JP2791053B2 - Wastewater treatment method - Google Patents

Wastewater treatment method

Info

Publication number
JP2791053B2
JP2791053B2 JP25522488A JP25522488A JP2791053B2 JP 2791053 B2 JP2791053 B2 JP 2791053B2 JP 25522488 A JP25522488 A JP 25522488A JP 25522488 A JP25522488 A JP 25522488A JP 2791053 B2 JP2791053 B2 JP 2791053B2
Authority
JP
Japan
Prior art keywords
sludge
aeration tank
tank
wastewater
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25522488A
Other languages
Japanese (ja)
Other versions
JPH02102794A (en
Inventor
淳史 笠井
正雄 下田
聰 河内
義典 下岡
能彦 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Kk
ONODA KEMIKO KK
Original Assignee
Chichibu Onoda Kk
ONODA KEMIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Kk, ONODA KEMIKO KK filed Critical Chichibu Onoda Kk
Priority to JP25522488A priority Critical patent/JP2791053B2/en
Publication of JPH02102794A publication Critical patent/JPH02102794A/en
Application granted granted Critical
Publication of JP2791053B2 publication Critical patent/JP2791053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は廃水の処理方法に関する。特に、安定した
廃水の処理方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for treating wastewater. In particular, it relates to a stable wastewater treatment method.

(従来の技術) 廃水の処理プロセスで、微生物処理槽は中でも重要な
装置の一つであるが、これに雨水などが流入して計画し
た処理理能力以上の高負荷がかかることがあり、微生物
処理槽の管理は、しばしば困難になることがある。特
に、活性汚泥法を採用している都市部の合流式の下水処
理場では、最終沈澱池において汚泥のバルキング現象や
浮上現像がしばしば見られる。従来、このような現像を
防止するためには様々な方策が提案されてきたが、これ
らは次の2つに大別することが出来る。
(Conventional technology) In the wastewater treatment process, the microbial treatment tank is one of the most important devices, but rainwater etc. may flow into this tank and cause a higher load than the planned treatment capacity. Management of the treatment tank can often be difficult. In particular, in a combined sewage treatment plant in an urban area that employs the activated sludge method, bulking and floating development of sludge are often observed in the final sedimentation basin. Conventionally, various measures have been proposed to prevent such development, but these can be broadly classified into the following two.

その1は、微生物処理槽の溶存酸素を高める方法であ
る。この方法では、酸素または酸素濃度の高い空気を使
用して通気を行なったり、或は返送汚泥中に液体酸素を
注入したりして、曝気槽中の溶存酸素を高めるものであ
る。しかしながら、上記の方法は、いずれも供給した酸
素が汚水の浄化に充分に費やされないで逸散することが
多く、必ずしも所期の効果が得られない上に、大量の酸
素を必要として実用上に問題があった。また、散気孔を
細かくして微細な気泡を発生させ、これによって溶存酸
素量を高める方法もあるが、これによると散気孔に目づ
まりが発生しやすく、それを除去するのに手間のかかる
作業を必要とした。
The first is a method of increasing dissolved oxygen in a microorganism treatment tank. In this method, aeration is performed using oxygen or air having a high oxygen concentration, or liquid oxygen is injected into returned sludge to increase dissolved oxygen in the aeration tank. However, in any of the above methods, the supplied oxygen often escapes without being sufficiently consumed for purification of sewage, so that not only the expected effect is not obtained but also a large amount of oxygen is required and practically Had a problem. In addition, there is a method to increase the amount of dissolved oxygen by creating fine air bubbles by finely diffusing the holes, but this tends to cause clogging of the diffusing holes, which requires a laborious work to remove them. Needed.

第2の方法は、汚泥を重量化させる微細な粒体を微生
物処理槽に供給して、汚泥を沈降させバルキング現象や
浮上現象を防止しようとするものである。しかしなが
ら、この方法は懸濁性の有機物の除去には効果がある
が、溶解性の有機物の除去にはなお不充分であった。
The second method is to supply fine granules for increasing the weight of sludge to a microorganism treatment tank and settle the sludge to prevent a bulking phenomenon and a floating phenomenon. However, although this method is effective for removing suspended organic substances, it is still insufficient for removing soluble organic substances.

