸素
の流入が拡散律速となる。その結果、固体電解質板1中
を酸素イオンが移動することによって生ずる電流は、印
加電圧の増加に対し、ある電圧以降一定直を示す。この
一定となる電流が限界電流である。これが雰囲気ガス中
の酸素濃度にほぼ比例することから、前記限界電流を検
出することにより酸素濃度を測定することができる。
In this configuration, when the oxygen sensor is heated to an operable temperature and then a DC voltage is applied between the electrodes 2, an ionization reaction of oxygen molecules occurs at the cathode 2b, and the ionized oxygen ions pass through the solid electrolyte plate 1 to the anode 2a. move towards
A molecularization reaction of oxygen ions occurs at the anode 2a and is discharged into the external space. On the other hand, the inflow of oxygen into the closed space is restricted by the diffusion hole 4 provided in the lid 3, and the inflow of oxygen into the cathode 2b is diffusion-controlled. As a result, the current generated by the movement of oxygen ions in the solid electrolyte plate 1 remains constant after a certain voltage as the applied voltage increases. This constant current is the limiting current. Since this is approximately proportional to the oxygen concentration in the atmospheric gas, the oxygen concentration can be measured by detecting the limiting current.

(例えば、特開昭59−192953号公報、特開昭6
0−252254号公報) 発明が解決しようとする問題点 前記拡散孔4を形成した蓋体3の材料は耐熱性、耐食性
の点からセラミック材料が適用されることが多い。拡散
孔4の大きさは酸素センサの動作温度、限界電流の大き
さにより任意に設定される。
(For example, JP-A-59-192953, JP-A-6
0-252254) Problems to be Solved by the Invention Ceramic materials are often used as the material for the lid 3 in which the diffusion holes 4 are formed from the viewpoint of heat resistance and corrosion resistance. The size of the diffusion hole 4 is arbitrarily set depending on the operating temperature of the oxygen sensor and the magnitude of the limiting current.

しかし、酸素センサの長期信頼性を確保するには動作温
度は出来るだけ低くすることが望ましい。
However, to ensure long-term reliability of the oxygen sensor, it is desirable to keep the operating temperature as low as possible.

シ/L/フェア系セラミックの固体電解質では酸素イオ
ンの輸送能力の点から最低動作温度は約400℃以上で
ある。この動作温度を得るために蓋体3の表面にヒータ
5が配置されるので、構造が複雑になるという欠点があ
った。また、ヒータ5は印刷模などで形成されるので、
ヒータ5を形成するために特別の工程と時間を必要とす
る。さらに、これらの点は高価格をも派生している。
In the solid electrolyte of C/L/Fair type ceramic, the minimum operating temperature is about 400° C. or higher from the viewpoint of oxygen ion transport ability. In order to obtain this operating temperature, the heater 5 is disposed on the surface of the lid 3, which has the disadvantage of complicating the structure. In addition, since the heater 5 is formed by a printed pattern or the like,
A special process and time are required to form the heater 5. Furthermore, these points also derive from high prices.

問題点を解決するための手段 上記問題点を解決するために本発明の酸素センサは、酸
素イオン伝導性を有する固体電解質板と、前記固体電解
質板の両面に形成された電極膜と、前記電極膜の一方を
囲み始端と終端とが前記固体電解質板上で互いに間隔を
有するように配置された螺旋形スペーサと、前記螺旋形
スペーサ上に前記固体電解質板と相対向するように配置
されると共に導電性セラミックで構成されたシール板と
、前記螺旋形スペーサの相対向する隔壁と前記固体電解
質板とシール板で囲まれて形成される螺旋形拡散孔とか
ら構成される。
Means for Solving the Problems In order to solve the above problems, the oxygen sensor of the present invention includes a solid electrolyte plate having oxygen ion conductivity, an electrode film formed on both sides of the solid electrolyte plate, and the electrode. a spiral spacer surrounding one of the membranes and having a starting end and a terminal end spaced apart from each other on the solid electrolyte plate; and a spiral spacer arranged on the spiral spacer so as to face the solid electrolyte plate; It is composed of a sealing plate made of conductive ceramic, opposing partition walls of the spiral spacer, and a spiral diffusion hole formed by being surrounded by the solid electrolyte plate and the sealing plate.

作  用 本発明の酸素センサにおいて、シール板は正の抵抗温度
係数を有する導電性セラミックであるので、シール板に
通電加熱することによりヒータとして作用する。他方、
シール板は螺旋形スペーサと気密に接着して螺旋形拡散
穴を形成する構成部品の一つとしても利用される。この
ように、本発明の酸素センサは螺旋形拡散穴の形成と同
時にヒータも形成される点に特徴がある。従って、ヒー
タを特別に形成する必要がない。
Function In the oxygen sensor of the present invention, since the seal plate is made of conductive ceramic having a positive temperature coefficient of resistance, it acts as a heater by heating the seal plate with electricity. On the other hand,
The sealing plate is also used as one of the components that is hermetically bonded to the helical spacer to form the helical diffusion hole. As described above, the oxygen sensor of the present invention is characterized in that the heater is also formed at the same time as the spiral diffusion hole is formed. Therefore, there is no need to specially form the heater.

実施例 第1図は本発明の一実施例を示す斜視図である。Example FIG. 1 is a perspective view showing an embodiment of the present invention.

酸素イオン伝導性を有する固体電解質板1の両面に電極
膜2が形成される。固体電解質板1の一方の面に電極膜
2を囲み始端と終端が互いに間隔を有する螺旋形スペー
サ6が配置され、さらに導電性セラミック・シール板7
が配置される。螺旋形拡散穴8は、螺旋形ヌペーサ6の
相対向する隔壁と固体電解質板1とシール板7で囲まれ
た螺旋形空間で゛構成され、酸素は外部空間からこの螺
旋形拡散穴8を通って電極膜2に拡散する。
Electrode films 2 are formed on both sides of a solid electrolyte plate 1 having oxygen ion conductivity. A helical spacer 6 surrounding the electrode film 2 and having a starting end and a terminal end spaced apart from each other is disposed on one surface of the solid electrolyte plate 1, and further includes a conductive ceramic sealing plate 7.
is placed. The helical diffusion hole 8 is composed of a helical space surrounded by the opposing partition walls of the helical nupacer 6, the solid electrolyte plate 1, and the seal plate 7, and oxygen passes through the helical diffusion hole 8 from the external space. and diffuses into the electrode film 2.

固体電解質板1としては、信頼性、特性の安定性に優れ
るジルコニア系セラミックが良く、また電極膜2として
はPt、Au、Pd、Agなどが用いられる。
The solid electrolyte plate 1 is preferably made of zirconia ceramic, which has excellent reliability and stable characteristics, and the electrode film 2 is preferably made of Pt, Au, Pd, Ag, or the like.

螺旋形スペーサ6は酸素センサの動作温度に耐える耐熱
性、固体電解質板1とシール板7との気密な接着性、お
よび電気的絶縁性が要求される。
The helical spacer 6 is required to have heat resistance to withstand the operating temperature of the oxygen sensor, airtight adhesion between the solid electrolyte plate 1 and the seal plate 7, and electrical insulation.

この要求を満たすものとして、BaO−TiO2−1S
i02系の耐熱性微粒子の分散された低融点ガラスが用
いられる。
BaO-TiO2-1S satisfies this requirement.
A low melting point glass in which i02-based heat-resistant fine particles are dispersed is used.

シール板7としては、螺旋形スペーサ6と同様の耐熱性
、気密な接着性および正の抵抗温度係数を有する導電性
が要求される。この要求を満たすものとして、酸化ビヌ
マス系セラミック、チタン酸バリウム系セラミックがあ
る。
The sealing plate 7 is required to have the same heat resistance as the spiral spacer 6, airtight adhesion, and electrical conductivity with a positive temperature coefficient of resistance. Binumuth oxide ceramics and barium titanate ceramics meet this requirement.

次に具体的実験例を示して、作用と効果を明らかにする
Next, we will show concrete experimental examples to clarify the action and effects.

ZrO2・Y2O3(Y2038 mo l 、%)セ
ラミック1(厚さ014n)の両面にpt印刷電極膜2
(厚さ〜5μm)を形成した。次に、平均粒径〜50μ
mの耐熱性微粒子を分散したPbO−Zr0−B2O3
−9i02系ガラスペーストの印刷膜を、固体電解質板
1の一方の表面に電極膜2を囲んで、第1図に示す形状
で形成した。その後、酸化ビスマス系セラミック・シー
ル板7を上部に配置して、加熱焼成して酸素センサを構
成した。酸化ビスマス系セラミック・シール板7に電極
膜?a 、 7bを形成して、外部電源を用い通電加熱
加して動作温度約400℃を得た。このときの消費電力
は約2.5Wであった。なお、酸化ビスマス系セラミッ
クシール板7の抵抗値を調整するために、電極膜7a、
7bがシール板7の両面に、すなわちコンデンサ型電極
配置にしても良いことは明らかである。酸化ビスマス系
セラミックは% Y I B” 、Sr ICaなどの
不純物を添加することによシ約550〜750℃の間の
一定温度で抵抗値が急激に減少する特徴的抵抗温度特性
を示す。この特性を利用して、酸素センサの応答性を速
くするためにその動作温度を高温(600〜700℃)
にした場合、酸化ビヌマス系セラミヅクの組成を適切に
選ぶことによりシール板7の抵抗は動作温度の前後で急
激に変化するので、抵抗値をモニタすることにより容易
に動作温度が検出され、湿度制御が容易になる長所があ
る。この種セラミックとして、酸化バナジウム系セラミ
ックを用いてもよい。
ZrO2/Y2O3 (Y2038 mol, %) PT printed electrode film 2 on both sides of ceramic 1 (thickness 014n)
(thickness ~5 μm) was formed. Next, the average particle size ~50μ
PbO-Zr0-B2O3 with m heat-resistant fine particles dispersed
A printed film of -9i02 glass paste was formed on one surface of the solid electrolyte plate 1 surrounding the electrode film 2 in the shape shown in FIG. Thereafter, a bismuth oxide-based ceramic sealing plate 7 was placed on top and heated and fired to form an oxygen sensor. Electrode film on bismuth oxide ceramic seal plate 7? A and 7b were formed and heated using an external power source to obtain an operating temperature of about 400°C. Power consumption at this time was approximately 2.5W. In addition, in order to adjust the resistance value of the bismuth oxide ceramic seal plate 7, the electrode film 7a,
It is clear that 7b may be arranged on both sides of the sealing plate 7, that is, in a capacitor type electrode arrangement. By adding impurities such as % Y I B" and Sr ICa, bismuth oxide ceramic exhibits a characteristic resistance temperature characteristic in which the resistance value rapidly decreases at a constant temperature between about 550 and 750 °C. Utilizing the characteristics, the operating temperature of the oxygen sensor is set to high temperature (600-700℃) to speed up the response of the oxygen sensor.
In this case, by appropriately selecting the composition of the vinyl oxide ceramic, the resistance of the seal plate 7 changes rapidly around the operating temperature, so the operating temperature can be easily detected by monitoring the resistance value, and humidity control can be performed. It has the advantage of making it easier. As this type of ceramic, a vanadium oxide ceramic may be used.

なお、モリブデン・シリコン系セラミック、あるいはベ
ロプヌカイト型酸化物系セラミックも導電性を有するの
で、シール板7に用いても良いことは当然である。ただ
し、これらセラミックは、酸化ビスマス系セラミックの
ように一定温度で抵抗値が急激に変化する特性を示さな
いので、動作温度の検出は鑓かしくなる。
Incidentally, since molybdenum-silicon ceramics or veropnukite-type oxide ceramics also have conductivity, it is natural that they may be used for the seal plate 7. However, unlike bismuth oxide ceramics, these ceramics do not exhibit the characteristic of a rapid change in resistance value at a constant temperature, making it difficult to detect the operating temperature.

また、チタン酸鉛・酸化チタン系複合セラミックは、一
定温度で抵抗値が急激に増加する抵抗温度特性を有する
ので、本発明の導電性セラミック・シール板7の材料と
して最適である。例えば、酸化ニオブを添加したチタン
酸鉛・酸化チタン系複合セラミックの抵抗値は、約49
0℃以上の温度領域で急激に1桁以上増加する。従って
、酸素センサの動作温度を490℃にした場合、490
℃以下の温度領域では大きな電力が消費され、490℃
以上の温度領域では小さな電力しか消費されない。従っ
て、チタン酸鉛・酸化チタン複合セラミック・シール板
7はそれ自身で温度を一定に保持する自己温度制御機能
を有するので、酸素センサの湿度制御が容易になるとい
う利点がある。
Further, the lead titanate/titanium oxide composite ceramic has a resistance temperature characteristic in which the resistance value increases rapidly at a constant temperature, so it is optimal as a material for the conductive ceramic seal plate 7 of the present invention. For example, the resistance value of lead titanate/titanium oxide composite ceramic added with niobium oxide is approximately 49
It rapidly increases by more than one digit in the temperature range of 0°C or higher. Therefore, if the operating temperature of the oxygen sensor is 490°C, 490°C
A large amount of power is consumed in the temperature range below 490°C.
Only a small amount of power is consumed in the above temperature range. Therefore, since the lead titanate/titanium oxide composite ceramic sealing plate 7 has a self-temperature control function to maintain a constant temperature by itself, it has the advantage of facilitating humidity control of the oxygen sensor.

このように導電性セラミック・シール板7はヒータとし
て作用すると同時に、他方で螺旋形拡散六8の構成部品
の一つとしても用いられる。従って、ヒータを別個に形
成する必要がなく、酸素センサの構造が簡素化されると
共にその製造工程も大巾に簡素化される。これは、セン
サの信頼性向上、低価格を誘起する。
The conductive ceramic sealing plate 7 thus acts as a heater, and at the same time is also used as one of the components of the helical diffuser 68. Therefore, there is no need to separately form a heater, which simplifies the structure of the oxygen sensor and greatly simplifies its manufacturing process. This induces improved reliability and lower cost of the sensor.

発明の効果 以上のように本発明の酸素センサによれば、次の効果が
得られる。
Effects of the Invention As described above, the oxygen sensor of the present invention provides the following effects.

(1)  ヒータを特別に形成する必要がないので、セ
ンサ構造が簡素化される。
(1) Since there is no need to specially form a heater, the sensor structure is simplified.

((2) シール板はヒータとして作用すると同時に螺
旋形波散孔の構成部品の一つとしても用いられるので、
螺旋形拡散穴を形成するとき同時にヒータも形成される
。この結果、製造工程が大巾に簡素化されると共に低コ
ストが実現される。
((2) The seal plate acts as a heater and is also used as one of the components of the spiral wave scattering hole, so
The heater is also formed at the same time as the spiral diffusion hole is formed. As a result, the manufacturing process is greatly simplified and costs are reduced.

(3)センサ構造および製造工程の簡素化により、信頼
性が向上する。
(3) Reliability is improved by simplifying the sensor structure and manufacturing process.

(4チタン酸鉛・酸化チタン系複合セラミックシール板
は自己温度制御機能を有するので、酸素センサの動作温
度制御が容易になる。
(Since the lead tetratitanate/titanium oxide composite ceramic seal plate has a self-temperature control function, the operating temperature of the oxygen sensor can be easily controlled.

(5)酸化ビスマス系セラミックおよび酸化バナジウム
系セラミックシール板は、一定温度でその抵抗値が急激
に減少するので、酸素センサの動作温度を前記一定温度
と一致することにより、動作温度の検出が容易となる。
(5) Since the resistance value of bismuth oxide ceramic and vanadium oxide ceramic seal plates rapidly decreases at a certain temperature, the operating temperature can be easily detected by making the operating temperature of the oxygen sensor match the above-mentioned certain temperature. becomes.

斜視図、第2図は従来の酸素センサの断面図である。The perspective view and FIG. 2 are cross-sectional views of a conventional oxygen sensor.

1・・・・・・固体電解質板、6・・・・・・螺旋形ス
ペーサ、7・・・・・・導電性セラミック・シール板%
7a17b・・・・・・電極膜、8・・・・・・螺旋形
拡散穴。
1... Solid electrolyte plate, 6... Spiral spacer, 7... Conductive ceramic seal plate%
7a17b... Electrode film, 8... Spiral diffusion hole.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名!−
一面体電瀞貧玖
Name of agent: Patent attorney Toshio Nakao and 1 other person! −
Monohedral electrical conductor

Claims (3)

【特許請求の範囲】[Claims] (1)酸素イオン伝導性を有する固体電解質板と、前記
固体電解質板の両面に形成された電極膜と、前記電極膜
の一方を囲み始端と終端とが前記固体電解質板上で互い
に間隔を有するように配置された螺旋形スペーサと、前
記螺旋形スペーサ上に前記固体電解質板と相対向するよ
うに配置されると共に導電性セラミックで構成されたシ
ール板と、前記螺旋形スペーサの相対向する隔壁と前記
固体電解質板とシール板で囲まれて形成される螺旋形拡
散孔とからなる酸素センサ。
(1) A solid electrolyte plate having oxygen ion conductivity, an electrode film formed on both sides of the solid electrolyte plate, and a starting end and a terminal end surrounding one of the electrode films having a distance from each other on the solid electrolyte board. a helical spacer arranged so as to be arranged as shown in FIG. and a spiral diffusion hole surrounded by the solid electrolyte plate and the seal plate.
(2)シール板が酸化ビスマス系セラミック、酸化バナ
ジウム系セラミックのいずれか一種からなる特許請求の
範囲第1項記載の酸素センサ。
(2) The oxygen sensor according to claim 1, wherein the sealing plate is made of either bismuth oxide ceramic or vanadium oxide ceramic.
(3)シール板がチタン酸鉛・酸化チタン系複合セラミ
ックからなる特許請求の範囲第1項記載の酸素センサ。
(3) The oxygen sensor according to claim 1, wherein the sealing plate is made of a lead titanate/titanium oxide composite ceramic.
JP62100388A 1986-12-19 1987-04-23 Oxygen sensor Expired - Lifetime JPH0743341B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62100388A JPH0743341B2 (en) 1987-04-23 1987-04-23 Oxygen sensor
EP87118697A EP0273304B1 (en) 1986-12-19 1987-12-16 Oxygen sensor
DE8787118697T DE3780433T2 (en) 1986-12-19 1987-12-16 OXYGEN SENSOR.
AU82669/87A AU580726B2 (en) 1986-12-19 1987-12-17 Oxygen sensor
CA000554746A CA1276230C (en) 1986-12-19 1987-12-18 Oxygen sensor
US07/135,093 US4808293A (en) 1986-12-19 1987-12-18 Oxygen sensor and method of making such sensor
KR1019870014550A KR900005222B1 (en) 1986-12-19 1987-12-19 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62100388A JPH0743341B2 (en) 1987-04-23 1987-04-23 Oxygen sensor

Publications (2)

Publication Number Publication Date
JPS63265160A true JPS63265160A (en) 1988-11-01
JPH0743341B2 JPH0743341B2 (en) 1995-05-15

Family

ID=14272617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62100388A Expired - Lifetime JPH0743341B2 (en) 1986-12-19 1987-04-23 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPH0743341B2 (en)

Also Published As

Publication number Publication date
JPH0743341B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
KR890001983B1 (en) Sensor for concentration of o2
US5124021A (en) Solid electrolyte gas sensor and method of measuring concentration of gas to be detected in gas mixture
EP0125069A1 (en) Electrochemical element and device including the element
JPH08122287A (en) Measuring device and method of concentration of gas component
JPH0244392B2 (en)
EP0371774B1 (en) A humidity measurement device by use of an electrochemical cell
JPH112621A (en) Manufacturing method of nox sensor and nox sensor
JPS5965758A (en) Electrochemical device and cell
JPS63265160A (en) Oxygen sensor
JP2598771B2 (en) Composite gas sensor
JP2948124B2 (en) Oxygen sensor
JPS62198748A (en) Oxygen sensor
JP4819239B2 (en) Solid electrolyte type hydrogen / water vapor measuring method and measuring apparatus using hydrogen pump
JPS63265161A (en) Oxygen sensor
JP2605420B2 (en) Limit current type oxygen sensor
JPH06265516A (en) Oxygen/humidity sensor
JPH03120456A (en) Oxygen sensor
Suzuki et al. An application of oxide and silver electrode on the BaO-doped Bi2O3 electrolyte
JPH03277959A (en) Gas-concentration sensor
JP3010752B2 (en) Limit current type oxygen sensor
JP3067258B2 (en) Oxygen sensor
JPS62115356A (en) Electrochemical device
JPH03181849A (en) Threshold current type oxygen sensor
JPH0560054B2 (en)
JPH0664006B2 (en) Oxygen sensor