JPS63264814A - Plexible superconductive material - Google Patents

Plexible superconductive material

Info

Publication number
JPS63264814A
JPS63264814A JP62099387A JP9938787A JPS63264814A JP S63264814 A JPS63264814 A JP S63264814A JP 62099387 A JP62099387 A JP 62099387A JP 9938787 A JP9938787 A JP 9938787A JP S63264814 A JPS63264814 A JP S63264814A
Authority
JP
Japan
Prior art keywords
thin film
superconducting
elements
flexible
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62099387A
Other languages
Japanese (ja)
Inventor
Nobuhiko Fujita
藤田 順彦
Hideo Itozaki
糸崎 秀夫
Saburo Tanaka
三郎 田中
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62099387A priority Critical patent/JPS63264814A/en
Publication of JPS63264814A publication Critical patent/JPS63264814A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To make a superconductive material, which is high in its superconductive critical temperature Tc, usable as a wire with high stability of its superconductive characteristic and a large degree of freedom in its size by using a specific composite oxide thin film and a flexible substrate which supports this thin film. CONSTITUTION:There are used the following matters: a composite oxide thin film, which is 1 mum or less in thickness and indicated in a formula (Ax-1,Bx)CyDz, and a flexible substrate, which supports this thin film. In this formula, A is one species selected from group IIa, IIIa elements in a periodic table, B is one species selected from group IIa, IIIa elements in the periodic table and includes the same elements as contained in A, C is one species selected from group Ib, IIb, IIIb, VIIIa elements in the periodic table, D is one species selected from the following elements; O, B(boron), C(carbon), N, F, S, x is an atomic ratio of B to A+B and defined in 0.1<=x<=0.9, y and z are atomic ratios defined in 0.4<=y<=3.0 and 1<=z<=5 respectively when (Ax-1Bx) is one.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超電導材に関する。より詳細には、高い超電導
臨界温度を備えた超電導材料を有効に利用し得る超電導
材の新規な構成に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to superconducting materials. More specifically, the present invention relates to a novel structure of a superconducting material that can effectively utilize a superconducting material with a high superconducting critical temperature.

従来の技術 超電導現象下で物質は完全な反磁性を示し、内部で有限
な定常電流が流れているにも関わらず電位差が現れなく
なる。そこで、電力損失の全くない伝送媒体としての超
電導体の各種応用が提案されている。
Conventional technology Under superconducting phenomena, materials exhibit complete diamagnetic properties, and no potential difference appears even though a finite steady-state current flows inside them. Therefore, various applications of superconductors as transmission media with no power loss have been proposed.

即ち、その応用分野は、MHD発電、電力送電、電力貯
蔵等の電力分野、或いは、磁気浮上列車、電磁気推進船
舶等の動力分野、更に、磁場、マイクロ波ζ放射線等の
超高感度センサとしてNMR1π中間子治療、高エネル
ギー物理実験装置などの計測の分野等、極めて多くの分
野を挙げることができる。
That is, its application fields include power fields such as MHD generation, power transmission, and power storage, power fields such as magnetic levitation trains and electromagnetic propulsion ships, and NMR1π as an ultra-sensitive sensor for magnetic fields, microwave ζ radiation, etc. There are many fields that can be mentioned, such as meson therapy, measurement fields such as high-energy physics experimental equipment, etc.

また、ジョセフソン素子に代表されるエレクトロニクス
の分野でも、単に消費電力の低減のみならず、動作の極
めて高速な素子を実現し得る技術として期待されている
Furthermore, in the field of electronics, typified by Josephson devices, this technology is expected to not only reduce power consumption but also realize devices that operate at extremely high speeds.

ところで、嘗て超電導は超低温下においてのみ観測され
る現象であった。即ち、従来の超電導材料として最も高
い超電導臨界温度Tcを有するといわれていたNb、 
Geにおいても23.2 Kという極めて低い温度が長
期間に亘って超電導臨界温度の限界とされていた。
By the way, superconductivity was once a phenomenon observed only at extremely low temperatures. That is, Nb, which is said to have the highest superconducting critical temperature Tc among conventional superconducting materials,
Even in Ge, an extremely low temperature of 23.2 K was considered to be the limit of superconducting critical temperature for a long time.

