JPH0395454A - Limiting current-type oxygen sensor - Google Patents

Limiting current-type oxygen sensor

Info

Publication number
JPH0395454A
JPH0395454A JP1233226A JP23322689A JPH0395454A JP H0395454 A JPH0395454 A JP H0395454A JP 1233226 A JP1233226 A JP 1233226A JP 23322689 A JP23322689 A JP 23322689A JP H0395454 A JPH0395454 A JP H0395454A
Authority
JP
Japan
Prior art keywords
plate
solid electrolyte
glass
seal plate
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1233226A
Other languages
Japanese (ja)
Other versions
JP2605420B2 (en
Inventor
Kunihiro Tsuruta
邦弘 鶴田
Takeshi Nagai
彪 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1233226A priority Critical patent/JP2605420B2/en
Publication of JPH0395454A publication Critical patent/JPH0395454A/en
Application granted granted Critical
Publication of JP2605420B2 publication Critical patent/JP2605420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To improve processability and productivity and to stabilize characteristics for a long term by allowing a spiral spacer to tightly and rigidly secure a solid electrolytic plate with a seal plate through heating and melting of a protruding body of a mixture of glass and heat-proof very fine particles of a predetermined particle size and a film made of glass. CONSTITUTION:A spiral spacer 5 is placed between one surface of a solid electrolytic plate 1 and a seal plate 6. The solid electrolytic plate 1 with conductivity of oxygen ions has electrode films 2 formed at either face thereof. A protruding body 5a of a mixture of glass of the spacer 5 and heat-proof very fine particles of a predetermined particle size is tightly secured, via a film 5b made of glass, between the electrolytic plate 1 and seal plate 6 through heating and melting. A scattering hole 7 is formed in the spiral room and the oxygen is scattered through this room to the electrode film 2. Therefore, the scattering hole 7 is formed with good productivity simultaneously when the electrolytic plate 1, seal plate 6 and spacer 5 are bonded. Since the scattering hole 7 is formed parallel to the electrolytic plate 1, invasion of dust or foreign substance can be prevented. Moreover, the scattering hole 7 can be formed in the periphery of the electrode film 2 with a large opening area and a large length, thus improving the accuracy in size.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は雰囲気ガス中の酸素濃度を測定するための酸素
センサに関し、特に、酸素イオン伝導性固体電解質を利
用した限界電流式酸素センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an oxygen sensor for measuring the oxygen concentration in an atmospheric gas, and particularly relates to a limiting current type oxygen sensor using an oxygen ion conductive solid electrolyte. .

従来の技術 従来この種の酸素センサは、第5図に示すように、酸素
イオン伝導性を有する例えばジルコニア系セラミックか
らなる固体電解質板1の両面に白金などの金属による電
極膜2(陽極2a、陰極2b)を形成し、さらに前記陰
極2b側の固体電解質板1の上に密閉空間を形或するた
めのU字状の蓋体3を配置し、さらに蓋体3に外部空間
と密閉空間を連通ずる酸素の拡散孔4を設けた構威とな
っている。なお、この拡散孔4は陰極2bの酸素送出能
力よりも少量の酸素を拡敗させる大きさに形成されてい
る。
2. Description of the Related Art Conventionally, as shown in FIG. 5, this type of oxygen sensor has electrode films 2 (anode 2a, anode 2a, A U-shaped lid 3 is placed on the solid electrolyte plate 1 on the cathode 2b side to form a sealed space, and the lid 3 is provided with an external space and a sealed space. The structure includes oxygen diffusion holes 4 that communicate with each other. Note that the diffusion hole 4 is formed in a size that allows a smaller amount of oxygen to spread than the oxygen delivery capacity of the cathode 2b.

この構威において、酸素センサを動作可能な温度に力d
熱した後、電極2間に直流電圧を印加すると、陰極2b
で酸素分子のイオン化反応が起こり、イオン化した酸素
イオンが固体電解質板l中を陽極2aに向かって移動し
陽極2aで酸素イオンの分子化反応が起こり外部空間へ
排出される。一方、密閉空間への酸素の流入は蓋体3に
設けられた拡散孔4により制限され、陰極2bへの酸素
の流入が拡散律速となる。その結果、固体電解質板1中
を酸素イオンが移動することによって生ずる電流は、印
加電圧の増加に対し、ある電圧以降一定値を示す。この
一定となる電流が限界電流である。
In this configuration, the oxygen sensor is heated to an operating temperature.
After heating, when a DC voltage is applied between the electrodes 2, the cathode 2b
An ionization reaction of oxygen molecules occurs, and the ionized oxygen ions move toward the anode 2a in the solid electrolyte plate 1. A moleculeization reaction of oxygen ions occurs at the anode 2a and is discharged to the outside space. On the other hand, the inflow of oxygen into the closed space is restricted by the diffusion hole 4 provided in the lid 3, and the inflow of oxygen into the cathode 2b is diffusion-controlled. As a result, the current generated by the movement of oxygen ions in the solid electrolyte plate 1 exhibits a constant value after a certain voltage as the applied voltage increases. This constant current is the limiting current.

これが雰囲気ガス中の酸素濃度にほぼ比例することから
、前記限界電流を検出することにより酸素濃度を測定す
ることができる。(例えば、特開昭59−192953
号公報、特開昭60−252254号公報)発明が解決
しようとする課題 前記拡敗孔4を形成した蓋体3の材料は耐熱性、耐食性
の点からセラξンク材料が適用されることが多い。拡散
孔4の大きさは酸素センサの動作温度、限界電流の大き
さにより任意に設定される。
Since this is approximately proportional to the oxygen concentration in the atmospheric gas, the oxygen concentration can be measured by detecting the limiting current. (For example, JP-A-59-192953
(Japanese Patent Application Laid-open No. 60-252254) Problems to be Solved by the Invention As the material of the lid body 3 in which the expansion hole 4 is formed, a ceramic material is preferably used from the viewpoint of heat resistance and corrosion resistance. many. The size of the diffusion hole 4 is arbitrarily set depending on the operating temperature of the oxygen sensor and the magnitude of the limiting current.

しかし、酸素センサの長期信頼性を確保するには動作温
度は出来るだり低くずることが望ましい。
However, to ensure long-term reliability of the oxygen sensor, it is desirable to lower the operating temperature as much as possible.

ジルコニア系セラミックの固体電解質では酸素イオンの
輸送能力の点から最低動作温度は約400゜Cである。
A solid electrolyte made of zirconia ceramic has a minimum operating temperature of about 400°C from the viewpoint of its ability to transport oxygen ions.

この動作温度で実用的限界電流値を得るには拡散孔4は
直径が数十μm,長さ数mmの極めて小さなものとなる
。したがって、拡散孔4をセラミック材料に精度よく穴
開け加工を施すことは実用上困難であり、特性のばらつ
きが大きくなるとともに、微細加工となるために生産性
が悪く、コストが高くなるという課題があった。
In order to obtain a practical limiting current value at this operating temperature, the diffusion hole 4 must be extremely small, with a diameter of several tens of μm and a length of several mm. Therefore, it is practically difficult to drill the diffusion holes 4 in ceramic materials with high precision, and there are problems such as large variations in characteristics, poor productivity due to micromachining, and high costs. there were.

また、蓋体3の上部に拡散孔4を形或する構或では酸素
センサの製造過程や実使用の際、ホコリや異物などが拡
散孔4に侵入してその孔径を変化させたり、閉塞させた
りする懸念がある。その結果、酸素センサ特性に経時変
化が起こり、誤動作の原因となる課題がある。
In addition, in a structure in which the diffusion hole 4 is formed in the upper part of the lid body 3, dust or foreign matter may enter the diffusion hole 4 and change its diameter or block it during the manufacturing process or actual use of the oxygen sensor. There are concerns that As a result, there is a problem in that the oxygen sensor characteristics change over time, causing malfunction.

本発明はかかる従来の課題を解消するもので、力1工性
、生産性が優れているとともに、特性のばらつきが少な
く、長期にわたり安定した特性を実現し得る酸素センサ
を提供することを目的とする。
The present invention has been made to solve these conventional problems, and aims to provide an oxygen sensor that has excellent workability and productivity, has little variation in characteristics, and can realize stable characteristics over a long period of time. do.

課題を解決するための手段 上記課題を解消するために本発明の酸素センサは、固体
電解質板と、前記固体電解質板の両面に形成された電極
膜と、前記電極膜の一方を囲み始端とP:端とが前記固
体電解質機上で互いに間隔を有するように配置された螺
旋形スペーサと、前記螺旋形スペーサの相対向する隔壁
と前記固体電解質板とシール板で囲まれる螺旋形拡散孔
を備えた構或であり、前記螺旋形スペーサが、硝子と所
定粒径耐熱微粒子の混合物からなる突起体と、硝子から
なる膜との加熱溶融で前記固体電解質板と前記シール板
とを密着固定している。
Means for Solving the Problems In order to solve the above problems, the oxygen sensor of the present invention includes a solid electrolyte plate, an electrode film formed on both sides of the solid electrolyte plate, and a starting end and a point surrounding one of the electrode films. : a helical spacer whose ends are spaced apart from each other on the solid electrolyte machine, and a helical diffusion hole surrounded by opposing partition walls of the helical spacer, the solid electrolyte plate, and the seal plate. The helical spacer has a structure in which the solid electrolyte plate and the seal plate are closely fixed by heating and melting a protrusion made of a mixture of glass and heat-resistant fine particles of a predetermined size and a film made of glass. There is.

作用 本発明の上記構或において、螺旋形拡散孔が螺旋形スペ
ーサと固体電解質板とシール板の接着の際に同時に形成
されるので従来の酸素センヅにおける拡散孔の如く、困
難な穴開け加工が不必要であるとともに、本発明の拡散
孔が固体電解質板と平行に形成されるためgA旋形拡敗
孔がホコリや異物などの侵入が防止される。また、螺旋
形拡敗孔が電極膜の周囲で形成されるので、拡散孔の開
口面積 長さを大きく設計でき、寸法精度が向上する。
Function: In the above structure of the present invention, the spiral diffusion hole is formed at the same time as the spiral spacer, the solid electrolyte plate, and the seal plate are bonded together, so unlike the diffusion hole in the conventional oxygen sensor, the difficult drilling process is not required. This is not necessary, and since the diffusion holes of the present invention are formed parallel to the solid electrolyte plate, the gA spiral expansion holes are prevented from entering dust, foreign matter, and the like. Furthermore, since the spiral diffusion hole is formed around the electrode membrane, the opening area and length of the diffusion hole can be designed to be large, improving dimensional accuracy.

また、螺旋形スペーザが、所定粒径の耐熱微粒子を分散
した硝子からなる突起体と、蛸子からなる膜体の加熱溶
融で固体電解質板とシール板との密着固定を行っている
ので、2枚の板の密着が両者の硝子によって確実に行な
われしかも両者間のギヤ,ブ(即ち拡散孔)寸法精度が
一層向上ずる。
In addition, the helical spacer tightly fixes the solid electrolyte plate and the seal plate by heating and melting the projections made of glass in which heat-resistant fine particles of a predetermined size are dispersed and the membrane made of octopus. The two plates are firmly attached to each other by the glass on both sides, and the dimensional accuracy of the gears and holes (that is, the diffusion holes) between the two plates is further improved.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第1図は本発明の限界電流式酸素センサの実施例を示す
もので同図(a)は酸素センサの分解斜視図、同図(b
)は酸素センサの一部破断斜視図である。
FIG. 1 shows an embodiment of the limiting current type oxygen sensor of the present invention, and FIG. 1(a) is an exploded perspective view of the oxygen sensor, and FIG.
) is a partially cutaway perspective view of the oxygen sensor.

第1図(a)、(b)において、■は酸素イオン伝導性
を有する固体電解質板でこの両面には電極膜2が形戚さ
れる。固体電解質板1の一力の面に電極膜2を囲め、始
端と終端が互いに間隔を有する螺旋形スベーサ5が配置
され、さらにシール板6が配置される。本発明の拡散孔
7は、螺旋形スベーザ5の相対向する隔壁と固体電解質
板■とシール板6で囲まれた螺旋形の空間で形戒され、
酸素は前記空間を通して電極膜2へ拡散する。
In FIGS. 1(a) and 1(b), ▪ indicates a solid electrolyte plate having oxygen ion conductivity, and electrode films 2 are formed on both sides of the solid electrolyte plate. A spiral spacer 5 which surrounds the electrode film 2 and whose starting and ending ends are spaced apart from each other is disposed on one side of the solid electrolyte plate 1, and further a sealing plate 6 is disposed. The diffusion hole 7 of the present invention is defined by a spiral space surrounded by the opposing partition walls of the spiral diffuser 5, the solid electrolyte plate 2, and the seal plate 6,
Oxygen diffuses into the electrode film 2 through the space.

一方、螺旋形スペーザ5は、硝子と所定粒径耐熱微粒子
の混合物からなる突起体5aであり、硝子からなる膜体
5bを介して固体電解質板1とシール板6とを加熱溶融
により密着固定している。
On the other hand, the spiral spacer 5 is a protrusion 5a made of a mixture of glass and heat-resistant fine particles of a predetermined particle size, and is tightly fixed to the solid electrolyte plate 1 and the seal plate 6 by heating and melting through a film body 5b made of glass. ing.

固体電解質板1の材料は、長期にわたる信頼性、特性の
安定性などの点で最も実用的なジルコニア系セラミック
が挙げられ、その中でもイッ1・リアを添加したジルコ
ニアが良い。
As the material for the solid electrolyte plate 1, zirconia-based ceramics are the most practical in terms of long-term reliability and stability of characteristics, and among these, zirconia doped with Il-lia is preferable.

電極膜2の材料としては白金、金、パラジウム、銀など
が挙げられるが特に限定されるものではない。
Examples of the material for the electrode film 2 include platinum, gold, palladium, silver, etc., but are not particularly limited.

螺旋形スベーサ5は酸素センサの使用温度で充分耐え得
る耐熱性と、固体電解質板1とシール板6との気密性を
実現した接着性が要求され、その材料としてはガラスが
挙げられる。
The helical spacer 5 is required to have heat resistance sufficient to withstand the operating temperature of the oxygen sensor, and adhesiveness that achieves airtightness between the solid electrolyte plate 1 and the seal plate 6, and the material thereof is glass.

ガラス材料は固体電解質板1としてジルコニア系セラQ
 ’7クを適用した場合、熱膨張が同程度であることが
望ましく、pb○−Zn〇一B203−Si○2系、K
20−Pb〇一Si○2系、Nax O−K2 0−P
b○−Si○2系、Na.○CaO−Si02系、K2
0−Ca〇一Si○2系、BaO−Si○2−Na20
系ガラスが挙げられる。ところで、螺旋形スベーサ5と
してガラスのみで構威した場合、シール板6を上部に配
置後、加熱焼威を行なうとガラスの軟化によりシール板
6が沈降し螺旋形スペーサ5のギャップ、即ち拡散孔4
の寸法のばらつきが太き《なる。本発明ではこれを防止
するため、ガラス或分中にガラス或分よりも融点の高い
耐熱性粒子を分散配置する。前記耐熱性粒子がシール板
6の沈降を防ぎ、安定したギャップの形或を実現できる
。なお、前記耐熱性粒子の大きさを所定粒径にそろえる
ことにより前記ギャップの寸法精度が向上ずる。
The glass material is zirconia-based CeraQ as the solid electrolyte plate 1.
When applying '7', it is desirable that the thermal expansion is the same, and
20-Pb○1Si○2 series, Nax O-K2 0-P
b○-Si○2 system, Na. ○CaO-Si02 series, K2
0-Ca〇1Si○2 system, BaO-Si○2-Na20
Examples include glass. By the way, when the spiral spacer 5 is made of only glass, when the seal plate 6 is placed on the top and heated and burned, the seal plate 6 sinks due to the softening of the glass, and the gap of the spiral spacer 5, that is, the diffusion hole. 4
The variation in dimensions becomes thicker. In the present invention, in order to prevent this, heat-resistant particles having a melting point higher than that of the glass are dispersed in the glass. The heat-resistant particles prevent the seal plate 6 from settling, and a stable gap shape can be realized. The dimensional accuracy of the gap can be improved by adjusting the size of the heat-resistant particles to a predetermined particle diameter.

螺旋形スペーサ5の形或手段としてはスクリーン印刷法
が最適である。この場合、前記ガラス威分を含むペース
トに前記耐熱性粒子を適量添加し混合分散したものを前
記螺旋形スベーサ5のバクーンを用いて固体電解質板1
の面上に電極膜2を囲むように印刷し乾燥焼或によって
突起体5aを形成している。
Screen printing is the most suitable method for forming the spiral spacer 5. In this case, an appropriate amount of the heat-resistant particles is added to the paste containing the glass component, mixed and dispersed, and then the solid electrolyte plate is
The protrusions 5a are formed by printing on the surface of the electrode film 2 so as to surround the electrode film 2, and then drying and baking.

一方、突起体5aをシール板6と密着固定する場合、突
起体5aのガラス中に分散した耐熱微粒子の影響でシー
ルvi.6との直接接合は充分なる密着度が得られず限
界電流が得られない。本発明はこれを防止するため、硝
子からなる膜5bを介して密着固定し、固体電解質1と
シール板6との密着が硝子によって完ぺきに行なわれる
様にした。
On the other hand, when the protrusion 5a is closely fixed to the seal plate 6, the seal vi. 6, a sufficient degree of adhesion cannot be obtained and a limiting current cannot be obtained. In the present invention, in order to prevent this, the solid electrolyte 1 and the sealing plate 6 are tightly fixed through a film 5b made of glass, so that the solid electrolyte 1 and the sealing plate 6 are perfectly adhered by the glass.

シール仮6の材料は、熱膨張率、耐熱性を考慮してジル
コニア径セラ旦ツクス、フォルステライトが用いられる
。本発明の一実施例である限界電流式酸素センサに用い
るシール板6の構造を第2図(a)に、同図のAA”線
断面図を同図(b)に示す。
As the material for the temporary seal 6, zirconia ceramics and forsterite are used in consideration of thermal expansion coefficient and heat resistance. FIG. 2(a) shows the structure of the seal plate 6 used in the limiting current type oxygen sensor which is an embodiment of the present invention, and FIG. 2(b) shows a cross-sectional view taken along line AA'' in the same figure.

シール板6には、ヒータ8が印刷法で形成されており、
さらにその上部に膜体5bがガラスペーストの印刷法で
被覆されている。このヒータ8により、固体電解質板1
が加熱され酸素イオン導電性が高まる。一方、膜体5b
は、ヒータ8の腐食性有害ガスによる劣化を防止してそ
の耐久性を向上させるとともに、螺旋形スベーサ5の固
体電解質板1とシール板6との密着固定を確実なものに
し、その製造信頼性を高めている。
A heater 8 is formed on the seal plate 6 by a printing method.
Furthermore, a film body 5b is coated on top thereof by a glass paste printing method. With this heater 8, the solid electrolyte plate 1
is heated and its oxygen ion conductivity increases. On the other hand, the membrane body 5b
This prevents deterioration of the heater 8 due to corrosive harmful gases and improves its durability, and also ensures close fixation between the solid electrolyte plate 1 and the seal plate 6 of the helical spacer 5, thereby improving its manufacturing reliability. is increasing.

なお、ヒータ8は、前述の実施例に特定するものでなく
、シール板8において膜体5bが形成されていない部分
や、固体電解質板1の部分等に形成してもよい。また、
酸素センサ素子以外の外部からの間接加熱でもよい。そ
の材質は、白金やニクロム線等を用いる。
Note that the heater 8 is not limited to the above-described embodiment, and may be formed in a portion of the seal plate 8 where the membrane body 5b is not formed, a portion of the solid electrolyte plate 1, or the like. Also,
Indirect heating from an external source other than the oxygen sensor element may also be used. The material used is platinum, nichrome wire, etc.

次に具体的実験例にもとづいてその作用と効果を説明す
る。
Next, its action and effects will be explained based on specific experimental examples.

第1図に示す本発明の実施例における酸素センサ構或材
料、製造方法は次の通りである。
The construction materials and manufacturing method of the oxygen sensor in the embodiment of the present invention shown in FIG. 1 are as follows.

なお、限界電流値は200μA(空気中)どなるように
螺旋形拡散孔7を設計した。
The spiral diffusion hole 7 was designed so that the limiting current value was 200 μA (in air).

◆固体電解質板1 Zr○2 ・Y203セラミック( ’i’ z○38
 no p.%)であり、寸法12X12X0.4tm
m。
◆Solid electrolyte plate 1 Zr○2 ・Y203 ceramic ('i' z○38
no p. %), dimensions 12X12X0.4tm
m.

●電極膜2 ptペーストで電極径6mm、膜厚約5μmの膜を形或
。固体電解質板1の両面にスクリーン印刷法により塗布
し、820゜Cで10分焼或。
●Electrode film 2 Form a film with an electrode diameter of 6 mm and a film thickness of approximately 5 μm using PT paste. It was coated on both sides of the solid electrolyte plate 1 by screen printing and baked at 820°C for 10 minutes.

◆螺旋形スペーサ5 ガラス・BaO−Si○2−Na20系ガラスペース1
・ 耐熱性粒子=−B a O−T i 02−S iO.
系ガラス粉末平均粒径50μm 前記ガラスペースト1gに対し、前記ガラス粉末を10
■混合したものを用い、スクリーン印刷で固体電解質板
lの一方の面に電極膜2を囲んで螺旋形スペーサの突起
体5aを印刷法により塗布し、820゜CでIO分焼或
◆Helical spacer 5 Glass/BaO-Si○2-Na20 glass space 1
- Heat-resistant particles=-B a O-T i 02-S iO.
Based glass powder average particle size 50 μm For 1 g of the glass paste, 10% of the glass powder
(2) Using the mixture, a spiral spacer protrusion 5a surrounding the electrode film 2 is coated on one surface of the solid electrolyte plate 1 by screen printing using a printing method, followed by IO firing at 820°C.

前記螺旋形スペーザの突起体5aは第1図に示す形状と
し、螺旋形拡散孔7の大きさは、開口部面積が800μ
m(螺旋形拡散孔7の幅)×40μm(螺旋形拡散孔7
の高さ)のとき、長さが11肛(螺旋形拡散孔7の始端
から終端までの距離)となる。一方、その幅は0.8m
mである。
The protrusion 5a of the helical spacer has the shape shown in FIG. 1, and the helical diffusion hole 7 has an opening area of 800 μm.
m (width of helical diffusion hole 7) x 40 μm (width of helical diffusion hole 7)
height), the length is 11 holes (distance from the starting end to the ending end of the spiral diffusion hole 7). On the other hand, its width is 0.8m
It is m.

◆膜5b Ba○−NazOSi○2系ガラスベース1・を用い、
スクリーン印刷でシール板6の一方の面に約10μmの
膜を印刷法により塗布し、820゜Cで10分焼戒。
◆Membrane 5b Using Ba○-NazOSi○2 glass base 1,
A film of about 10 μm was applied to one side of the seal plate 6 by screen printing, and burned at 820° C. for 10 minutes.

●シール板6 フォルステライトであり、その寸法は 12X12X0
.5’mm0 固体電解質板1とシール板6は、螺旋形スペーサの突起
体5aと膜体5bの加熱溶融(820゜C×10分)で
両者が密着固定されている。
●Seal plate 6 is forsterite and its dimensions are 12X12X0
.. 5'mm0 The solid electrolyte plate 1 and the seal plate 6 are tightly fixed together by heating and melting the protrusion 5a of the spiral spacer and the membrane 5b (820°C x 10 minutes).

このようにして作製した酸素センサについて電極膜2に
リード線(Pt)を取り付け、空気中400゜C加熱で
電圧一電流特性を評価した。その結果を第3図に示す。
A lead wire (Pt) was attached to the electrode film 2 of the oxygen sensor thus produced, and the voltage-current characteristics were evaluated by heating in air at 400°C. The results are shown in FIG.

各酸素濃度において飽和電流、即ち限界電流が得られ、
さらに限界電流値は第4図の様に酸素濃度に比例した特
性であった。
A saturation current, that is, a limiting current, is obtained at each oxygen concentration,
Furthermore, the limiting current value had a characteristic proportional to the oxygen concentration as shown in FIG.

さらに、本発明では螺旋形拡散孔7が固体電解l1 12 質板1と平行に形或されるので酸素センサの製造過程、
実使用の際にホコリや異物などの拡散孔への侵入を防止
でき特性の安定化及び長期にわたる信頼性の向上を図る
ことができた。
Furthermore, in the present invention, since the spiral diffusion hole 7 is formed parallel to the solid electrolyte plate 1, the manufacturing process of the oxygen sensor is
During actual use, it was possible to prevent dust and foreign matter from entering the diffusion holes, stabilizing the characteristics and improving long-term reliability.

発明の効果 以上のように本発明の酸素センサによれば次の効果が得
られる。
Effects of the Invention As described above, the oxygen sensor of the present invention provides the following effects.

(1)酸素の拡散孔の大きさを従来より大きくすること
ができるので前記拡散孔の相対的なばらつきを小さくす
ることができ、限界電流値のばらつきを小さくすること
ができる。
(1) Since the size of the oxygen diffusion holes can be made larger than before, the relative variation in the diffusion holes can be reduced, and the variation in the limiting current value can be reduced.

(2)前記拡散孔が固体電解質板と平行に形成されるの
で前記拡散孔へのホコリや異物の侵入が防止され、特性
の安定化、長期にわたる信頼性の向上が図れる。
(2) Since the diffusion holes are formed parallel to the solid electrolyte plate, dust and foreign matter can be prevented from entering the diffusion holes, and characteristics can be stabilized and long-term reliability can be improved.

(3)前記拡散孔がガラス印刷膜からなる螺旋形スペー
サと固定電解質板とシール板との加熱溶融で密着固定し
ているので、極めて簡単な方法で形或でき、生産性に優
れ低コストとなる。
(3) Since the diffusion holes are tightly fixed by heating and melting the helical spacer made of a glass printed film, the fixed electrolyte plate, and the seal plate, it can be formed by an extremely simple method, resulting in excellent productivity and low cost. Become.

(4)前記螺旋形スベーサが、所定粒径の耐熱微粒子を
分敗した硝子からなる突起体であり、硝子からなる膜体
を介して固体電解質板とシール板との密着固定を行って
いるので、2枚の板の密着が両者の硝子によって確実に
行なわれしかも両者間のギャップ(拡散孔)寸法精度が
一層向上する。特に、所定粒径の耐熱微粒子による拡散
孔寸法精度維持、突起体と膜体に用いた硝子の加熱溶融
による密着固法は、固体電解質板とシール板との接合ズ
レに対して強く、製造歩留りが大きく向上することに有
効である。
(4) The helical smoother is a protrusion made of glass that has separated heat-resistant fine particles of a predetermined particle size, and the solid electrolyte plate and the seal plate are closely fixed together through a membrane made of glass. The two plates are brought into close contact with each other by the glass on both sides, and the dimensional accuracy of the gap (diffusion hole) between the two plates is further improved. In particular, the diffusion hole dimensional accuracy is maintained using heat-resistant fine particles of a predetermined particle size, and the adhesion method by heating and melting the glass used for the protrusion and membrane body is resistant to bonding deviation between the solid electrolyte plate and the seal plate, and improves manufacturing yield. It is effective in greatly improving

(5)突起体を固体電解質板に形成し、膜体をシール板
に形或することにより、固体電極質坂上の電極膜はその
面積を大きく確保でき、それにともない電極単位面積あ
たりの電流負荷が小さくなる。
(5) By forming the protrusions on the solid electrolyte plate and forming the membrane body into a seal plate, the electrode membrane on the solid electrode slope can secure a large area, and accordingly, the current load per unit area of the electrode can be reduced. becomes smaller.

そのため、電極膜における界面抵抗が減少し、それにと
もない電極膜の能力アップ、耐久性の向上がはかれる。
Therefore, the interfacial resistance in the electrode film is reduced, thereby increasing the performance and durability of the electrode film.

(6)膜体をシール板に形成し、しかもヒータを付与し
て膜体で被覆することによりヒータの有害ガスによる劣
化が防止でき寿命が向上ずる。また、膜体が固体電解質
板とシール板との密着固定をも兼ねているため、材料の
節約や製造工数の低減がはかれる。さらに、ヒータがこ
の酸素センサに付与されているため、コンパクl・な形
状となる。
(6) By forming a membrane on the sealing plate and also providing a heater and covering it with the membrane, deterioration of the heater due to harmful gases can be prevented and the life span can be improved. Furthermore, since the membrane body also serves to tightly fix the solid electrolyte plate and the seal plate, materials can be saved and manufacturing man-hours can be reduced. Furthermore, since a heater is attached to this oxygen sensor, it has a compact shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例である限界電流式酸素
センサの分解斜視図、第l図(b)は同酸素センサの一
部破断斜視図、第2図(a)は本発明の一実施例である
限界電流式酸素センサに用いるシール板の平面図、第2
図(b)は第2図(a)におけるAA’綿断面図、第3
図は本発明の効果を示す電圧−電流特性図、第4図は本
発明の効果を示す酸素濃度電流特性図、第5図は従来の
限界電流式酸素センサの断面図である。 1・・・・・・固体電解質板、2・・・・・・電極膜、
5・・・・・・螺旋形スベーザ、5a・・・・・・突起
体、5b・・・・・・膜体、6・・・・・・シール板、
7・・・・・・拡散孔、8・・・・・・ヒータ。
FIG. 1(a) is an exploded perspective view of a limiting current type oxygen sensor that is an embodiment of the present invention, FIG. 1(b) is a partially cutaway perspective view of the same oxygen sensor, and FIG. A plan view of a seal plate used in a limiting current type oxygen sensor which is an embodiment of the invention, No. 2
Figure (b) is a sectional view of AA' cotton in Figure 2 (a),
FIG. 4 is a voltage-current characteristic diagram showing the effects of the present invention, FIG. 4 is an oxygen concentration current characteristic diagram showing the effects of the present invention, and FIG. 5 is a sectional view of a conventional limiting current type oxygen sensor. 1... Solid electrolyte plate, 2... Electrode membrane,
5... Helical smoother, 5a... Protrusion, 5b... Membrane, 6... Seal plate,
7... Diffusion hole, 8... Heater.

Claims (3)

【特許請求の範囲】[Claims] (1)電極膜を両面に形成した酸素イオン伝導性固体電
解質板と、前記電極膜の一方を囲み始端と終端とが前記
固体電解質板上で互いに間隔を有するように配置された
螺旋形スペーサと、前記螺旋形スペーサ上に前記固体電
解質板と相対向するように配置されたシール板とからな
り、前記螺旋形スペーサの相対向する隔壁と前記固体電
解質と前記シール板とで囲まれて拡散孔が形成され、前
記螺旋形スペーサは硝子と所定粒径耐熱微粒子の混合物
からなる突起体であり、硝子からなる膜体を介して前記
固体電解質板と前記シール板とを加熱溶融で密着固定し
ている限界電流式酸素センサ。
(1) An oxygen ion conductive solid electrolyte plate having electrode films formed on both sides, and a spiral spacer surrounding one of the electrode films so that its starting end and ending end are spaced apart from each other on the solid electrolyte board. , a seal plate disposed on the helical spacer so as to face the solid electrolyte plate, and a diffusion hole is surrounded by the opposing partition walls of the helical spacer, the solid electrolyte, and the seal plate. is formed, and the helical spacer is a protrusion made of a mixture of glass and heat-resistant fine particles of a predetermined particle size, and the solid electrolyte plate and the seal plate are tightly fixed by heating and melting through a film body made of glass. Limit current type oxygen sensor.
(2)突起体を固体電解質板に形成し、膜体をシール板
に形成した特許請求の範囲第1項記載の限界電流式酸素
センサ。
(2) The limiting current type oxygen sensor according to claim 1, wherein the protrusion is formed on a solid electrolyte plate, and the membrane body is formed on a seal plate.
(3)ヒータを付与し、膜体が前記ヒータを被覆した特
許請求の範囲第1項記載の限界電流式酸素センサ。
(3) The limiting current type oxygen sensor according to claim 1, further comprising a heater and a membrane covering the heater.
JP1233226A 1989-09-08 1989-09-08 Limit current type oxygen sensor Expired - Fee Related JP2605420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1233226A JP2605420B2 (en) 1989-09-08 1989-09-08 Limit current type oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1233226A JP2605420B2 (en) 1989-09-08 1989-09-08 Limit current type oxygen sensor

Publications (2)

Publication Number Publication Date
JPH0395454A true JPH0395454A (en) 1991-04-19
JP2605420B2 JP2605420B2 (en) 1997-04-30

Family

ID=16951733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1233226A Expired - Fee Related JP2605420B2 (en) 1989-09-08 1989-09-08 Limit current type oxygen sensor

Country Status (1)

Country Link
JP (1) JP2605420B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353016A (en) * 2015-12-10 2016-02-24 河南工程学院 Methane gas thin-layer medium electrochemical biosensor and preparing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353016A (en) * 2015-12-10 2016-02-24 河南工程学院 Methane gas thin-layer medium electrochemical biosensor and preparing method thereof
CN105353016B (en) * 2015-12-10 2017-11-21 河南工程学院 A kind of methane gas thin-layered medium electrochemica biological sensor and preparation method thereof

Also Published As

Publication number Publication date
JP2605420B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
KR890001983B1 (en) Sensor for concentration of o2
JPH08122287A (en) Measuring device and method of concentration of gas component
JPH0623725B2 (en) Gas sensor adjustment method
JPH0395454A (en) Limiting current-type oxygen sensor
JP2643491B2 (en) Limit current type oxygen sensor
JP2643501B2 (en) Limit current type oxygen sensor
JP2864607B2 (en) Limit current type oxygen sensor
JPH1062380A (en) Oxygen partial pressure measuring sensor having two measuring areas
JP3067258B2 (en) Oxygen sensor
JP3010752B2 (en) Limit current type oxygen sensor
JP3054994B2 (en) Limit current type oxygen sensor and manufacturing method thereof
JPS63265159A (en) Oxygen sensor
JPH03218453A (en) Oxygen sensor and its production
JPH03120456A (en) Oxygen sensor
JPH06265516A (en) Oxygen/humidity sensor
JP2866396B2 (en) Manufacturing method of limiting current type oxygen sensor
JP3444640B2 (en) Gas sensor for water vapor and gas sensor for both oxygen and water vapor
JPH03158754A (en) Oxygen sensor
JPS63153463A (en) Oxygen sensor
JPH0664006B2 (en) Oxygen sensor
JP4364608B2 (en) Solid electrolyte gas sensor and gas concentration measuring device
JP2643409B2 (en) Limit current type oxygen sensor
JPS63265160A (en) Oxygen sensor
JPH0743338A (en) Oxygen sensor
JP2788750B2 (en) Manufacturing method of limiting current type oxygen sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees