JPS63264192A - Method and device for purifying sewage - Google Patents

Method and device for purifying sewage

Info

Publication number
JPS63264192A
JPS63264192A JP9937287A JP9937287A JPS63264192A JP S63264192 A JPS63264192 A JP S63264192A JP 9937287 A JP9937287 A JP 9937287A JP 9937287 A JP9937287 A JP 9937287A JP S63264192 A JPS63264192 A JP S63264192A
Authority
JP
Japan
Prior art keywords
iron
sewage
filter medium
base material
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9937287A
Other languages
Japanese (ja)
Inventor
Takao Kunimatsu
國松 孝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9937287A priority Critical patent/JPS63264192A/en
Publication of JPS63264192A publication Critical patent/JPS63264192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To efficiently remove the phosphorus component in sewage by supplying sewage into a filter medium mixed with metallic iron to elute the iron component, then combining the iron component with the phosphorus component in the sewage to form insoluble iron phosphate, and holding the iron phosphate in the filter medium. CONSTITUTION:The filter medium 1 is formed by preferably using soil as a base material 2 and uniformly mixing powdery or granular metallic iron 3 into the material 2. When sewage A is supplied to the filter medium 1, the metallic iron 3 is eluted as an iron ion by the oxygen, etc., in the sewage and quickly combines with the phosphoric ion in the sewage to form the precipitate 4 of insoluble iron phosphate, and the unreacted iron ion is oxidized to form the precipitate 5 of iron hydroxide. The precipitates 4 and 5 are held in the gap between the base material 2 and the metallic iron 3, and the dephosphorized treated water B flows out to the outside of the device. This sewage purification method is appropriately used especially for the treatment of domestic waste water. In this case, the amt. of the metallic iron 3 to be added is necessarily controlled to about 2-20wt.%, based on the base material 2. In addition, the base material 2 having high water permeability is preferably used, and the granular metallic iron 3 is preferable.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、汚水中の燐分を有効に除去する方法及び装置
に係り、特に金属鉄を用いて燐分を沈着分離させるもの
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method and apparatus for effectively removing phosphorus from wastewater, and particularly to a method for depositing and separating phosphorus using metal iron.

〔技術的背景及び従来技術の欠点〕[Technical background and drawbacks of conventional technology]

近年、生活雑排水や下水処理排水等が環境汚染の原因と
して注目され、殊に燐は湖沼、河川、海等の富栄養化問
題を招来するため、幾多の燐除去研究がな−されている
In recent years, gray water and sewage treatment wastewater have attracted attention as a cause of environmental pollution, and many studies have been conducted to remove phosphorus, especially since phosphorus causes eutrophication problems in lakes, rivers, oceans, etc. .

現在、汚水中の燐除去方法としては既築沈澱方法が最も
広く行なわれ、凝集剤として主としてカルシウム、アル
ミニウム、鉄の塩類を使用している。また、最近では晶
析法も開発実用化されるに至っている。しかし、前者は
多量の汚泥が発生しその処理費及び薬品代等ランニング
コストが嵩み、後者は特に運転管理が難しい等の欠点を
有している。
Currently, the conventional precipitation method is the most widely used method for removing phosphorus from wastewater, and salts of calcium, aluminum, and iron are mainly used as flocculants. In addition, crystallization methods have recently been developed and put into practical use. However, the former method generates a large amount of sludge, which increases running costs such as processing costs and chemical costs, while the latter method has drawbacks such as difficulty in operation management.

一方、自然の浄化力を利用した土壌浄化法が開発されて
注目を浴びているが、燐除去容量が必ずしも十分でなく
、また土壌が粘土質である場合殊に透水性が悪く、脱燐
効果は年次とともに急激に低下し透水性悪化と相俟って
土壌の塞がりを招来する。
On the other hand, soil purification methods that utilize the purifying power of nature have been developed and are attracting attention, but the phosphorus removal capacity is not always sufficient, and the water permeability is particularly poor when the soil is clayey. The water content decreases rapidly over the years, and together with the deterioration of water permeability, this leads to soil clogging.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明者は、上記問題を解決すべく種々研究した
結果、金属鉄を利用して燐分を有効に除去する技術を開
発した。
As a result of various studies to solve the above problems, the inventors of the present invention have developed a technique for effectively removing phosphorus using metal iron.

即ち、還元鉄等の金属鉄が空気を含んだ水と接触した場
合、中性域では空気中の酸素による酸化作用等により微
量の鉄分(鉄イオン)が溶出する。
That is, when metallic iron such as reduced iron comes into contact with air-containing water, a small amount of iron (iron ions) is eluted in the neutral region due to the oxidation effect of oxygen in the air.

この溶出鉄分が鱗含んだ汚水と接触すると、不溶性の燐
酸鉄の沈澱となる。
When this eluted iron comes into contact with wastewater containing scales, it becomes a precipitate of insoluble iron phosphate.

従って、この沈澱物を何らかの方法によって処理水と分
離すれば、脱燐効果が現れることになる。
Therefore, if this precipitate is separated from the treated water by some method, the dephosphorization effect will appear.

この分離及び金属鉄の支持体として、土壌を用いたこと
が本発明の最大の特徴である。また本発明の濾材(土壌
と金属鉄の混合物)を、土壌式汚水処理装置その他の処
理装置に組み込んだりその一部に用いることにより総合
的な汚水除去装置とすることができる。
The greatest feature of the present invention is that soil is used as a support for this separation and metal iron. Further, the filter medium (mixture of soil and metal iron) of the present invention can be incorporated into a soil-type sewage treatment device or other treatment device, or used as a part thereof, to provide a comprehensive sewage removal device.

〔本発明の構成〕 第1図は、本発明の処理原理を説明するための模式図で
、第2図は本発明濾材を用いた土壌式汚水処理装置の一
例を示す。また第3図は脱燐率を測定するためのテスト
用毛管トレンチ装置の一例を示す。
[Structure of the Present Invention] FIG. 1 is a schematic diagram for explaining the treatment principle of the present invention, and FIG. 2 shows an example of a soil-type sewage treatment apparatus using the filter medium of the present invention. Further, FIG. 3 shows an example of a test capillary trench apparatus for measuring the dephosphorization rate.

第1図に例示する濾材(1)は、土壌(2)を基材とし
、これに粉状或いは粒状の金属鉄(3)(以下「鉄粒」
とする)を均一に混合したものである。
The filter medium (1) illustrated in Fig. 1 uses soil (2) as a base material, and powdered or granular metallic iron (3) (hereinafter referred to as "iron particles") is added to the soil (2) as a base material.
) are uniformly mixed.

この濾材(1)に汚水(生活雑排水)(A)を供すると
、鉄粒(3)が汚水中の酸素等により鉄イオンの形で熔
出し、汚水中に鱗酸イオンが存在すると速やかに結合し
て不溶性の燐酸鉄の沈澱(4)となる。
When sewage (domestic wastewater) (A) is applied to this filter medium (1), iron particles (3) are melted in the form of iron ions by the oxygen in the sewage, and if scale acid ions are present in the sewage, they are immediately dissolved. They combine to form an insoluble iron phosphate precipitate (4).

また、未反応の鉄イオンは酸化されて水酸化鉄の沈澱(
5)となる。これらの沈澱物は、土壌(2)や鉄粒(3
)の間隙に保持される結果、燐分が除去された処理水(
B)が装置外に流出していく。
In addition, unreacted iron ions are oxidized and precipitate iron hydroxide (
5). These precipitates are deposited on soil (2) and iron grains (3).
The treated water (
B) flows out of the device.

しかして本方法において重要な点は、高い脱燐率と透水
性の良いことである。
However, the important points in this method are a high dephosphorization rate and good water permeability.

まず、溶出する鉄イオン量は濾材中の鉄粒の量に略比例
するので、余り少ないと燐の除去が不十分となり、多過
ぎると鉄イオンの形で処理水中に流出し赤水の原因とな
る。ところで、本発明は汚水一般を特徴とする特に小規
模な生活雑排水処理施設に好適なものであり、この種施
設からの排水は通常中性で且つ燐分含有率が全燐(T−
P)で4〜5 ppm程度で略一定である。これを念頭
におくと、鉄粒の添加量は基材に対して2〜20重量%
程度必要である。より好ましくは3〜10%である。
First, the amount of iron ions eluted is approximately proportional to the amount of iron particles in the filter medium, so if it is too small, phosphorus removal will be insufficient, and if it is too large, it will flow into the treated water in the form of iron ions, causing red water. . By the way, the present invention is particularly suitable for small-scale domestic gray water treatment facilities that are characterized by general sewage, and wastewater from such facilities is usually neutral and has a phosphorus content of total phosphorus (T-
P) is approximately constant at about 4 to 5 ppm. With this in mind, the amount of iron particles added should be 2 to 20% by weight based on the base material.
degree is necessary. More preferably it is 3 to 10%.

一方、透水性は装置の処理能力の観点から重要である。On the other hand, water permeability is important from the viewpoint of the processing capacity of the device.

しかも、生成する燐酸鉄や水酸化鉄が時間とともに濾材
中に蓄積して透水性を低下させるので、装置の寿命を長
くする点からも重要である。
Moreover, the produced iron phosphate and iron hydroxide accumulate in the filter medium over time and reduce water permeability, so this is also important from the point of view of extending the life of the device.

従って、基材としての土壌は出来得れば透水性の高いも
のが好ましい。因に、表−1は数種の土壌の透水係数を
示すが、この中では粘土分やシルト分の少ない川砂が最
も好ましい。川砂は、また化学的にも安定している。粒
径としては、0.02〜2mm、 より好ましくは0.
25〜0 、5mmである。
Therefore, it is preferable that the soil used as the base material has high water permeability if possible. Incidentally, Table 1 shows the hydraulic permeability coefficients of several types of soil, and among these, river sand with a low clay and silt content is the most preferable. River sand is also chemically stable. The particle size is 0.02 to 2 mm, more preferably 0.02 to 2 mm.
25~0.5mm.

同様に、金属鉄も粒状のものが好ましい。大きさは、2
0〜80メツシユ、より好ましくは40〜60メンシュ
程度である。尚、粉状のものは化学的に活性に冨むため
反応性が良いが、逆に危険であるし飛散して取り扱い難
い点からも粒イ六゛のものが好ましい。
Similarly, granular metal iron is also preferable. The size is 2
It is about 0 to 80 meshes, more preferably about 40 to 60 meshes. Incidentally, powdered materials are chemically active and have good reactivity, but on the other hand, they are dangerous and scatter, making them difficult to handle, so powders in the size of 1.6 mm are preferable.

表−1 次に、第2図は本発明の濾材(11を組み込んだトレン
チ(土壌式浄化装置)の−例を示す。このトレンチ(6
)は、濾材(1)を充虜した処理層(7)の中央やや土
寄りに汚水散水管(8)・8I膏(9)・ネソ)(10
)で構成される汚水供給部(11)を設け、処理層(7
)の下側にネット(12)を介して排水用の礫層(13
)、上側に真砂土からなる被覆土壌層(14)を夫々配
設し、且つこれら全体をコンクリ−1uff(+s)内
に収納したものである。そして、汚水(A)は汚水供給
部(11)から周囲の処理層(7)に毛管現象或いは重
力の作用で移動し、その間に前記した反応を受けて燐分
が除去された処理水(B)がr+’t!!(+2)及び
排水管(16)を通って系外に排出される。
Table 1 Next, FIG. 2 shows an example of a trench (soil-type purification device) incorporating the filter medium (11) of the present invention.
) is a sewage sprinkler pipe (8), 8I plaster (9), Neso) (10
) is provided with a wastewater supply section (11) consisting of a treatment layer (7
) under the gravel layer (13) for drainage via a net (12).
), a covering soil layer (14) made of sandy soil is disposed on the upper side, and the whole is housed in concrete 1uff (+s). Then, the wastewater (A) moves from the wastewater supply section (11) to the surrounding treatment layer (7) by capillary action or the action of gravity, and during this time, the treated water (B) from which phosphorus has been removed through the above-mentioned reaction ) is r+'t! ! (+2) and drain pipe (16) to be discharged out of the system.

〔実験例〕[Experiment example]

(実験装置) 実験は、第3図に示す如きテスト用毛管トレンチ装置(
17)を用いて行なった。この装置(17)は内部が良
く見えるように全体を透明なプラスチック板で作り、濾
材収納部(18)に川砂(2)と鉄粒(3)の混合比率
を変えたものを濾材(11として充填し、且つ上部に試
験水供給管(19)、下部にネッ1−(20)及び砂利
層(2I)で覆った処理水排出管(22)を夫々配置し
たものである。しかして、試験水(23)を試験水供給
管(19)から一定圧で連続通水し、処理水排出管(2
2)から出てくる濾過水(24)をビーカー(25)で
受けて試験に供する。
(Experimental equipment) The experiment was carried out using a test capillary trench equipment (as shown in Figure 3).
17). This device (17) is made entirely of a transparent plastic plate so that the inside can be clearly seen, and the filter media (11) are made of river sand (2) and iron particles (3) with different mixing ratios in the filter media storage section (18). A test water supply pipe (19) is filled at the top, and a treated water discharge pipe (22) covered with a net 1-(20) and a gravel layer (2I) is arranged at the bottom. Water (23) is continuously passed through the test water supply pipe (19) at a constant pressure, and the treated water discharge pipe (2
The filtered water (24) coming out of 2) is received in a beaker (25) and used for the test.

(濾材) 濾材の基材としては川砂(粒径0.25〜0.5On+
m)を用い、これに粒径0.25〜0.35mm (4
0〜60メツシユ)の鉄粒を、表−2に示す割合(重量
比)で混合したものを使用した。
(Filter media) River sand (particle size 0.25 to 0.5On+
m) with a particle size of 0.25 to 0.35 mm (4
A mixture of iron particles (0 to 60 mesh) in the ratio (weight ratio) shown in Table 2 was used.

表 −2 (試験水) 試験水(20)は、生活排水の二次処理水を対象と考え
、KII2PO4熔液(T−P5ppn+相当濃度)と
C6H1206(BOD 25ppm相当濃度)の表−
3 混合液を調整して使用した。
Table 2 (Test water) The test water (20) is considered to be the secondary treated water of domestic wastewater, and the table of KII2PO4 solution (concentration equivalent to T-P5ppn+) and C6H1206 (concentration equivalent to BOD 25ppm)
3 A mixed solution was prepared and used.

(結果) 実験結果を、表−3に示す、この結果から、金属鉄の添
加量は基材たる土壌に対し3〜15重量%特に5〜10
%程度が最も好ましいことが判る。
(Results) The experimental results are shown in Table 3. From these results, the amount of metallic iron added is 3 to 15% by weight, especially 5 to 10% by weight, based on the base soil.
It turns out that about % is most preferable.

3%以下では脱燐率が低く、15%以上では脱燐率も幾
分落ち溶出鉄濃度が高くなり好ましくない。
If it is less than 3%, the dephosphorization rate will be low, and if it is more than 15%, the dephosphorization rate will drop somewhat and the eluted iron concentration will become high, which is not preferable.

因に、鉄イオンの排水基準値は10ppmである。Incidentally, the wastewater standard value for iron ions is 10 ppm.

〔効果〕〔effect〕

以上詳述したように、未発゛明は金属鉄を混入した濾材
中に汚水を供給することにより鉄分を溶出させ、該鉄分
と汚水中に含まれている燐分を結合させて不溶性の燐酸
鉄となし、該燐酸鉄を濾材中に保持して水と分離させる
ものである。
As detailed above, the undeveloped method is to elute iron by feeding wastewater into a filter medium mixed with metallic iron, and combine the iron with phosphorus contained in the wastewater to form insoluble phosphoric acid. The iron phosphate is retained in a filter medium and separated from water.

従って、凝集沈澱法のように薬品代や汚泥処理費等のラ
ンニングコストがかからず、晶析法のように運転管理の
問題もなく、且つ土壌法よりも使用寿命が長く脱鱗容量
が大きいので、特に小規模の汚水浄化装置等にとって最
適の脱燐方法と言うことができる。
Therefore, unlike the coagulation-sedimentation method, there are no running costs such as chemicals and sludge treatment costs, and unlike the crystallization method, there are no operational management problems, and the service life is longer and the descaling capacity is larger than the soil method. Therefore, it can be said to be an optimal dephosphorization method especially for small-scale sewage purification equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の処理原理を説明するための模式図、第
2図は本発明に係る土壌式汚水処理装置の一例を示す断
面図、第3図は脱燐率を測定するためのテスト用毛管ト
レンチ装置の一例で(alは配管状態を示す平面図、(
b)は装置全体の縦断面図である。 1・・・・・・濾材      6・・・・・・トレン
チ2・・・・・・川砂      17・・・・・・テ
スト用毛管3・・・・・・鉄粒         トレ
ンチ装置4・・・・・・燐酸鉄の沈澱物 A・・・・・
・汚水5・・・・・・水酸化物の沈澱 B・・・・・・
処理水第2目 /′″ 叢3回     (b)
Fig. 1 is a schematic diagram for explaining the treatment principle of the present invention, Fig. 2 is a sectional view showing an example of the soil-type sewage treatment equipment according to the present invention, and Fig. 3 is a test for measuring the dephosphorization rate. This is an example of a capillary trench device for use (al is a plan view showing the piping state, (
b) is a longitudinal sectional view of the entire device. 1...Filter material 6...Trench 2...River sand 17...Test capillary 3...Iron grains Trench device 4... ...Precipitate of iron phosphate A...
・Sewage 5... Hydroxide precipitation B...
2nd batch of treated water / 3 batches of treated water (b)

Claims (1)

【特許請求の範囲】 1、金属鉄を混入した濾材中に汚水を供給することによ
り鉄分を溶出させ、該鉄分と汚水中に含まれている燐分
を結合させて不溶性の燐酸鉄となし、該燐酸鉄を濾材中
に保持させ水と分離することを特徴とする汚水の浄化方
法。 2、濾材の基材として、透水性に優れた土壌を用いるも
のである特許請求の範囲第1項記載の汚水の浄化方法。 3、汚水供給源の周囲に、金属鉄を含む濾材を充填し、
その上部を被覆土壌で覆ったことを特徴とする汚水浄化
装置。
[Scope of Claims] 1. Feeding wastewater into a filter medium mixed with metallic iron to elute iron content, and combining the iron content with phosphorus contained in the wastewater to form insoluble iron phosphate; A method for purifying wastewater, which comprises retaining the iron phosphate in a filter medium and separating it from water. 2. The method for purifying wastewater according to claim 1, wherein soil with excellent water permeability is used as the base material of the filter medium. 3.Fill a filter medium containing metal iron around the wastewater supply source,
A sewage purification device characterized in that its upper part is covered with soil.
JP9937287A 1987-04-22 1987-04-22 Method and device for purifying sewage Pending JPS63264192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9937287A JPS63264192A (en) 1987-04-22 1987-04-22 Method and device for purifying sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9937287A JPS63264192A (en) 1987-04-22 1987-04-22 Method and device for purifying sewage

Publications (1)

Publication Number Publication Date
JPS63264192A true JPS63264192A (en) 1988-11-01

Family

ID=14245707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9937287A Pending JPS63264192A (en) 1987-04-22 1987-04-22 Method and device for purifying sewage

Country Status (1)

Country Link
JP (1) JPS63264192A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010092A1 (en) * 1992-10-28 1994-05-11 Hazama Corporation Dephosphorization material and dephosphorization method
KR20030069013A (en) * 2002-02-15 2003-08-25 김임석 Method for eliminating phosphate from wastewater
US20120223029A1 (en) * 2006-02-09 2012-09-06 Corporate Environmental Solutions Llc Methods, apparatus and systems for polishing wastewater utilizing natural media filtration
KR101179965B1 (en) 2009-12-30 2012-09-07 (주)이엔바이오21 Apparatus and method for treatment wastewater using steel media
US9187342B2 (en) 2010-06-14 2015-11-17 Alcoa Inc. Method for removing drugs from waste water using neutralized bauxite residue
US9315406B2 (en) 2013-01-11 2016-04-19 Alcoa Inc. Wastewater treatment systems and methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994010092A1 (en) * 1992-10-28 1994-05-11 Hazama Corporation Dephosphorization material and dephosphorization method
KR20030069013A (en) * 2002-02-15 2003-08-25 김임석 Method for eliminating phosphate from wastewater
US20120223029A1 (en) * 2006-02-09 2012-09-06 Corporate Environmental Solutions Llc Methods, apparatus and systems for polishing wastewater utilizing natural media filtration
KR101179965B1 (en) 2009-12-30 2012-09-07 (주)이엔바이오21 Apparatus and method for treatment wastewater using steel media
US9187342B2 (en) 2010-06-14 2015-11-17 Alcoa Inc. Method for removing drugs from waste water using neutralized bauxite residue
US9315406B2 (en) 2013-01-11 2016-04-19 Alcoa Inc. Wastewater treatment systems and methods

Similar Documents

Publication Publication Date Title
EP1695941B1 (en) Process for treating ammonium containing liquid
US4218318A (en) Process and apparatus for treating and purifying waste water
CA2339695C (en) System for removing phosphorus from waste water
CN109225126A (en) A kind of porous phosphorus removing filtrate and preparation method thereof based on diatomite and tripoli
JPS63264192A (en) Method and device for purifying sewage
CN110092543A (en) A kind of algae pool-environmentally friendly processing method of artificial swamp-ecological pond of urban wastewater treatment firm tail water
JP2009142783A (en) Method and material for modifying bottom mud in closed water area or tidal flat
JPH09206800A (en) Treatment of water-area bottom mud
Nanayakkara et al. Anaerobic filter treatment of landfill-leachate using low-cost filter materials
EP0612692B1 (en) Method for production of water purifying substances
JPS61125483A (en) Method for removing phosphoric acid in liquid
JP3103473B2 (en) Water purification material and its production method
JPH0626663B2 (en) Phosphorus removing material and manufacturing method thereof
Kietliñska Engineered wetlands and reactive bed filters for treatment of landfill leachate
Singhal Phosphorus and nitrogen removal at Cadillac, Michigan
JP2004344765A (en) Water purifying material and its manufacturing method
JPH0368489A (en) Device for removing phosphorus in water
JPS5867396A (en) Removing method for nitrogen and phosphorus in waste water
JPH10309585A (en) Water quality purifying method
JPH08281261A (en) Method for removing phosphorus in river water
JP4649887B2 (en) Water purification promotion material, highly functional water purification material, and water purification method using them
JP2791053B2 (en) Wastewater treatment method
JP2004298668A (en) Water cleaning method and water cleaning apparatus
Horstkotte Pilot-demonstration project for industrial reuse of renovated municipal wastewater
JPS6133288A (en) Dephosphorization water treating apparatus by cylindrical column multistage type adsorption layer