それ故、従来は、超電導現象を実現するために、沸点が
4.2にの液体ヘリウムを用いて超電導材料をTc以下
まで冷却していた。しかしながら、液体ヘリウムの使用
は、液化設備を含めた冷却設備による技術的負担並びに
コスト的負担が極めて大きく、超電導技術の実用化への
妨げとなっていた。
Therefore, conventionally, in order to realize the superconducting phenomenon, superconducting materials have been cooled to below Tc using liquid helium with a boiling point of 4.2. However, the use of liquid helium imposes an extremely large technical burden and cost burden due to cooling equipment including liquefaction equipment, which has hindered the practical application of superconducting technology.

ところが、近年に到ってla族元素あるいは■a族元素
の酸化物を含む焼結体が極めて高いTcで超電導体とな
り得ることが報告され、非低温超電導体による超電導技
術の実用化が俄かに促進されようとしている。既に報告
されている例では、ペロブスカイト型酸化物と類似した
結晶構造を有すると考えられるCLa、 Ba) zc
u04あるいは(La。
However, in recent years, it has been reported that sintered bodies containing oxides of LA group elements or ■A group elements can become superconductors at extremely high Tc, and the practical application of superconducting technology using non-low-temperature superconductors has been delayed. is about to be promoted. In already reported examples, CLa, Ba) zc, which is thought to have a crystal structure similar to perovskite oxides,
u04 or (La.

Sr) 2CuO4等のに2NiF<型酸化物が挙げら
れる。
Sr) 2NiF< type oxides such as 2CuO4 are mentioned.

これらの物質では、30乃至50にという従来に比べて
飛躍的に高いTcが観測され、更に、Ba、 Y。
In these materials, a significantly higher Tc of 30 to 50 than that of conventional materials was observed, and in addition, Ba, Y.

Cuの酸化物からなる超電導材料では70に以上のTc
も報告されている。
Superconducting materials made of Cu oxides have a Tc of 70 or more.
has also been reported.

発明が解決しようとする問題点 しかしながら、これらの超電導材料は焼結体として得ら
れるので、一般的に脆く取扱に注意が必要である。即ち
、機械的なストレスによって容易に破損あるいは亀裂を
生じ、特に線材化した場合には極めて容易に折損するの
で、実際の利用には大きな制約が伴う。
Problems to be Solved by the Invention However, since these superconducting materials are obtained as sintered bodies, they are generally brittle and must be handled with care. That is, it easily breaks or cracks due to mechanical stress, and particularly when it is made into a wire, it breaks very easily, so there are major restrictions on its actual use.

また、焼結体超電導材は、超電導特性を有する粒子のみ
で完全に均質な多結晶体を形成することが困難であると
共に、超電導体一般の性質として、外部磁場や冷却温度
の変動によって局部的に超電導状態が破れる場合がある
。ところが、この種の焼結体超電導材料は従来の超電導
材料よりも熱伝導率が低く、また電気抵抗も、高い。従
って、上述のように超電導状態が破れた箇所では超電導
体を流れる電流によって局部的な発熱が生じ、冷却媒体
と接触したような場合には冷却媒体の爆発的な気化を誘
起する。そこで、従来の金属系の超電導体は超電導体を
細いフィラメントとして形成し、多数のフィラメントを
Cu等の良導体によって一体に形成し、超電導が破れた
場合の伝熱体並びに電流のバイパスとすることによって
危険を回避していた。
In addition, with sintered superconducting materials, it is difficult to form a completely homogeneous polycrystalline body consisting only of particles with superconducting properties, and as a general property of superconductors, localization may occur due to external magnetic fields or fluctuations in cooling temperature. The superconducting state may be broken. However, this type of sintered superconducting material has lower thermal conductivity and higher electrical resistance than conventional superconducting materials. Therefore, as mentioned above, at a location where the superconducting state is broken, local heat generation occurs due to the current flowing through the superconductor, and when the superconductor comes into contact with the cooling medium, explosive vaporization of the cooling medium is induced. Therefore, in conventional metal-based superconductors, the superconductor is formed as a thin filament, and a large number of filaments are integrally formed with a good conductor such as Cu, which serves as a heat conductor and a current bypass in case the superconductor breaks. He was avoiding danger.

これに対して、前述のような近年開発された高いTcを
有する超電導焼結体は、上述のような構成を採ることが
困難であり、現状では線材としての利用が困難であると
されている。
On the other hand, it is difficult to adopt the above-mentioned configuration with the superconducting sintered bodies with high Tc that have been developed in recent years, and it is currently difficult to use them as wire materials. .

そこで、本発明の目的は、上記従来技術の問題点を解決
し、高いTcを有する超電導材料を、超電導特性の安定
度が高く、且つ形状の自由度が大きい線材として使用す
ることが可能な新規な超電導材の構成を提供することに
ある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to create a new material that can use a superconducting material having a high Tc as a wire material with high stability of superconducting properties and a large degree of freedom in shape. The object of the present invention is to provide a structure of a superconducting material.

尚、以下の記述においては、超電導臨界温度をTc 、
超電導体の電気抵抗が全く零となる相転移の終了温度を
Tcf、TcとTcfとの差をΔTとして記す。
In the following description, the superconducting critical temperature is expressed as Tc,
The end temperature of the phase transition at which the electrical resistance of the superconductor becomes completely zero is expressed as Tcf, and the difference between Tc and Tcf is expressed as ΔT.

問題点を解決するための手段 即ち、本発明に従い、 一般式:  (AX−I BX ) c、 D。Means to solve problems That is, according to the present invention, General formula: (AX-I BX) c, D.

(ただし、Aは周期律表■a N III a族元素か
ら選択された一種であり、Bは周期律表IIa、ff1
a族元素でAと同じものを含む元素から選択された一種
であり、Cは周期律表Ib、IIb、mb、■a族元素
から選択された少なくとも一種であり、DはO,B(I
N素)、C(炭素) 、N、FおよびSの中から選択さ
れた少なくとも一種であり、XはA+Bに対するBの原
子比で、0.1≦× ≦0.9であり、yおよび2は(
Ax−+ Bx )を1とした場合に0.4≦y ≦3
.0.1≦Z ≦5 となる原子比である) で示される厚さ1μm以下の複合酸化物薄膜と、該薄膜
を支持する可撓性基板とを備えることを特徴とする可撓
性超電導材が提供される。
(However, A is a type of element selected from group ■a N III a of the periodic table, and B is a type of element selected from group IIa, ff1 of the periodic table.
It is a type of group a element selected from elements that include the same elements as A, C is at least one type selected from elements of group Ib, IIb, mb, and a of the periodic table, and D is O, B (I
is at least one selected from N, C (carbon), N, F, and S, X is the atomic ratio of B to A+B, and is 0.1≦x≦0.9, and y and 2 teeth(
When Ax-+Bx) is 1, 0.4≦y≦3
.. A flexible superconducting material characterized by comprising a composite oxide thin film having a thickness of 1 μm or less and having an atomic ratio of 0.1≦Z≦5, and a flexible substrate that supports the thin film. is provided.

作用 本発明は、可撓性の基板上に、厚さ1μm以下の薄膜と
して超電導性を有するペロブスカイト型または擬似ペロ
ブスカイト型酸化物の膜を形成した構成をその主要な特
徴としている。
Function The main feature of the present invention is that a perovskite or pseudo-perovskite oxide film having superconductivity is formed as a thin film having a thickness of 1 μm or less on a flexible substrate.

即ち、脆性が低い焼結体も、一般にその厚さが薄くなる
と内部応力の自身に対する作用が事実上無視できるよう
になり、屈曲がかなり自由な状態となる。
That is, even in the case of a sintered body having low brittleness, as the thickness thereof becomes thinner, the effect of internal stress on itself can be virtually ignored, and bending becomes considerably free.

ただし、電流の伝送媒体としては、電流密度の限界があ
るので断面積が広いことが望ましい。そこで、本発明の
好ましい態様として、超電導性薄膜を搭載した可撓性基
板を複数積層することによって、十分な臨界電流密度を
有する可撓性の超電導材とすることができる。
However, as a current transmission medium, it is desirable that the cross-sectional area be wide because there is a limit to the current density. Therefore, as a preferred embodiment of the present invention, a flexible superconducting material having a sufficient critical current density can be obtained by stacking a plurality of flexible substrates each carrying a superconducting thin film.

更に、このとき基板材料を導体で形成することによって
、前項に述べたような超電導が破れた場合の電流のバイ
パスとしての機能を基板に持たせることができる。
Furthermore, by forming the substrate material from a conductor at this time, the substrate can have a function as a current bypass when superconductivity is broken as described in the previous section.

尚、上述のような超電導性薄膜の形成には、各種の方法
が適用できるが、特に本発明に好ましい方法としては、
ペロブスカイト型または擬似ペロブスカイト型酸化物焼
結体として得られる超電導材料をターゲットとした物理
蒸着による方法、ペロブスカイト型または擬似ペロブス
カイト型酸化物を粉体としていわゆる粉体塗装を行うこ
とによって薄膜化する方法等が挙げられる。
Although various methods can be applied to form the superconducting thin film as described above, particularly preferred methods for the present invention include:
A physical vapor deposition method using a superconducting material obtained as a perovskite or pseudo-perovskite oxide sintered body, a method of thinning the perovskite or pseudo-perovskite oxide by powder coating, etc. can be mentioned.

これらの方法において用いられる超電導性焼結体は、以
下のようにして得られる。即ち、例えばBaとYの組合
せのように、それぞれ周期律表1a族、ma族に属する
元素と、Cuのように周期律表Ib、nb、I[[b、
■a族に族する元素の何れかの、それぞれ酸化物、炭酸
塩、硝酸塩又は硫酸塩の粉末を焼結して作製する。尚、
ターゲットとして用いる場合は、仮焼結のみしたもので
もあるいは本焼結したものでもよい。また、焼成体ある
いは焼結体を粉砕した粉末あるいはバルク状焼結体を用
いてもよい。特に、焼結体粉末を用いた場合はターゲッ
トの蒸発効率がよいので、粒径0.03〜2mmの範囲
の粉末を用いるとによって高い成膜適度が得られる。
The superconducting sintered body used in these methods is obtained as follows. That is, for example, elements belonging to groups 1a and ma of the periodic table, such as a combination of Ba and Y, and elements Ib, nb, I[[b,
(2) Produced by sintering powders of oxides, carbonates, nitrates, or sulfates of any of the elements belonging to group a. still,
When used as a target, it may be either pre-sintered or permanently sintered. Further, a fired body, a powder obtained by crushing a sintered body, or a bulk sintered body may be used. In particular, when a sintered body powder is used, the evaporation efficiency of the target is good, so a high degree of film formation can be obtained by using a powder having a particle size in the range of 0.03 to 2 mm.

以下に本発明を実施例により説明するが、本発明の技術
的範囲はこれらの実施例に何等制限されるものではない
ことは勿論である。
The present invention will be explained below with reference to examples, but it goes without saying that the technical scope of the present invention is not limited to these examples in any way.

実施例 まず、本発明に従う超電導材を製造するために用いる装
置について説明する。第1図は、本発明の超電導酸化物
薄膜の作製に用いた高周波スパッタリング装置の概略図
である。
EXAMPLE First, an apparatus used for producing a superconducting material according to the present invention will be described. FIG. 1 is a schematic diagram of a high frequency sputtering apparatus used for producing the superconducting oxide thin film of the present invention.

第1図に示す装置は、チャンバ1と、チャンバ1内に配
置されたターゲット2およびこのターゲットをスパッタ
原子でスパッタするためにそれに併置されたスパッタ原
子3と、原料ターゲット2に対向゛して設けられ、表面
上に薄膜が形成されることになる基板4とから主に構成
されている。チャンバ1はポート7を介して真空ポンプ
(不°図示)に接続され、内部を真空にすることができ
る。
The apparatus shown in FIG. 1 includes a chamber 1, a target 2 disposed in the chamber 1, a sputtering atom 3 placed side by side with the target for sputtering the target with sputtering atoms, and a source target 2 disposed facing the source target 2. It mainly consists of a substrate 4 on which a thin film is formed. The chamber 1 is connected to a vacuum pump (not shown) through a port 7, so that the interior thereof can be evacuated.

基板4には高圧電源5を用いてバイアス電圧が印加され
る。基板4にはさらに、加熱用ヒーター6が取りつけら
れ、基板温度が調整可能である。
A bias voltage is applied to the substrate 4 using a high voltage power supply 5. A heating heater 6 is further attached to the substrate 4, and the temperature of the substrate can be adjusted.

さらに、チャンバ1にはガス導入孔8が取りつけられて
いる。
Furthermore, a gas introduction hole 8 is attached to the chamber 1 .

まず、原料ターゲット2として、BaCo3、Y2(C
o3)3 CuOの粉末を、原子比Ba/ (Ba+Y
)が0.2となるように混合、成形し、800℃で仮焼
結し、粉砕、成形後さらに1100℃で本焼結した焼結
体ブロックを作製した。
First, as the raw material target 2, BaCo3, Y2 (C
o3)3 CuO powder with atomic ratio Ba/ (Ba+Y
) was 0.2, pre-sintered at 800°C, crushed, molded, and finally sintered at 1100°C to produce a sintered block.

第1図に示したスパッタリング装置を用い、上記の焼結
体ブロックをターゲットとし、幅5Qmm。
Using the sputtering apparatus shown in FIG. 1, the above sintered block was used as a target, and the width was 5 Q mm.

長さ150mm、厚さo、 Q3mmのステンレス製の
テープ状基板の表面に超電導薄膜を形成した。尚、成膜
条件は以下の通りである。
A superconducting thin film was formed on the surface of a stainless steel tape-shaped substrate with a length of 150 mm, thickness o, and Q3 mm. Note that the film forming conditions are as follows.

酸素分圧3 Xl0−2Torr。Oxygen partial pressure 3 Xl0-2 Torr.

Ar分圧3 xlO−2Torr。Ar partial pressure 3xlO-2 Torr.

基板温度910℃、 基板バイアス電圧−50V1 高周波電力5 W i ctl、 基板とターゲット間の距離3Qmm 成膜速度は4人/secで約0.5μmの厚さに成膜し
た。
The substrate temperature was 910° C., the substrate bias voltage was −50 V1, the high frequency power was 5 W ictl, the distance between the substrate and the target was 3 Q mm, and the film forming rate was 4 people/sec, and the film was formed to a thickness of about 0.5 μm.

次いで、得られた各々の薄膜の抵抗を測定するためサン
プルを作製した。抵抗測定を行うサンプルは、基板4上
に形成された薄膜の両端部分に、さらに真空蒸着で一対
の^l電極を形成し、このAl電極にリード線をハンダ
付けした。
Next, samples were prepared to measure the resistance of each of the obtained thin films. In the sample for resistance measurement, a pair of electrodes were further formed by vacuum evaporation on both ends of the thin film formed on the substrate 4, and lead wires were soldered to the Al electrodes.

チャンバの内部の酸素分圧を3 X 10−”Torr
で作製、した本発明の方法による薄膜は、超電導現象の
始まる温度が約89にであり、78に以下では完全な超
電導体となった。
The oxygen partial pressure inside the chamber was set to 3 x 10-”Torr.
In the thin film produced by the method of the present invention, the superconducting phenomenon began at a temperature of about 89° C., and became a complete superconductor below 78° C.

更に、簡単な治具によって上記超電導材を、超電導薄膜
を内側にして曲率半径5Qmmに屈曲した状態で、同様
に臨界温度を測定したところ、超電導現象の始まる温度
が約88にであり、77に以下では完全な超電導体とな
り、有意な特性の低下は観測されなかった。また、曲率
半径3Q+ro++まで屈曲したが超電導薄膜の剥離等
は生じなかった。
Furthermore, when the above superconducting material was bent with a simple jig to a radius of curvature of 5 Qmm with the superconducting thin film inside, the critical temperature was similarly measured, and the temperature at which the superconducting phenomenon began was found to be approximately 88 and 77. Below, it became a perfect superconductor, and no significant deterioration in properties was observed. Further, even though it was bent to a radius of curvature of 3Q+ro++, no peeling of the superconducting thin film occurred.

発明の効果 以上詳述のように、本発明に従う超電導材は、高い臨界
温度を有しながら機械的に脆弱な超電導焼結体を、可撓
性の基板によって支持すると共に焼結体自身の厚さを制
限することによって、超電導材に可撓性を付与したもの
である。また、本発明に従う超電導材は、基板を導体に
よって構成することによって、超電導が破れた場合の電
流のノ4イパスとしても機能するように構成したもので
ある。
Effects of the Invention As detailed above, the superconducting material according to the present invention supports a mechanically fragile superconducting sintered body having a high critical temperature with a flexible substrate, and also reduces the thickness of the sintered body itself. By limiting the stiffness, flexibility is imparted to the superconducting material. Moreover, the superconducting material according to the present invention is configured so that the substrate is made of a conductor so that it also functions as a current pass when the superconductivity is broken.

かくして、本発明により、高く安定したTcを有すると
同時に取扱の極めて簡便な、線材あるいは小部品として
広く利用することのできる新規な超電導材が提供される
Thus, the present invention provides a novel superconducting material that has a high and stable Tc, is extremely easy to handle, and can be widely used as wire rods or small parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するのに用いるスパッタリ
ング装置の一例の概略図である。 (主な参照番号)
FIG. 1 is a schematic diagram of an example of a sputtering apparatus used to carry out the method of the present invention. (main reference number)

Claims (7)

【特許請求の範囲】[Claims] (1)一般式:(A_x_−_1B_x)C_yD_z
(ただし、Aは周期律表IIa、IIIa族元素から選択さ
れた一種であり、Bは周期律表IIa、IIIa族元素でA
と同じものを含む元素から選択された一種であり、Cは
周期律表 I b、IIb、IIIb、VIIIa族元素から選択さ
れた少なくとも一種であり、DはO、B(硼素)、C (炭素)、N、FおよびSの中から選択された少なくと
も一種であり、xはA+Bに対するBの原子比で、0.
1≦x≦0.9であり、yおよびzは(A_x_−_1
B_x)を1とした場合に0.4≦y≦3.0、1≦z
≦5となる 原子比である) で示される厚さ1μm以下の複合酸化物薄膜と、該薄膜
を支持する可撓性基板とを備えることを特徴とする可撓
性超電導材。
(1) General formula: (A_x_-_1B_x)C_yD_z
(However, A is an element selected from group IIa and IIIa of the periodic table, and B is an element selected from group IIa and IIIa of the periodic table.)
, C is at least one element selected from elements in groups Ib, IIb, IIIb, and VIIIa of the periodic table, and D is O, B (boron), and C (carbon). ), N, F, and S, x is the atomic ratio of B to A+B, and 0.
1≦x≦0.9, and y and z are (A_x_−_1
B_x) is 1, then 0.4≦y≦3.0, 1≦z
A flexible superconducting material comprising: a composite oxide thin film having a thickness of 1 μm or less and having an atomic ratio of ≦5; and a flexible substrate supporting the thin film.
(2)前記複合酸化物薄膜が物理蒸着によって形成され
たものであることを特徴とする特許請求の範囲第1項に
記載の可撓性超電導材。
(2) The flexible superconducting material according to claim 1, wherein the composite oxide thin film is formed by physical vapor deposition.
(3)前記複合酸化物薄膜が、前記可撓性基板上に付着
した該複合酸化物の粉体により形成されていることを特
徴とする特許請求の範囲第1項に記載の可撓性超電導材
(3) The flexible superconductor according to claim 1, wherein the composite oxide thin film is formed of powder of the composite oxide adhered to the flexible substrate. Material.
(4)前記可撓性基板が導電体であることを特徴とする
特許請求の範囲第1項乃至第3項の何れか1項に記載の
可撓性超電導材。
(4) The flexible superconducting material according to any one of claims 1 to 3, wherein the flexible substrate is a conductor.
(5)前記薄膜を搭載した基板が複数積層されているこ
とを特徴とする特許請求の範囲第1項乃至第4項の何れ
か1項に記載の可撓性超電導材。
(5) The flexible superconducting material according to any one of claims 1 to 4, characterized in that a plurality of substrates on which the thin film is mounted are laminated.
(6)前記元素AおよびBがそれぞれBaおよびYであ
ることを特徴とする特許請求の範囲第1項乃至第5項の
何れか1項に記載の可撓性超電導材。
(6) The flexible superconducting material according to any one of claims 1 to 5, wherein the elements A and B are Ba and Y, respectively.
(7)前記可撓性基板が、Cu、Fe、Ni、Coまた
はAlにより形成されていることを特徴とする特許請求
の範囲第1項乃至第6項の何れか1項に記載の可撓性超
電導材。
(7) The flexible substrate according to any one of claims 1 to 6, wherein the flexible substrate is made of Cu, Fe, Ni, Co, or Al. superconducting material.
JP62099387A 1987-04-22 1987-04-22 Plexible superconductive material Pending JPS63264814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62099387A JPS63264814A (en) 1987-04-22 1987-04-22 Plexible superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62099387A JPS63264814A (en) 1987-04-22 1987-04-22 Plexible superconductive material

Publications (1)

Publication Number Publication Date
JPS63264814A true JPS63264814A (en) 1988-11-01

Family

ID=14246096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099387A Pending JPS63264814A (en) 1987-04-22 1987-04-22 Plexible superconductive material

Country Status (1)

Country Link
JP (1) JPS63264814A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224112A (en) * 1987-03-11 1988-09-19 Matsushita Electric Ind Co Ltd Superconducting wire and its manufacture
JPS63233070A (en) * 1987-03-23 1988-09-28 Semiconductor Energy Lab Co Ltd Preparation of superconductive ceramic
JPS63239740A (en) * 1987-03-27 1988-10-05 Toshiba Corp Manufacture for superconductive compound thin film
JPS6427132A (en) * 1987-04-16 1989-01-30 Mitsubishi Electric Corp Manufacture of oxide superconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224112A (en) * 1987-03-11 1988-09-19 Matsushita Electric Ind Co Ltd Superconducting wire and its manufacture
JPS63233070A (en) * 1987-03-23 1988-09-28 Semiconductor Energy Lab Co Ltd Preparation of superconductive ceramic
JPS63239740A (en) * 1987-03-27 1988-10-05 Toshiba Corp Manufacture for superconductive compound thin film
JPS6427132A (en) * 1987-04-16 1989-01-30 Mitsubishi Electric Corp Manufacture of oxide superconductor

Similar Documents

Publication Publication Date Title
Takeda et al. High Ic superconducting joint between Bi2223 tapes
JPS63248722A (en) Device and system based on novel superconductive material
Tomita et al. Generation of 21.5 T by a superconducting magnet system using a Bi2Sr2CaCu2O x/Ag coil as an insert magnet
JP4799979B2 (en) Oxide superconductor coil, oxide superconductor coil manufacturing method, oxide superconductor coil excitation method, oxide superconductor coil cooling method, and magnet system
JP2939544B1 (en) Mg-doped low-anisotropic high-temperature superconductor and method for producing the same
US5248657A (en) Method for forming internally helixed high temperature superconductor assembly
JPS63264814A (en) Plexible superconductive material
JP2519773B2 (en) Superconducting material
JP2525855B2 (en) Superconducting material
JPS62170108A (en) Super conductor containing nb, si and al and oxide thereof having transition temperature 77k or more
JP2567447B2 (en) Superconducting material
JP2514685B2 (en) Superconducting material and manufacturing method thereof
Shibutani et al. Fabrication of silver-sheathed Bi (2: 2: 1: 2) superconducting magnet by means of partial melt and slow cooling process
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JP3766448B2 (en) Superconducting current lead
Tkaczyk The processing, properties, and prospects of Tl-1223
JPH0761867B2 (en) Method for producing complex oxide superconducting thin film
JP2544760B2 (en) Preparation method of superconducting thin film
JP2017039621A (en) Superconductive oxide thin film and manufacturing method therefor
JPH0227612A (en) Oxide superconducting wire rod
JP2816792B2 (en) Superconducting magnetic shield container and method of manufacturing the same
JPH013009A (en) Superconducting materials and their manufacturing methods
JPS6419702A (en) Manufacture of thin film superconducting coil
JPS63245825A (en) Manufacture of superconductive composite
JPH0575699B2 (en)