(発明が解決しようとする課題) この発明は、活性汚泥法で廃水を処理するに当たっ
て、汚泥のバルキング現象や浮上現象の問題を大量の酸
素を必要とすることなく、かつ溶解性の有機物も効率よ
く除去する方法で解決しようとするものである。
(Problems to be Solved by the Invention) In the treatment of wastewater by the activated sludge method, the present invention solves the problem of bulking and flotation of sludge without requiring a large amount of oxygen and efficiently dissolving organic substances. It is intended to be solved by a well-removed method.

(課題を解決するための手段) この発明は、粉粒体の存在下で廃水を活性汚泥法で処
理する方法において、石炭または乾留炭のいずれかの14
9μmフルイ残分10%以下の粉粒体単味或いは石炭また
は乾留炭のいずれかの149μmフルイ残分10%以下の粉
粒体を60%以上含む粉粒体と149μmフルイ残分10%以
下のケイ酸系粉粒体との混合物からなる粉粒体を処理水
または最初沈澱池で前処理した廃水の一部に懸濁して廃
水の一部で形成された微細気泡にこれを付着させ、これ
によって得られた微細気泡粒子を汚水処理装置の曝気槽
に供給し、次いで常法に従って好気性処理を行ない、こ
こで分離された汚泥の一部を返送汚泥として曝気槽に返
送するとともに余剰汚泥を排出して脱水処理することを
特徴とする廃水の処理方法(請求項1)及びケイ酸系粉
粒体が転炉滓、高炉滓、シラス、関東ローム、ゼオライ
トのいずれか1種または2種以上である請求項1記載の
廃水の処理方法(請求項2)である。以下にこれらの発
明をさらに説明する。
(Means for Solving the Problems) The present invention relates to a method for treating wastewater by an activated sludge method in the presence of a granular material.
9μm siege with 10% or less siege or 10% or less of 149μm siege or 10% or less of 149μm siege The granules composed of a mixture with the silicic acid granules are suspended in treated water or a part of wastewater pretreated in a first settling basin, and adhered to fine bubbles formed by a part of the wastewater. Is supplied to the aeration tank of the sewage treatment apparatus, and then subjected to an aerobic treatment in accordance with a conventional method, where a part of the separated sludge is returned to the aeration tank as return sludge and excess sludge is removed. A wastewater treatment method (claim 1), wherein the wastewater is discharged and dewatered, and wherein the silicic acid-based powdery granules are at least one of converter slag, blast furnace slag, shirasu, Kanto loam, and zeolite The method for treating wastewater according to claim 1, which is A. Hereinafter, these inventions are further described.

この発明は、廃水の活性汚泥処理において、炭素系粉
粒体を付着させた微細気泡粒子を曝気槽の廃水の流入口
に流し込むことによって、好気性微生物処理槽内の溶存
酸素量を増加させ、かつ生成する汚泥を重量化させ、こ
れによって汚泥のバルキング現象や浮上現象を防止し、
もって効率的にかつ安定して廃水を処理しようとするも
のである。こうした本願の発明を図示した工程図にもと
ずいて次に説明する。
The present invention increases the amount of dissolved oxygen in an aerobic microorganism treatment tank by flowing fine bubble particles having carbon-based powder particles attached to the wastewater inlet of an aeration tank in activated sludge treatment of wastewater. And the sludge generated is made heavy, thereby preventing the bulking phenomenon and the floating phenomenon of the sludge,
Thus, it is intended to efficiently and stably treat wastewater. Next, the invention of the present application will be described with reference to the process drawings.

第1図は、この発明になる代表的な廃水の処理プロセ
スを示したものである。同図において、1は流入下水で
ある。この流入下水は例えばBOD200ppm以下の稀薄な都
市下水である。この流入下水1は、まず沈砂池2に導か
れここで下水中の砂分が除去され、つづいて最初沈澱池
3に送られ、ここで浮遊物が除去される。これらの前処
理のされた下水は、次に曝気槽4に送られる。しかしな
がら、この発明にあっては上述の前処理された下水が曝
気槽4に流入される際に、これといっしょに微細気泡粒
子5を曝気槽4に供給する。ここで下水とともに曝気槽
に供給される微細気泡粒子5は、粉粒体を微細な気泡に
付着させてなるものである。
FIG. 1 shows a typical wastewater treatment process according to the present invention. In the figure, reference numeral 1 denotes inflow sewage. This influent sewage is, for example, a lean urban sewage with a BOD of 200 ppm or less. The inflowed sewage 1 is first guided to a sand basin 2 where sand in the sewage is removed, and then sent first to a sedimentation basin 3 where suspended matter is removed. The pretreated sewage is then sent to the aeration tank 4. However, in the present invention, when the above-mentioned pretreated sewage flows into the aeration tank 4, the fine bubble particles 5 are supplied to the aeration tank 4 together with the sewage. Here, the fine bubble particles 5 supplied to the aeration tank together with the sewage are obtained by adhering powder particles to fine bubbles.

こうした粉粒体6を微細な気泡に付着させて微細気泡
粒子5とするには、最初沈澱池で前処理された下水の一
部7を採取し、これを粉粒体懸濁槽8に送ってこれに20
〜100g/m3下水比で添加して懸濁させる。次いでこの懸
濁液を高圧槽9に導き、この高圧槽へ一方からコンプレ
ッサー10で、例えば3kg/cm2以上に加圧された空気を送
りここで該空気溶解懸濁液をつくり、しかる後高圧槽9
からこれを導管11で取り出し減圧下におくことによって
形成される。第1図ではこうして形成された微細気泡粒
子5は、曝気槽4の底部に導かれここから曝気槽内に吐
出されるようになっている。この微細気泡粒子は、この
ように曝気槽4の下部から送り出されるのが好ましい
が、そのためには図示した方法での供給の外に、曝気槽
4への流入下水の流れが下降流を採用している場合は、
曝気槽4の流入下水の流入口に供給すれば、流入下水の
流れに乗って槽の底部に送り込まれるのでそのようにし
てもよい。曝気槽4では常法によって通気がなされ、通
常の好気性処理がなされる。しかしながら、ここでは上
記の通り微細気泡粒子5が添加されているために、曝気
槽内の溶存酸素量は増加され、好気性処理での酸素不足
からは解放されることになる。好気性処理のなされた処
理水は、最終沈澱池12に導かれここで分離汚泥13が引抜
かれ、他方上澄液の処理水14は河川等に放流される。分
離汚泥13の一部は、返送汚泥15として曝気槽4の前に返
送され処理下水1に添加される。余剰汚泥16は、汚泥濃
縮槽17に送られ、ここで濃縮された後に脱水機18に送ら
れて脱水される。脱水機18での濾水19は、最初沈澱池2
の前に返送される。脱水された後の汚泥は、以降常法に
従って焼却などの処分がなされる。
In order to make the fine particles 6 adhere to the fine bubbles to form the fine bubbles 5, a part 7 of the sewage pretreated in the sedimentation basin is first collected and sent to the granular suspension tank 8. 20
Add and suspend at 100 g / m 3 sewage ratio. Next, the suspension is introduced into a high-pressure tank 9, and air compressed to, for example, 3 kg / cm 2 or more is sent from one side to the high-pressure tank by a compressor 10 to form the air-dissolved suspension. Tank 9
It is formed by removing this from the pipe 11 and placing it under reduced pressure. In FIG. 1, the fine bubble particles 5 thus formed are guided to the bottom of the aeration tank 4 and discharged from the bottom into the aeration tank. The fine bubble particles are preferably sent out from the lower part of the aeration tank 4 as described above. For this purpose, in addition to the supply in the illustrated manner, the flow of sewage flowing into the aeration tank 4 adopts a downward flow. If you have
If supplied to the inflow sewage inlet of the aeration tank 4, it may be sent to the bottom of the tank along with the flow of the inflow sewage. Aeration is performed in the aeration tank 4 by an ordinary method, and normal aerobic treatment is performed. However, here, since the fine bubble particles 5 are added as described above, the dissolved oxygen amount in the aeration tank is increased, and the oxygen deficiency in the aerobic treatment is released. The treated water subjected to the aerobic treatment is led to the final sedimentation basin 12 where the separated sludge 13 is extracted, while the treated water 14 of the supernatant is discharged to rivers and the like. A part of the separated sludge 13 is returned as return sludge 15 before the aeration tank 4 and added to the treated sewage 1. The surplus sludge 16 is sent to a sludge thickening tank 17, where it is sent to a dehydrator 18 for dehydration. The drainage 19 from the dehydrator 18 is first settled in the sedimentation basin 2
Will be returned before The sludge that has been dewatered is then disposed of by incineration and the like in accordance with ordinary methods.

この発明で使用する粉粒体は、炭素系粉粒体単味のも
の、または炭素系粉粒体を少なくとも60%含むようにし
た炭素系粉粒体とケイ酸系粉粒体との混合物である。炭
素系粉粒体としては、石炭、乾留炭のいずれか1種を、
またケイ酸系粉粒体としては転炉滓、高炉滓、シラス、
関東ローム、ゼオライトの一種または2種以上で、これ
らの粉粒体は、その粒度を149μmフルイ残分で10%以
下としたものである。こうした粉粒体は、前記のように
して微細気泡に付着されて微細気泡粒子とするが、粉粒
体の使用量は、下水に対して20〜100g/m3の範囲となる
ようにして使用するのがよい。なお、微細気泡粒子の形
成に用いる水は、前記の通り初沈で前処理された水の外
に、処理水を用てもよい。。
The granules used in the present invention may be pure carbon-based granules or a mixture of carbon-based granules containing at least 60% of carbon-based granules and silicic acid-based granules. is there. As the carbon-based powder, any one of coal and carbonized coal is used,
Further, as the silica-based powder, converter slag, blast furnace slag, shirasu,
One or more of Kanto loam and zeolite. These powders have a particle size of 10% or less in a 149 μm sieve residue. Such particulate material is a said been to adhere to fine air bubbles as of fine bubbles particles, the amount of particulate material is set to be in the range of 20 to 100 g / m 3 with respect to sewage using Good to do. The water used for forming the fine bubble particles may be treated water in addition to the water pretreated by the initial precipitation as described above. .

上記の微細気泡粒子の曝気槽への導入は、通常、装置
の運転時に必要に応じて行なえばよい。例えば、装置が
高負荷状態でバルキング現象や等が生じた場合や生じる
恐れがある場合に微細気泡を導入し、その後これが平常
に回復した場合は微細気泡の曝気槽への導入を止め、従
来の装置だけで運転するようにすればよい。
Usually, the introduction of the fine bubble particles into the aeration tank may be performed as needed during operation of the apparatus. For example, when a bulking phenomenon or the like occurs or is likely to occur under a high load state of the device, fine bubbles are introduced, and then when this recovers normally, the introduction of the fine bubbles into the aeration tank is stopped. What is necessary is just to drive only by a device.

(発明の効果) 以上説明したこの発明によると、流入下水に負荷変動
が生じてた場合でも、それに対応して微生物処理槽の溶
存酸素を高く維持することが出来、常に正常な運転を行
なうことが出来るようになる。そのため、曝気槽内は微
生物の優先種が糸状性菌から原生動物に代わり、汚泥の
バルキング現象や浮上を防止することが出来る。また、
粉粒体の使用によって曝気槽の臭気の発生を大幅に低下
することが出来るようになった。
(Effects of the Invention) According to the present invention described above, even if the load fluctuation occurs in the inflow sewage, the dissolved oxygen in the microorganism treatment tank can be kept high correspondingly, and the normal operation can always be performed. Can be done. For this reason, in the aeration tank, the priority species of microorganisms are changed from filamentous fungi to protozoa, and the bulking phenomenon and floating of sludge can be prevented. Also,
The use of the powdered particles can greatly reduce the generation of odor in the aeration tank.

以下に実施例をあげ、この発明をさらに説明する。 Hereinafter, the present invention will be further described with reference to Examples.

実施例1. バルキング現象を起こしているA市の下水処理場から
採取した活性汚泥と初沈処理水をもって実験を行なっ
た。前記の活性汚泥を、水深50cm、長さ100cm、幅20cm
の曝気槽に満たし、更にこの曝気槽の一端から、前記の
ものと同じBOD100mg/の初沈被処理水を、0.8m3/dayの
割合で連続的に供給した。これとともに、曝気槽の下水
流入口側の底部の5か所から微細気泡粒子を吐出させ
た。この微細気泡粒子は、次のようにして形成した。
Example 1 An experiment was conducted using activated sludge collected from a sewage treatment plant in the city of A where a bulking phenomenon had occurred, and primary settling water. The activated sludge, water depth 50cm, length 100cm, width 20cm
, And from the one end of the aeration tank, the same initial treatment water for the first settling of 100 mg / BOD as described above was continuously supplied at a rate of 0.8 m 3 / day. At the same time, the fine bubble particles were discharged from five places on the bottom of the aeration tank on the sewage inflow side. The fine bubble particles were formed as follows.

即ち、予め用意された懸濁槽内に、149μmフルイ残
分10%以下の乾留炭を、初沈処理水に対して体積比で10
%の割合で懸濁させた。こうした懸濁液を直径20cm、高
さ1mの高圧容器に入れ、これにコンプレッサーで5kg/cm
2の加圧空気を送り、ここに加圧空気の溶解懸濁液を作
り、しかるのち前記高圧容器よりこの加圧空気溶解懸濁
液を減圧して取り出すことにより微細気泡懸濁液を形成
した。
That is, in a previously prepared suspension tank, dry-distilled coal having a 149 μm sieve residue of 10% or less was added in a volume ratio of 10
%. This suspension is placed in a high-pressure vessel with a diameter of 20 cm and a height of 1 m.
The pressurized air of No. 2 was sent to form a dissolved suspension of the pressurized air, and then the compressed air dissolved suspension was taken out of the high-pressure vessel under reduced pressure to form a fine bubble suspension. .

ついでこの曝気槽に、16m3/dayで空気を送り、曝気を
連続的に行なった。曝気槽から流出した下水は沈降槽に
導いて、その上澄液を処理水として採取した。一方、沈
降槽の下部からは、沈降汚泥の界面が上昇して汚泥が上
澄液に混合しないようにして汚泥を引抜いた。引抜いた
汚泥の一部を平均で0.2m3/day曝気槽に返送した。その
他の汚泥は余剰汚泥として約12時間濃縮槽で滞留させた
後、これにカチオン系高分子凝集剤のカヤフロックC−
566(日本化薬(株)商品名)を濃縮汚泥に対し200mg/
になるように添加して撹拌した。その後、これを小型
ベルトプレス試験機にて脱水試験を行なってケーキを得
た。
Next, air was sent to the aeration tank at 16 m 3 / day to continuously perform aeration. The sewage flowing out of the aeration tank was led to a settling tank, and the supernatant was collected as treated water. On the other hand, from the lower part of the sedimentation tank, the sludge was pulled out so that the interface of the settled sludge was raised and the sludge was not mixed with the supernatant. A part of the extracted sludge was returned to the aeration tank on average at 0.2 m 3 / day. Other sludge was retained as excess sludge in the concentration tank for about 12 hours, and then added to the cationic polymer flocculant Kayafloc C-.
566 (trade name of Nippon Kayaku Co., Ltd.) for concentrated sludge at 200mg /
And stirred. Thereafter, a dehydration test was performed using a small belt press tester to obtain a cake.

こうした実験で、曝気槽の溶存酸素濃度、曝気槽の臭
気濃度、処理水のBOD、脱水ケーキの含有率を測定し
た。臭気濃度は、東京都公害防止条例告示第238号にも
とづいて行なった。
In these experiments, the dissolved oxygen concentration in the aeration tank, the odor concentration in the aeration tank, the BOD of the treated water, and the content of the dehydrated cake were measured. The odor concentration was measured in accordance with Tokyo Metropolitan Government Pollution Control Ordinance No. 238.

なお、比較例として次の3つを行なった。同量の乾留
炭を上記と同様にして初沈処理水に懸濁させたものを、
加圧せずに上記と同様に曝気槽に供給した場合(1)、
乾留炭を使用せずに、最初沈澱池の処理水を上記と同様
な条件で、加圧した後減圧してできた微細な気泡だけを
曝気槽に供給した場合(2)、乾留炭を使用せずに、沈
降槽から得られたの処理水を上記と同様な条件で、加圧
した後減圧してできた微細な気泡だけを曝気槽に供給し
た場合(3)についても実験を行なった。いずれも1〜
2週間で第1表に示す状態で安定した。
The following three were performed as comparative examples. The same amount of dry-distilled coal was suspended in the primary sedimentation water in the same manner as above,
When it is supplied to the aeration tank in the same manner as above without pressurization (1),
If the treated water in the sedimentation basin is first pressurized under the same conditions as above, and only fine bubbles formed by depressurization are supplied to the aeration tank without using the carbonized coal (2), the carbonized coal is used. An experiment was also performed on the case (3) in which only treated water obtained from the sedimentation tank was pressurized under the same conditions as above, and then only fine bubbles formed by depressurization were supplied to the aeration tank. . All are 1 to
After 2 weeks, the condition was stabilized as shown in Table 1.

結果を第1表に示す。 The results are shown in Table 1.

実施例2. 瀝青炭を149μmフルイ残分10%以下に粉砕したもの
を使用した外は実施例1と同様にした。
Example 2 The procedure of Example 1 was repeated except that bituminous coal pulverized to a 149 μm sieve residue of 10% or less was used.

結果を第2表に示した。また、同量の瀝青炭を懸濁さ
せ、加圧せずに曝気槽に供給した場合についてもその結
果を求めた。
The results are shown in Table 2. The results were also obtained for the case where the same amount of bituminous coal was suspended and supplied to the aeration tank without pressurization.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明を実施するための処理工程の一例を
示したものである。 1……流入下水、2……沈砂池、3……最初沈澱沈、4
……曝気槽、5……微細気泡粒子、6……粉粒体、7…
…下水の一部分、8……粉粒体懸濁槽、9……高圧槽、
10……コンプレッサー、12……最終沈澱池、13……分離
汚泥、14……処理水、15……返送汚泥、17……汚泥濃縮
槽、18……脱水機。
FIG. 1 shows an example of processing steps for carrying out the present invention. 1… Inflow sewage 2… Sand basin 3… First sedimentation 4
…… aeration tank, 5… fine bubble particles, 6… powder, 7…
… A part of sewage, 8… powder suspension tank, 9… high pressure tank,
10 ... compressor, 12 ... final sedimentation basin, 13 ... separated sludge, 14 ... treated water, 15 ... returned sludge, 17 ... sludge concentration tank, 18 ... dehydrator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 能彦 千葉県印旛郡栄町安食台3―20―8 (56)参考文献 特開 昭63−252594(JP,A) (58)調査した分野(Int.Cl.6,DB名) C02F 3/12──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshihiko Okada 3-20-8 Azushidai, Sakae-cho, Inba-gun, Chiba (56) References JP-A-63-252594 (JP, A) (58) Fields investigated ( Int.Cl. 6 , DB name) C02F 3/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粉粒体の存在下で廃水を活性汚泥法で処理
する方法において、石炭または乾留炭のいずれかの149
μmフルイ残分10%以下の粉粒体単味或いは石炭または
乾留炭のいずれかの149μmフルイ残分10%以下の粉粒
体を60%以上含む粉粒体と149μmフルイ残分10%以下
のケイ酸系粉粒体との混合物からなる粉粒体を処理水ま
たは最初沈澱池で前処理した廃水の一部に懸濁して廃水
の一部で形成された微細気泡にこれを付着させ、これに
よって得られた微細気泡粒子を汚水処理装置の曝気槽に
供給し、次いで常法に従って好気性処理を行ない、ここ
で分離された汚泥の一部を返送汚泥として曝気槽に返送
するとともに余剰汚泥を排出して脱水処理することを特
徴とする廃水の処理方法。
A method for treating wastewater by an activated sludge method in the presence of a granular material, comprising the steps of:
Granules containing 10% or less of 149 μm sieve or 10% or less of 149 μm sieve with 10% or less of 149 μm sieve or 10% or less of either 149 μm or 10% The granules composed of a mixture with the silicic acid granules are suspended in treated water or a part of wastewater pretreated in a first settling basin, and adhered to fine bubbles formed by a part of the wastewater. Is supplied to the aeration tank of the sewage treatment apparatus, and then subjected to an aerobic treatment in accordance with a conventional method, where a part of the separated sludge is returned to the aeration tank as return sludge and excess sludge is removed. A method for treating wastewater, comprising discharging and dewatering.
【請求項2】ケイ酸系粉粒体が転炉滓、高炉滓、シラ
ス、関東ローム、ゼオライトのいずれか1種または2種
以上である請求項1記載の廃水の処理方法。
2. The method for treating wastewater according to claim 1, wherein the silicic acid-based powder is at least one of converter slag, blast furnace slag, shirasu, Kanto loam, and zeolite.
JP25522488A 1988-10-11 1988-10-11 Wastewater treatment method Expired - Fee Related JP2791053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25522488A JP2791053B2 (en) 1988-10-11 1988-10-11 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25522488A JP2791053B2 (en) 1988-10-11 1988-10-11 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH02102794A JPH02102794A (en) 1990-04-16
JP2791053B2 true JP2791053B2 (en) 1998-08-27

Family

ID=17275754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25522488A Expired - Fee Related JP2791053B2 (en) 1988-10-11 1988-10-11 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP2791053B2 (en)

Also Published As

Publication number Publication date
JPH02102794A (en) 1990-04-16

Similar Documents

Publication Publication Date Title
CN101870546B (en) River surge silt harmless and recycling treatment method
US4292176A (en) Use of activated carbon in waste water treating process
US20180170785A1 (en) Method for Separating Liquid From Suspended Matter in a Sludge and Device for Same
JPS6230597A (en) Method of separating clarified liquid from biomass on biological treatment of waste water
CN106830252A (en) The unified water treating apparatus of function are precipitated with ballasted flocculation
CN102167490A (en) Integrated treatment method for thickening, drying and purifying municipal sludge
US4042494A (en) Pressure pipe treatment for sewage
CN101391853A (en) Chemical wastewater recovery processing technique and apparatus
JP2017516658A (en) Clarification method of waste water
CN110482803A (en) A kind of cultivating wastewater purification device
CN1258485C (en) Process for treating waste water by aerobic-anaerobic microbic repeated coupling
JP3797296B2 (en) Purification method of bottom sludge
JP2791053B2 (en) Wastewater treatment method
CN106865753B (en) A kind of processing unit and processing method removing nano-scale particle in waste water based on aerobic particle mud
JP5225307B2 (en) Phosphorus recovery equipment
JPS58166914A (en) Treatment of waste water
CN115521024A (en) Algae sludge online mechanical drying and residual water purification system and method
KR100453391B1 (en) A deposit's processing method and its system
KR20200041881A (en) Treatment of liquid streams containing high concentrations of solids using ballast-type clarification
KR101745347B1 (en) Wastewater treatment equipment and treatment method thereof
Wang et al. Pilot study of a fluidized-pellet-bed technique for simultaneous solid/liquid separation and sludge thickening in a sewage treatment plant
JP2000070989A (en) Method and apparatus removing nitrogen in waste water
CN220976756U (en) Complex water quality pretreatment equipment
CN219972029U (en) Aeration ecological filter tank with modified tail coal as filler
KR930001811B1 (en) Sludge treating method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees