JPH02102794A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH02102794A
JPH02102794A JP63255224A JP25522488A JPH02102794A JP H02102794 A JPH02102794 A JP H02102794A JP 63255224 A JP63255224 A JP 63255224A JP 25522488 A JP25522488 A JP 25522488A JP H02102794 A JPH02102794 A JP H02102794A
Authority
JP
Japan
Prior art keywords
sludge
aeration tank
carbon
wastewater
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63255224A
Other languages
Japanese (ja)
Other versions
JP2791053B2 (en
Inventor
Junji Kasai
淳史 笠井
Masao Shimoda
下田 正雄
Satoshi Kawachi
河内 聰
Yoshinori Shimooka
下岡 義典
Takahiko Okada
能彦 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONODA KEMIKO KK
Onoda Cement Co Ltd
Onoda Chemical Industry Co Ltd
Original Assignee
ONODA KEMIKO KK
Onoda Cement Co Ltd
Onoda Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONODA KEMIKO KK, Onoda Cement Co Ltd, Onoda Chemical Industry Co Ltd filed Critical ONODA KEMIKO KK
Priority to JP25522488A priority Critical patent/JP2791053B2/en
Publication of JPH02102794A publication Critical patent/JPH02102794A/en
Application granted granted Critical
Publication of JP2791053B2 publication Critical patent/JP2791053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To treat waste water with high efficiency by sticking particulate matters consisting of a mixture of carbonaceous particulate matters and siliceous particulate matters to fine foams generated in a part of the waste water. CONSTITUTION:Introduced sewage 1 is guided to a sand sedimentation pond 2, then to a final sedimentation pond 3, where suspended matters are removed. Then, the sewage pretreated together with fine foams 5 is introduced into an aeration tank 4, wherein said fine foams are formed by depositing particulate matters 6 to fine foams. Since fine foams 5 are added to the aeration tank 4, the amt. of dissolved oxygen in the aeration tank 4 is increased, thus, aerobic treatment is performed therein. Aerobically treated water is then guided to a final sedimentation pond 12, where separated sludge 13 is withdrawn. A part of the separated sludge 13 is added to the treated sewage as returned sludge 15. Suitable particulate matters are a mixture of carbonaceous particulate matters (e.g., coal) and siliceous particulate matters (e.g., shirasu).

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は廃水の処理方法に関する。特に、安定した廃
水の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a method for treating wastewater. In particular, it relates to a stable wastewater treatment method.

(従来の技術) 廃水の処理プロセスで、微生物処理槽は中でも重要な装
置の一つであるが、これに雨水などが流入して計画した
処理理能力以上の高負荷がかかることがあり、微生物処
理槽の管理は、しばしば困難になることがある。特に、
活性汚泥法を採用している都市部の合流式の下水処理場
では、最終沈澱池において汚泥のバルキング現象や浮上
現象がしばしば見られる。従来、このような現象を防止
するためには様々な方策が提案されてきたが、これらは
次の2つに大別することが出来る。
(Prior art) In the wastewater treatment process, the microbial treatment tank is one of the most important devices. Managing treatment tanks can often be difficult. especially,
In combined sewage treatment plants in urban areas that use the activated sludge method, sludge bulking and floating phenomena are often observed in the final settling tank. Conventionally, various measures have been proposed to prevent such phenomena, but these can be roughly divided into the following two types.

その1は、微生物処理槽の溶存酸素を高める方法である
。この方法では、酸素または酸素濃度の高い空気を使用
して通気を行なったり、或は返送汚泥中に液体酸素を注
入したりして、曝気槽中の溶存酸素を高めるものである
。しかしながら、上記の方法は、いずれも供給した酸素
が汚泥の消化に充分に費やされないで逸散することが多
く、必ずしも所期の効果が得られない上に、大量の酸素
を必要として実用上に問題があった。また、散気孔を細
かくして微細な気泡を発生させ、これによって溶存酸素
量を高める方法もあるが、これによると散気孔に目づま
りが発生しやすく、それを除去するのに手間のかかる作
業を必要とした。
The first method is to increase dissolved oxygen in the microbial treatment tank. In this method, dissolved oxygen in the aeration tank is increased by using oxygen or oxygen-rich air for aeration, or by injecting liquid oxygen into the returned sludge. However, in all of the above methods, the supplied oxygen is often dissipated without being sufficiently used for digesting the sludge, and the desired effect is not always obtained, and a large amount of oxygen is required, making it impractical. There was a problem. Another method is to make the air diffuser holes smaller and generate fine air bubbles, thereby increasing the amount of dissolved oxygen. However, this method tends to cause the air diffuser holes to become clogged, which requires time-consuming work to remove. I needed it.

第2の方法は、汚泥を重量化させる微細な粒体を微生物
処理槽に供給して、汚泥を沈降させバルキング現象や浮
上現象を防止しようとするものである。しかしながら、
この方法は懸濁性の有機物の除去には効果があるが、溶
解性の有機物の除去にはなお不充分であった。
The second method is to supply fine particles that make sludge heavier to a microbial treatment tank, thereby causing the sludge to settle and preventing bulking and floating phenomena. however,
Although this method was effective in removing suspended organic matter, it was still insufficient in removing soluble organic matter.

(発明が解決しようとする課題) この発明は、活性汚泥法で廃水を処理するに当たって、
汚泥のバルキング現象や浮上現象の問題を、大量の酸素
を必要とすることなく、かつ溶解性の有機物も効率よく
除去する方法で解決しようとするものである。
(Problem to be solved by the invention) This invention solves the following problems when treating wastewater using the activated sludge method:
This method attempts to solve the problem of sludge bulking and floating phenomena by using a method that does not require large amounts of oxygen and also efficiently removes soluble organic matter.

(課題を解決するための手段) この発明は、粉粒体の存在下で廃水を活性汚泥法で処理
する方法において、炭素系粉粒体または炭素系粉粒体を
60%以上含む炭素系粉粒体とケイ酸系粉粒体との混合
物からなる粉粒体を処理水または最初沈澱池で前処理さ
れた廃水の一部で形成された微細気泡に付着させ、これ
によって得られた微細気泡粒子を汚水処理装置の曝気槽
に供給し、次いで常法に従って好気性処理を行ない、こ
こで分離された汚泥の一部を返送汚泥として曝気槽に返
送するとともに余剰汚泥を排出して脱水処理することを
特徴とする廃水の処理方法(請求項1)、および炭素系
粉粒体が石炭、乾留炭、活性炭、骨炭のいずれか1種で
、かつケイ酸系粉粒体が転炉滓、高炉滓、シラス、関東
ローム、ゼオライトのいずれか1種または2種以上であ
る請求項1記載の廃水の処理方法である。以下にこれら
の発明をさらに説明する。
(Means for Solving the Problems) The present invention provides carbon-based powder or carbon-based powder containing 60% or more of carbon-based powder in a method of treating wastewater in the presence of powder and granules using an activated sludge method. The fine bubbles obtained by attaching a powder consisting of a mixture of granules and silicic acid powder to the fine bubbles formed in the treated water or a part of the wastewater pretreated in the first settling tank. The particles are supplied to the aeration tank of the sewage treatment equipment, and then subjected to aerobic treatment according to a conventional method. A portion of the sludge separated here is returned to the aeration tank as return sludge, and excess sludge is discharged and dehydrated. A wastewater treatment method (claim 1) characterized in that the carbon-based granular material is any one of coal, carbonized carbon, activated carbon, and bone charcoal, and the silicic acid-based granular material is a converter slag or a blast furnace slag. 2. The method for treating wastewater according to claim 1, wherein the wastewater is one or more of slag, whitebait, Kanto loam, and zeolite. These inventions will be further explained below.

この発明は、廃水の活性汚泥処理において、炭素系粉粒
体を付着させた微細気泡粒子を曝気槽の廃水の流入口に
流し込むことによって、好気性微生物処理槽内の溶存酸
素量を増加させ、かつ生成する汚泥を重量化させ、これ
によって汚泥のバルキング現象や浮上現象を防止し、も
って効率的にかつ安定して廃水を処理しようとするもの
である。
In the activated sludge treatment of wastewater, this invention increases the amount of dissolved oxygen in the aerobic microbial treatment tank by pouring fine bubble particles to which carbon-based powder and granules are attached into the wastewater inlet of the aeration tank, The purpose is to increase the weight of the generated sludge, thereby preventing sludge bulking and floating phenomena, and thereby efficiently and stably treating wastewater.

こうした本願の発明を図示した工程図にもとすいて次に
説明する。
The invention of the present application will be described below with reference to process diagrams.

第1図は、この発明になる代表的な廃水の処理プロセス
を示したものである。同図において、1は流入下水であ
る。この流入下水は例えばBOD200 ppm以下の
稀薄な都市下水である。この流入下水1は、まず沈砂池
2に導かれここで下水中の砂分が除去され、つづいて最
初沈澱池3に送られ、ここで浮遊物が除去される。これ
らの前処理のされた下水は、次に曝気槽4に送られる。
FIG. 1 shows a typical wastewater treatment process according to the present invention. In the figure, 1 is inflowing sewage. This inflowing sewage is, for example, dilute urban sewage with a BOD of 200 ppm or less. This inflowing sewage 1 is first led to a settling basin 2, where the sand content in the sewage is removed, and then sent to an initial settling basin 3, where suspended matter is removed. These pretreated sewage waters are then sent to the aeration tank 4.

しかしながら、この発明にあっては上述の前処理された
下水が曝気槽4に流入される際に、これといっしょに微
細気泡粒子5を曝気槽4に供給する。ここで下水ととも
に曝気槽に供給される微細気泡粒子5は、粉粒体を微細
な気泡に付着させてなるものである。
However, in this invention, when the above-mentioned pretreated sewage flows into the aeration tank 4, the fine bubble particles 5 are supplied to the aeration tank 4 together with the pretreated sewage. The fine bubble particles 5 supplied to the aeration tank together with the sewage are made by adhering powder and granules to fine bubbles.

こうした粉粒体6を微細な気泡に付着させて微細気泡粒
子5とするには、最初沈澱池で前処理された下水の一部
7を採増し、これを粉粒体懸濁槽8に送ってこれに20
〜100 g /7rl下水比で添加して懸濁させる。
In order to make such powder particles 6 adhere to fine bubbles to form fine bubble particles 5, a portion 7 of the sewage that has been pretreated in the sedimentation tank is first taken and sent to the powder suspension tank 8. 20 for this
Add and suspend at ~100 g/7rl sewage ratio.

次いでこの懸濁液を高圧槽9に導き、この高圧槽へ一方
からコンプレッサー10で、例えば3kg/c−以上に
加圧された空気を送りここで該空気溶解懸濁液をつくり
、しかる後高圧t11!i9からこれを導管11で取り
出し減圧下におくことによって形成される。第1図では
こうして形成された微細気泡粒子5は、曝気槽4の底部
に導かれここから曝気槽内に吐出されるようになってい
る。
Next, this suspension is led to a high-pressure tank 9, and air pressurized to, for example, 3 kg/c- or more is sent to this high-pressure tank from one side by a compressor 10 to form the air-dissolved suspension, and then high-pressure t11! It is formed by taking it out from i9 through conduit 11 and placing it under reduced pressure. In FIG. 1, the fine bubble particles 5 thus formed are guided to the bottom of the aeration tank 4 and discharged from there into the aeration tank.

この微細気泡粒子は、このように曝気槽4の下部から送
り出されるのが好ましいが、そのためには図示した方法
での供給の外に、曝気槽4への流入下水の流れが下降流
を採用している場合は、曝気槽4の流入下水の流入口に
供給すれば、流入下水の流れに乗って槽の底部に送り込
まれるのでそのようにしてもよい。曝気槽4では常法に
よって通気がなされ、通常の好気性処理がなされる。し
かしながら、ここでは上記の通り微細気泡粒子5が添加
されているために、曝気槽内の溶存酸素量は増加され、
好気性処理での酸素不足からは解放されることになる。
The microporous particles are preferably sent out from the lower part of the aeration tank 4 in this way, but for this purpose, in addition to supplying in the manner shown, the flow of sewage flowing into the aeration tank 4 must be downward. If the inflowing sewage is supplied to the inlet of the aeration tank 4, the inflowing sewage will be sent to the bottom of the tank along with the flow of the inflowing sewage. Aeration is carried out in the aeration tank 4 by a conventional method, and normal aerobic treatment is carried out. However, here, since the fine bubble particles 5 are added as described above, the amount of dissolved oxygen in the aeration tank is increased,
This will eliminate the oxygen shortage caused by aerobic treatment.

好気性処理のなされた処理水は、最終沈澱池12に導か
れここで分離汚泥13が引抜かれ、他方上澄液の処理水
14は河川等に放流される。分離汚泥13の一部は、返
送汚泥15として曝気槽4の前に返送され処理下水1に
添加される。余剰汚泥16は、汚泥濃縮槽17に送られ
、ここで濃縮された後に脱水機18に送られて脱水され
る。脱水機18での濾水19は、最初沈澱池2の前に返
送される。脱水された後の汚泥は、以降常法に従って焼
却などの処分がなされる。
The treated water that has undergone aerobic treatment is led to the final settling tank 12, where the separated sludge 13 is extracted, and the treated water 14, which is a supernatant liquid, is discharged into a river or the like. A portion of the separated sludge 13 is returned as return sludge 15 before the aeration tank 4 and added to the treated sewage 1. Excess sludge 16 is sent to a sludge thickening tank 17, where it is concentrated, and then sent to a dehydrator 18 where it is dehydrated. The filtrate 19 from the dehydrator 18 is first returned to the sedimentation tank 2. After dewatering, the sludge is then disposed of by incineration or other methods according to conventional methods.

この発明で使用する粉粒体は、炭素系粉粒体単味のもの
、または炭素系粉粒体を少なくとも6096含むように
した炭素系粉粒体とケイ酸系粉粒体との混合物である。
The powder used in this invention is a single carbon-based powder or a mixture of a carbon-based powder and a silicic acid powder containing at least 6096 carbon-based powder. .

炭素系粉粒体としては、石炭、乾留炭、活性炭、骨炭の
いずれか1種を、またケイ酸系粉粒体としては転炉滓、
高炉滓、シラス、関東ローム、ゼオライトの一種または
2種以上で、これらの粉粒体は、その粒度を149μl
フルイ残分て10%以下としたものである。こうした粉
粒体は、前記のようにして微細気泡に付着されて微細気
泡粒子とするが、粉粒体の使用量は、処理水に対して2
0−100g/dの範囲となるようにして使用するのが
よい。なお、微細気泡粒子の形成に用いる水は、前記の
通り初沈で前処理された水の外に、処理水を用でもよい
。。
As the carbon-based granular material, any one of coal, carbonized carbon, activated carbon, or bone charcoal is used, and as the silicic acid-based granular material, converter slag,
One or more types of blast furnace slag, whitebait, Kanto loam, and zeolite, these powders have a particle size of 149 μl.
The sieve residue is 10% or less. These powders and granules are attached to microbubbles as described above to form microbubble particles, but the amount of powder and granules used is 2 times the amount of treated water.
It is preferable to use it in a range of 0 to 100 g/d. In addition to the water pretreated by the initial precipitation as described above, treated water may be used as the water for forming the microcellular particles. .

上記の微細気泡粒子の曝気槽への導入は、通常、装置の
運転時に必要に応じて行なえばよい。例えば、装置が高
負荷状態でバルキング現象や等が生じた場合や生じる恐
れがある場合に微細気泡を導入し、その後これが平常に
回復した場合は微細気泡の曝気槽への導入を止め、従来
の装置だけで運転するようにすればよい。
The above-mentioned fine bubble particles may be generally introduced into the aeration tank as necessary during operation of the apparatus. For example, if the device is under high load and a bulking phenomenon occurs or is likely to occur, microbubbles are introduced, and if the situation returns to normal, the introduction of microbubbles into the aeration tank is stopped and the conventional method is used. All you have to do is operate the device alone.

(発明の効果) 以上説明したこの発明によると、流入下水に負荷変動が
生じてた場合でも、それに対応して微生物処理槽の溶存
酸素を高く維持することが出来、常に正常な運転を行な
うことが出来るようになる。
(Effects of the Invention) According to the invention described above, even when load fluctuations occur in the inflowing sewage, dissolved oxygen in the microbial treatment tank can be maintained at a high level, and normal operation can always be performed. You will be able to do it.

そのため、曝気槽内は微生物の優先種が糸状性菌から原
生動物に変わり、汚泥のバルキング現象や浮上を防止す
ることが出来る。また、粉粒体の使用によって曝気槽の
臭気の発生を大幅に低下することが出来るようになった
Therefore, the priority species of microorganisms in the aeration tank changes from filamentous bacteria to protozoa, making it possible to prevent sludge bulking and floating. In addition, the use of powder and granules has made it possible to significantly reduce odor generation in the aeration tank.

以下に実施例をあげ、この発明をさらに説明する。The present invention will be further explained with reference to Examples below.

実施例1゜ バルキング現象を起しているA市の下水処理場から採取
した活性汚泥と初沈処理水をもって実験を行なった。前
記の活性汚泥を、水/l!50 cta s長さ100
cm 、幅20cm+の曝気槽に満たし、更にこの曝気
槽の一端から、前記のものと同じB OD 10011
g/Ωの初沈彼処理水を、0.8yd/dayの割合で
連続的に供給した。これとともに、曝気槽の下水流入口
側の底部の5か所から微細気泡粒子を吐出させた。この
微細気泡粒子は、次のようにして形成した。
Example 1 An experiment was conducted using activated sludge and initial sedimentation treated water collected from a sewage treatment plant in City A where bulking was occurring. The activated sludge was mixed with water/l! 50 cta s length 100
cm, fill an aeration tank with a width of 20 cm+, and then from one end of this aeration tank, add the same BOD 10011 as above.
g/Ω initial settling water was continuously supplied at a rate of 0.8 yd/day. At the same time, fine bubble particles were discharged from five locations at the bottom of the aeration tank on the sewage inlet side. The microcellular particles were formed as follows.

即ち、予め用意された懸濁槽内に、149μIフルイ残
分lO%以下の乾留炭を、初沈処理水に対して体積比で
10%の割合で懸濁させた。こうした懸濁液を直径20
c■、高さ1mの高圧容器に入れ、これにコンプレッサ
ーで5kg/c112の加圧空気を送り、ここに加圧空
気の溶解懸濁液を作り、しかるのち前記高圧容器よりこ
の加圧空気溶解懸濁液を減圧して取り出すことにより微
細気泡懸濁液を形成した。
That is, in a suspension tank prepared in advance, carbonized carbon having a 149 μI sieve residue of 10% or less was suspended at a volume ratio of 10% to the initial sedimentation treated water. Such a suspension has a diameter of 20 mm.
c) Place it in a high pressure container with a height of 1 m, and send pressurized air of 5 kg/c112 into it using a compressor to create a dissolved suspension of pressurized air, and then remove the dissolved pressurized air from the high pressure container. A fine bubble suspension was formed by removing the suspension under reduced pressure.

ついでこの曝気槽に、167rlcc/ dayで空気
ヲ送り、曝気を連続的に行なった。曝気槽から流出した
下水は沈降槽に導いて、その上澄液を処理水として採取
した。一方、沈降槽の下部からは、沈降汚泥の界面が上
昇して汚泥が上澄液に混入しないようにして汚泥を引抜
いた。引抜いた汚泥の一部を平均で0−2yyl/da
y曝気槽に返送した。その他の汚泥は余剰汚泥として約
12時間濃縮槽で滞留させた後、これにカチオン系高分
子凝集剤のカヤフロックC−5813(日本化薬(株)
商品名)を濃縮汚泥に対し200mg /Ωになるよう
に添加して攪拌した。その後、これを小型ベルトプレス
試験機にて脱水試験を行なってケーキを得た。
Next, air was fed into this aeration tank at a rate of 167 rlcc/day to continuously perform aeration. The sewage flowing out from the aeration tank was led to a settling tank, and the supernatant liquid was collected as treated water. On the other hand, the sludge was pulled out from the lower part of the settling tank in such a way that the interface of the settled sludge rose to prevent the sludge from mixing with the supernatant liquid. On average, a portion of the sludge that was pulled out is 0-2yyl/da.
y was returned to the aeration tank. Other sludge was left as excess sludge in a thickening tank for about 12 hours, and then treated with Kayafloc C-5813 (Nippon Kayaku Co., Ltd.), a cationic polymer flocculant.
(trade name) was added to the thickened sludge at a concentration of 200 mg/Ω and stirred. Thereafter, this was subjected to a dehydration test using a small belt press tester to obtain a cake.

こうした実験で、曝気槽の溶存酸素濃度、曝気槽の臭気
濃度、処理水のBOD、脱水ケーキの含水率をalll
定した。臭気濃度は、東京都公害防止条例告示第238
号にもとづいて行なった。
In these experiments, all dissolved oxygen concentration in the aeration tank, odor concentration in the aeration tank, BOD of treated water, and moisture content of the dehydrated cake were measured.
Established. Odor concentration is based on Tokyo Metropolitan Pollution Prevention Ordinance Notification No. 238.
I did it based on the number.

なお、比較例として次の3つを行なった。同量の乾留炭
を上記と同様にして初沈処理水に懸濁させたものを、加
圧せずに上記と同様に曝気槽に供給した場合(1)、乾
留炭を使用せずに、最初沈澱池の処理水を上記と同様な
条件で、加圧した後減圧してできた微細な気泡だけを曝
気槽に供給した場合(2)、乾留炭を使用せずに、沈降
槽から得られたの処理水を上記と同様な条件で、加圧し
た後減圧してできた微細な気泡だけを曝気槽に供給した
場合(3)についても実験を行なった。いずれも1〜2
週間で第1表に示す状態で安定した。
The following three tests were carried out as comparative examples. If the same amount of carbonized coal is suspended in the initial settling water as described above and is supplied to the aeration tank in the same manner as above without pressurization (1), without using carbonized coal, If the treated water from the initial sedimentation tank is pressurized and then depressurized under the same conditions as above, and only the fine air bubbles created are supplied to the aeration tank (2), the water obtained from the sedimentation tank is obtained without using carbonized coal. An experiment was also conducted for the case (3) in which the treated water was pressurized and then depressurized and only the fine bubbles produced were supplied to the aeration tank under the same conditions as above. All 1-2
The condition stabilized as shown in Table 1 within a week.

結果を第1表に示す。The results are shown in Table 1.

第   1 表 実施例2゜ 瀝青炭を!49μ曙フルイ残分lO%以下に粉砕したも
のを使用した外は実施例1と同様にした。
Table 1 Example 2 Bituminous coal! The procedure was the same as in Example 1, except that the powder was pulverized to a 49μ Akebono sieve residue of 10% or less.

結果を第2表に示した。また−同量の瀝青炭を懸濁させ
、加圧せずに曝気槽に供給した場合についてもその結果
を求めた。
The results are shown in Table 2. The results were also obtained when the same amount of bituminous coal was suspended and supplied to the aeration tank without pressurization.

第  2  表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明を実施するための処理工程の一例を
示したものである。 1・・・流入下水、2・・・沈砂池、3・・・最初沈澱
法、4・・・曝気槽、5・・・微細気泡粒子、6・・・
粉粒体、7・・・下水の一部分、8・・・粉粒体懸濁槽
、9・・・高圧槽、10・・・コンプレッサー 12・
・・最終沈澱池、13・・・分離汚dこ、14・−・処
理水、15・・・返送汚泥、17・・・汚泥濃縮槽、1
8・・・脱水機。 第1図 手 続 補 正 書 昭和 63.11.18 月   日
FIG. 1 shows an example of processing steps for carrying out the present invention. 1... Inflow sewage, 2... Sediment basin, 3... Initial sedimentation method, 4... Aeration tank, 5... Fine bubble particles, 6...
Powder, 7... Part of sewage, 8... Powder suspension tank, 9... High pressure tank, 10... Compressor 12.
... Final sedimentation tank, 13 ... Separated sludge, 14 ... Treated water, 15 ... Return sludge, 17 ... Sludge thickening tank, 1
8... Dehydrator. Figure 1 Procedural Amendment Form 1988.11.18 Month Day

Claims (2)

【特許請求の範囲】[Claims] (1)粉粒体の存在下で廃水を活性汚泥法で処理する方
法において、炭素系粉粒体または炭素系粉粒体を60%
以上含む炭素系粉粒体とケイ酸系粉粒体との混合物から
なる粉粒体を処理水または最初沈澱池で前処理された廃
水の一部で形成された微細気泡に付着させ、これによっ
て得られた微細気泡粒子を汚水処理装置の曝気槽に供給
し、次いで常法に従って好気性処理を行ない、ここで分
離された汚泥の一部を返送汚泥として曝気槽に返送する
とともに余剰汚泥を排出して脱水処理することを特徴と
する廃水の処理方法。
(1) In a method of treating wastewater using the activated sludge method in the presence of granular material, carbon-based granular material or 60% carbon-based granular material
Powder consisting of a mixture of carbon-based powder and silicic acid-based powder containing the above is attached to the microbubbles formed in the treated water or a part of the wastewater pretreated in the first sedimentation tank. The obtained microporous particles are supplied to the aeration tank of the sewage treatment equipment, and then subjected to aerobic treatment according to a conventional method. A portion of the sludge separated here is returned to the aeration tank as return sludge, and excess sludge is discharged. A wastewater treatment method characterized by dehydrating the wastewater.
(2)炭素系粉粒体が石炭、乾留炭、活性炭、骨炭のい
ずれか1種で、かつケイ酸系粉粒体が転炉滓、高炉滓、
シラス、関東ローム、ゼオライトのいずれか1種または
2種以上である請求項1記載の廃水の処理方法。
(2) The carbon-based granular material is any one of coal, carbonized carbon, activated carbon, and bone charcoal, and the silicic acid-based granular material is converter slag, blast furnace slag,
The method for treating wastewater according to claim 1, wherein the wastewater is one or more of whitebait, Kanto loam, and zeolite.
JP25522488A 1988-10-11 1988-10-11 Wastewater treatment method Expired - Fee Related JP2791053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25522488A JP2791053B2 (en) 1988-10-11 1988-10-11 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25522488A JP2791053B2 (en) 1988-10-11 1988-10-11 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH02102794A true JPH02102794A (en) 1990-04-16
JP2791053B2 JP2791053B2 (en) 1998-08-27

Family

ID=17275754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25522488A Expired - Fee Related JP2791053B2 (en) 1988-10-11 1988-10-11 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP2791053B2 (en)

Also Published As

Publication number Publication date
JP2791053B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
CN207933226U (en) A kind of industrial wastewater treatment system
CN204848595U (en) Effluent disposal system breeds
US4042494A (en) Pressure pipe treatment for sewage
CN114291964B (en) Sewage treatment system and method for denitrification and phosphorus recovery
CN113860497B (en) Urban and municipal sewage denitrification and dephosphorization filler and preparation method thereof
CN108892333A (en) A kind of concentration organic wastewater disposal process and system
CN201908019U (en) Coking wastewater treatment system
CN114804360A (en) Modified expanded perlite particles and preparation method and application thereof
CN110482803A (en) A kind of cultivating wastewater purification device
Hüppe et al. Biological treatment of effluents from a coal tar refinery using immobilized biomass
CN109133534B (en) Harmless treatment and recycling method for bean product wastewater
KR20130043745A (en) Sludge treatment facility combining swirl flow type inorganic sludge selective discharge device and bioreactor
US20210179467A1 (en) Sustainable processes for treating wastewater
JPH02102794A (en) Treatment of waste water
CN107337321A (en) Anaerobic digestion of kitchen wastes wastewater treatment equipment
KR20020075046A (en) The treating method of high concentration organic waste water
KR20010007939A (en) Advanced Treatment Process of Domestic Wastewater by Biological and Chemical
JPS5851986A (en) Apparatus for biologically purifying waste water with aerobes
CN207259330U (en) A kind of anaerobic digestion of kitchen wastes wastewater treatment equipment
JP2002248498A (en) Excess sludge treatment method
Shaik Testing an aerobic fluidized biofilm process to treat intermittent flows of oil polluted wastewater
JP2000107797A (en) Purification method and apparatus
KR100399294B1 (en) River sewage purification apparatus constructed in the waters edge
KR100457698B1 (en) Livestock wastewater treatment method and equipment using STP waste excess sludge
JP2001070999A (en) Method and apparatus for treating wastewater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees