JPH03218453A - Oxygen sensor and its production - Google Patents

Oxygen sensor and its production

Info

Publication number
JPH03218453A
JPH03218453A JP2013820A JP1382090A JPH03218453A JP H03218453 A JPH03218453 A JP H03218453A JP 2013820 A JP2013820 A JP 2013820A JP 1382090 A JP1382090 A JP 1382090A JP H03218453 A JPH03218453 A JP H03218453A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte plate
oxygen
plate
oxygen sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013820A
Other languages
Japanese (ja)
Inventor
Takeshi Nagai
彪 長井
Kunihiro Tsuruta
邦弘 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2013820A priority Critical patent/JPH03218453A/en
Publication of JPH03218453A publication Critical patent/JPH03218453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To prevent the expansion in the fluctuation in threshold current value by disposing plural beginning ends which enclose cathode electrode films and come into contact with an ambient space and one terminal end on a solid electrolyte plate to have spacings from each other. CONSTITUTION:Spiral spacers 5 disposed in such a manner that the plural beginning ends 51 to 53 which enclose the electrode films 2 formed on both surfaces of the solid electrolyte plate 1 having an oxygen ion conductivity and come into contact with the ambient space and one terminal end 54 have the spacings from each other are disposed on the electrolyte plate 1. Diffusion holes 7 are formed in the spiral spaces enclosed by the partition walls of the spacers 5, the electrolyte plate 1 and a sealing plate 6 when the spacers 5 are covered with the sealing plate 6. Oxygen diffuses through this space to the electrode films 2. The diffusion quantity of the oxygen is determined approximately by the diffusion holes 7 constituted between the terminal end 54 and the beginning end 51 nearest this end and, therefore, if the beginning ends 51 to 53 are successively closed in order of the ends nearer the terminal end 53, the adjustment of the diffusion resistance value in an increasing direction, i.e. the threshold current value in a decreasing direction is possible.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は環境中の酸素濃度を測定するための酸素センサ
に関し、特に、酸素イオン伝導性固体電解質を利用した
限界電流式酸素センサに関するものである. 従来の技術 従来、この種の酸素センサは、第4図に示すように、酸
素イオン伝導性を有する例えばジルコニア系セラミソク
から成る固体電解賞板1の両面に白金などの金属電極膜
2(陽極2a、陰橿2b)を形成し、さらに前記陰極2
b側の固体電解質板1の上に密閉空間をU字状の蓋体3
を配置し、さらに蓋体3に外部空間と密閉空間を連通ず
る酸素の拡散穴4を設けた構成となっている.この構成
において、酸素センサを動作可能な温度に加熱したのち
、電極2間に直流電圧を印加すると、陰i2bで酸素分
子のイオン化反応が起こり、イオン化した酸素イオンが
固体電解質板1中を陽極2aに向かって陽i2aで酸素
イオンの分子化反応が起こり外部空間へ排出される.一
方、密閉空間への酸素の流入は蓋体3に設けられた拡散
穴4により制限され、陰i2bへの酸素の流入が拡散律
速となる.その結果、固体電解質板l中を酸素イオンが
移動することによって生じる電流は、印加電圧の増加に
対し、ある電圧以降一定値を示す.この一定となる電流
が限界電流である.これが雰囲気ガス中の酸素濃度にほ
ぼ比例することから、前記限界電流を検出することによ
り酸素濃度を測定できる.(例えば、特開昭59−19
2953号公報、特開昭60〜252254号公報)発
明が解決しようとする課題 拡散穴4の大きさは酸素センサの動作温度、限界電流の
大きさにより任意に設定される.しかし、酸素センサの
長期信転性を確保するには動作温度はできるだけ低くす
ることが望ましい.ジルコニア系セラミンクの固体電解
質では酸素イオンの輸送能力の点から最低動作温度は約
400゜Cである.この動作温度で実用的限界電流値を
得るには拡散穴4は直径が数十μm、長さ数■の極めて
小さなものとなる.しかし、この拡散穴4の形状を精密
に制御することは困難であった.このため限界電ifi
(aのばらつきが大きいという課題があった。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an oxygen sensor for measuring oxygen concentration in the environment, and in particular to a limiting current type oxygen sensor using an oxygen ion conductive solid electrolyte. 2. Description of the Related Art Conventionally, as shown in FIG. 4, this type of oxygen sensor has a solid electrolyte plate 1 made of, for example, zirconia ceramic material having oxygen ion conductivity, and a metal electrode film 2 (anode 2a) made of platinum or the like on both sides. , a negative electrode 2b), and further the negative electrode 2b).
A U-shaped lid 3 is placed on the solid electrolyte plate 1 on the b side to provide a sealed space.
In addition, the lid body 3 is provided with an oxygen diffusion hole 4 that communicates the external space with the closed space. In this configuration, when the oxygen sensor is heated to an operable temperature and then a DC voltage is applied between the electrodes 2, an ionization reaction of oxygen molecules occurs at the anode i2b, and the ionized oxygen ions pass through the solid electrolyte plate 1 to the anode 2a. A molecularization reaction of oxygen ions occurs at positive i2a toward the ion, and the oxygen ions are discharged into the external space. On the other hand, the inflow of oxygen into the closed space is restricted by the diffusion hole 4 provided in the lid 3, and the inflow of oxygen into the negative i2b is diffusion-controlled. As a result, the current generated by the movement of oxygen ions in the solid electrolyte plate remains constant after a certain voltage as the applied voltage increases. This constant current is the limiting current. Since this is approximately proportional to the oxygen concentration in the atmospheric gas, the oxygen concentration can be measured by detecting the limiting current. (For example, JP-A-59-19
(No. 2953, Japanese Unexamined Patent Publication No. 1983-252254) Problems to be Solved by the Invention The size of the diffusion hole 4 can be arbitrarily set depending on the operating temperature and the limit current of the oxygen sensor. However, to ensure long-term reliability of oxygen sensors, it is desirable to keep the operating temperature as low as possible. The minimum operating temperature of a zirconia-based ceramic solid electrolyte is approximately 400°C due to its ability to transport oxygen ions. In order to obtain a practical limiting current value at this operating temperature, the diffusion hole 4 must be extremely small, with a diameter of several tens of μm and a length of several square meters. However, it has been difficult to precisely control the shape of the diffusion hole 4. For this reason, the limit electric current
(There was a problem that the variation in a was large.

本発明はかかる従来の課題を解消するもので、限界電流
値のばらつきの小さな酸素センサを捉供することを目的
とする。
The present invention has been made to solve such conventional problems, and an object of the present invention is to provide an oxygen sensor with small variations in limiting current value.

課題を解決するための手段 上記課題を解決するために本発明の酸素センサは、酸素
イオン伝導性を有する固体電解質板と、前記固体電解賞
板の一方の表面に形成された陰極電極膜と、前記固体電
解質仮の他の表面に形成された陽掻電極膜と、前記陰極
電極膜を囲み、かつ周囲空間と接する複数の始端と一つ
の終端とが前記固体電解質坂上で互いに間隔を有するよ
うに配置されたスペーサと、前記スペーサ上に前記固体
電解質板と相対向するように配置されたシール板と、前
記スペーサの相対向する隔壁と前記固体電解質板と前記
シール板で囲まれて形成された複数の始端を有する螺旋
形拡散孔を備えたものである.作用 本発明の上記構成において、複数の始端と一つの終端か
ら成る螺旋形拡散穴が固体電解質板とシール板との間に
形成される.拡散穴の拡散抵抗値は、主として一つの終
端とそれに最も近接した始端との間で構成される螺旋形
拡散穴で決まるので、一つの終端と近接する拡散穴を、
近接する順に閉塞することにより、拡散抵抗値を大きく
する方向に、すなわち限界電流値を小さくする方向に調
整できる。
Means for Solving the Problems In order to solve the above problems, the oxygen sensor of the present invention includes: a solid electrolyte plate having oxygen ion conductivity; a cathode electrode film formed on one surface of the solid electrolyte plate; A positive scraping electrode film formed on the other surface of the temporary solid electrolyte, a plurality of starting ends and a terminal end surrounding the cathode electrode film and in contact with the surrounding space are spaced apart from each other on the solid electrolyte slope. a spacer disposed on the spacer, a seal plate disposed on the spacer to face the solid electrolyte plate, a partition wall facing the spacer, the solid electrolyte plate, and the seal plate. It is equipped with a spiral diffusion hole with multiple starting points. Operation In the above structure of the present invention, a spiral diffusion hole having a plurality of starting ends and one ending end is formed between the solid electrolyte plate and the sealing plate. The diffusion resistance value of a diffusion hole is mainly determined by the spiral diffusion hole formed between one end and the starting end closest to it.
By closing them in the order of their proximity, it is possible to adjust the diffusion resistance value to a larger value, that is, the limiting current value to a smaller value.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第1図は本発明の一実施例を示すもので、同図(alは
酸素センサの分解斜視図、同図伽)は酸素センサの一部
破断斜視図である. 第1図(a). (b)において、酸素イオン伝導性を
有する固体電解質板lの両面に電極Il!2が形成され
る.電極膜2を囲み、複数の始端5l、52、53と終
端54が互いに間隔を有する螺旋形スペーサ5が固体電
解質板lの一方の表面に表面に配置され、さらにシール
板6が配置される。拡散穴7ぱ螺旋形スペーサ5の相対
向する隔壁と固体電解賞板lとシール6で囲まれた螺旋
形の空間で形成され、酸素はこの空間を通じて電極M2
へ拡散する.固体電極質板lは、ジルコニア系セラミッ
ク、なかでもイソトリアを添加したジルコニアが多用さ
れる.t極膜2は、白金、金、パラジウム、銀などで構
成されるが、特に限定されるものでない.螺旋形スペー
サ5は、酸素センサの動作温度に充分耐える耐熱性と、
固体電解質板lとシール板6との気密性を要求され、そ
の材料として硝子、金属が挙げられる.例えば、厚膜硝
子焼成膜を用いれば、第1図に示す螺旋形スペーサ5は
容易に得られる.シール板6は、ジルコニア系セラミッ
ク、フォルステライトなどのセラミック板が用いられる
.なお、固体電解質板l、螺旋形スペーサ5およびシー
ル板6のそれぞれの熱膨張係数は、なるべく類僚の値に
なるように選ばれる. 第1図に示された実施例では3個の始端5l、5253
が示されているが、3個以上の始端を形成することも容
易である.このように本発明の酸素センサは、複数個の
始端を有しているが、電極膜2への酸素の拡散量は一つ
の終端54とそれに最も近接した始端5lとの間で構成
される螺旋形拡散穴7によりほぼ決められる.従って5
1を閉塞した場合、酸素の拡散量は一つの54とそれに
最も近接した始端52の間で構成される螺旋形拡散穴7
によりほぼ決められる.このように一つの終端54に近
接するする順に始端5l、52、53を順次閉塞するこ
とにより拡散抵抗債を大きくする方向、すなわち限界電
流値を小さくする方向に調整できる。
FIG. 1 shows an embodiment of the present invention, and FIG. 1 (al is an exploded perspective view of an oxygen sensor, and FIG. 1) is a partially cutaway perspective view of the oxygen sensor. Figure 1(a). In (b), electrodes Il! are placed on both sides of the solid electrolyte plate l having oxygen ion conductivity. 2 is formed. A spiral spacer 5 surrounding the electrode film 2 and having a plurality of starting ends 5l, 52, 53 and a terminal end 54 spaced apart from each other is disposed on one surface of the solid electrolyte plate l, and a sealing plate 6 is further disposed. The diffusion hole 7 is formed by a spiral space surrounded by the opposing partition walls of the spiral spacer 5, the solid electrolyte plate 1, and the seal 6, and oxygen flows through this space to the electrode M2.
It spreads to. For the solid electrode plate 1, zirconia-based ceramics, especially zirconia doped with isotria, are often used. The t-electrode film 2 is made of platinum, gold, palladium, silver, etc., but is not particularly limited. The helical spacer 5 has heat resistance sufficient to withstand the operating temperature of the oxygen sensor,
Airtightness is required between the solid electrolyte plate 1 and the seal plate 6, and glass and metal can be used as the material. For example, if a thick fired glass film is used, the spiral spacer 5 shown in FIG. 1 can be easily obtained. For the sealing plate 6, a ceramic plate such as zirconia ceramic or forsterite is used. The coefficients of thermal expansion of each of the solid electrolyte plate 1, the spiral spacer 5, and the seal plate 6 are selected so as to be as similar as possible. In the embodiment shown in FIG. 1, three starting ends 5l, 5253
is shown, it is also easy to form three or more starting points. As described above, the oxygen sensor of the present invention has a plurality of starting ends, but the amount of oxygen diffused into the electrode film 2 is determined by the spiral formed between one ending 54 and the starting end 5l closest to it. The shape is almost determined by the diffusion hole 7. Therefore 5
1 is closed, the amount of oxygen diffused is the spiral diffusion hole 7 formed between one 54 and the starting end 52 closest to it.
It is almost determined by In this way, by sequentially closing the starting ends 5l, 52, and 53 in the order of proximity to one terminal end 54, the diffusion resistance bond can be increased, that is, the limiting current value can be adjusted to be decreased.

このように複数の始端51、52を一つの終端54に近
接する順に閉塞する場合、第2図に示すように、これら
複数の始端5l、52がシール板6の端部より外側で固
体電解質板lの表面に位置するように配置することが望
ましい.始端5l、52の位置が容易に見分けられるの
で、閉塞作業が容易になるからである。なお、複数の始
端5l、52、53が同様にして、シール板6の表面に
位置するように配置しても同様の効果が得られる。
When the plurality of starting ends 51 and 52 are closed in the order of proximity to one terminal end 54 in this way, as shown in FIG. It is desirable to place it so that it is located on the surface of l. This is because the positions of the starting ends 5l and 52 can be easily distinguished, making the closing work easier. Note that the same effect can be obtained even if the plurality of starting ends 5l, 52, and 53 are similarly arranged so as to be located on the surface of the seal plate 6.

例えば、始端5lの閉塞は、第3図に示すように、始端
5lを完全に塞ぐように閉塞材料8を形成してなされる
.このように始端複数の一部51, 52を閉塞ずる方
法として、流動性無機材料で被覆した後、焼成する方法
ガ望ましい.閉塞する材料は、始端の一部51、52を
確実に被覆するのみならず、螺旋形スペーサ5の材料と
同様、酸素センサの動作温度に充分耐える耐熱性および
固体電解質板1とシ一ル板6との密着性を要求される.
厚膜用硝子ペーストあるいはセラミック粉末を含むスラ
リなとの流動性無機材料は、室温で良好な流動性を示す
ので始端5l、52を確実に被覆することができると共
に、被覆後の焼成により固体電解質板lやシール4Ii
6と強固に密着し、緻密で耐熱性の優れた固体になるか
らである.例えば、SiO.,BaOZnO,Cab,
Nap,K! Oなどの粉末を主成分とする厚膜用ペー
ストは、700〜900゜Cで焼成することにより、固
体電解質板1やシール板6と密着し、500℃以上の耐
熱性を有する機密性の硝子が容易に得られる.また、ア
ルミナ粉末、ジルコニア粉末を含むスラリも、400〜
900℃で焼成することにより、厚膜用ペーストと同樺
、密着性、耐熱性に優れたセラミックが得られる.この
セラミックは、通常、微細な小穴を多く有する多孔性で
あるが、螺旋形拡散穴マの拡散抵抗値に比べ十分に大き
な絋敞抵抗値を有するので、酸素の拡散に対して十分な
閉塞効果を存する.発明の効果 以上のように本発明の酸素センサによれば次の効果が得
られる. (1)複数個の始端を、終端に近接する順に閉塞するこ
とにより、螺旋形拡散穴の拡散抵抗値を大きくする方向
、すなわち限界電流値を小さくする方向に調整できる. (2)  流動性無機材料で始端を被覆した後、焼成す
ることにより、密着性、耐熱性、気密性に優れた始端閉
塞ができる.
For example, the starting end 5l is closed by forming a closing material 8 so as to completely block the starting end 5l, as shown in FIG. As a method for closing the plurality of starting ends 51 and 52 in this manner, a method of coating the starting ends with a fluid inorganic material and then firing them is preferable. The material to be closed not only reliably covers the starting ends 51 and 52, but also has heat resistance sufficient to withstand the operating temperature of the oxygen sensor, as well as the solid electrolyte plate 1 and the seal plate, similar to the material of the spiral spacer 5. 6 is required.
Fluid inorganic materials such as glass paste for thick films or slurry containing ceramic powder exhibit good fluidity at room temperature, so it is possible to reliably coat the starting ends 5L and 52, and also to form a solid electrolyte by firing after coating. Plate l and sticker 4Ii
This is because it adheres tightly to 6 and forms a dense solid with excellent heat resistance. For example, SiO. , BaOZnO, Cab,
Nap, K! The paste for thick films, which is mainly composed of powder such as O, is baked at 700 to 900°C, so that it adheres closely to the solid electrolyte plate 1 and the seal plate 6, and forms an airtight glass with heat resistance of 500°C or more. can be easily obtained. In addition, slurries containing alumina powder and zirconia powder also have a
By firing at 900°C, a ceramic with excellent adhesion and heat resistance, similar to thick film paste, can be obtained. This ceramic is normally porous with many small holes, but it has a sufficiently large resistance value compared to the diffusion resistance value of the spiral diffusion hole, so it has a sufficient blocking effect on oxygen diffusion. exists. Effects of the Invention As described above, the oxygen sensor of the present invention provides the following effects. (1) By closing a plurality of starting ends in the order of proximity to the terminal end, the diffusion resistance value of the spiral diffusion hole can be adjusted in the direction of increasing it, that is, the limiting current value can be decreased. (2) By coating the starting end with a fluid inorganic material and then firing it, it is possible to close the starting end with excellent adhesion, heat resistance, and airtightness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例を示す酸素センサ素セ
ンサの断面図である.
FIG. 1(a) is a sectional view of an oxygen sensor element showing an embodiment of the present invention.

Claims (5)

【特許請求の範囲】[Claims] (1)酸素イオン伝導性を有する固体電解質板と、前記
固体電解質板の一方の表面に形成された陰極電極膜と、 前記固体電解質板の他の表面に形成された陽極電極膜と
、 前記陰極電極膜を囲み、かつ周囲空間と接する複数の始
端と一つの終端とが前記固体電解質板上で互いに間隔を
有するように配置されたスペーサと 前記スペーサ上に前記固体電解質板と相対向するように
配置されたシール板と、 前記スペーサの相対向する隔壁と前記固体電解質板と前
記シール板で囲まれて形成された螺旋形拡散孔と、 から成る酸素センサ。
(1) A solid electrolyte plate having oxygen ion conductivity, a cathode electrode film formed on one surface of the solid electrolyte plate, an anode electrode film formed on the other surface of the solid electrolyte plate, and the cathode. a spacer that surrounds the electrode film and has a plurality of starting ends and one end that are in contact with the surrounding space and are arranged at intervals on the solid electrolyte plate; and a spacer that faces the solid electrolyte plate on the spacer. An oxygen sensor comprising: a spiral diffusion hole surrounded by opposing partition walls of the spacer, the solid electrolyte plate, and the seal plate.
(2)前記複数の始端が、前記シール板の端部より外側
の位置で、かつ前記固体電解質板の表面に位置するよう
に配置された特許請求の範囲第1項記載の酸素センサ。
(2) The oxygen sensor according to claim 1, wherein the plurality of starting ends are located outside the end of the seal plate and on the surface of the solid electrolyte plate.
(3)前記複数の始端の一部を流動性無機材料で被覆し
た後、焼成することにより前記複数の始端の一部を閉塞
する特許請求の範囲第1項記載の酸素センサの製造方法
(3) The method for manufacturing an oxygen sensor according to claim 1, wherein a part of the plurality of starting ends is covered with a fluid inorganic material and then fired to close a part of the plurality of starting ends.
(4)前記流動性無機材料が厚膜用硝子ペーストである
特許請求の範囲第3項記載の酸素センサの製造方法。
(4) The method for manufacturing an oxygen sensor according to claim 3, wherein the fluid inorganic material is thick film glass paste.
(5)前記流動性無機材料がセラミック粉末を含むスラ
リである特許請求の範囲第3項記載の酸素センサの製造
方法。
(5) The method for manufacturing an oxygen sensor according to claim 3, wherein the fluid inorganic material is a slurry containing ceramic powder.
JP2013820A 1990-01-24 1990-01-24 Oxygen sensor and its production Pending JPH03218453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013820A JPH03218453A (en) 1990-01-24 1990-01-24 Oxygen sensor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013820A JPH03218453A (en) 1990-01-24 1990-01-24 Oxygen sensor and its production

Publications (1)

Publication Number Publication Date
JPH03218453A true JPH03218453A (en) 1991-09-26

Family

ID=11843917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013820A Pending JPH03218453A (en) 1990-01-24 1990-01-24 Oxygen sensor and its production

Country Status (1)

Country Link
JP (1) JPH03218453A (en)

Similar Documents

Publication Publication Date Title
JPH08122287A (en) Measuring device and method of concentration of gas component
JPS63738B2 (en)
JPH07508353A (en) Sensor element for gas component concentration measurement
JPH03218453A (en) Oxygen sensor and its production
JP2002340854A (en) Sensor element
JPH01201149A (en) Composite gas sensor
JPS62144063A (en) Threshold current type oxygen sensor
JPH0353578B2 (en)
JP3067258B2 (en) Oxygen sensor
JP2605420B2 (en) Limit current type oxygen sensor
JPH03120456A (en) Oxygen sensor
JP3865498B2 (en) Limit current type oxygen sensor and oxygen detection method
JPS6363936A (en) Industrial gas concentration measuring apparatus
JPS6259855A (en) Pump type oxygen concentration detector
JPH0921782A (en) Oxygen concentration sensor
JP2643491B2 (en) Limit current type oxygen sensor
JPH0234605Y2 (en)
JPH03158754A (en) Oxygen sensor
JP2643409B2 (en) Limit current type oxygen sensor
JPS63153463A (en) Oxygen sensor
JP2812524B2 (en) Oxygen sensor
JP4364608B2 (en) Solid electrolyte gas sensor and gas concentration measuring device
JPS63265159A (en) Oxygen sensor
JPH0514912U (en) Oxygen sensor
JPS6150058A (en) Air/fuel ratio detector