JPS63263785A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS63263785A
JPS63263785A JP62099008A JP9900887A JPS63263785A JP S63263785 A JPS63263785 A JP S63263785A JP 62099008 A JP62099008 A JP 62099008A JP 9900887 A JP9900887 A JP 9900887A JP S63263785 A JPS63263785 A JP S63263785A
Authority
JP
Japan
Prior art keywords
layer
light
oscillation
semiconductor laser
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62099008A
Other languages
Japanese (ja)
Other versions
JP2728401B2 (en
Inventor
Koji Yamashita
山下 光二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62099008A priority Critical patent/JP2728401B2/en
Publication of JPS63263785A publication Critical patent/JPS63263785A/en
Application granted granted Critical
Publication of JP2728401B2 publication Critical patent/JP2728401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve S/N characteristic of a semiconductor laser without rely ing upon the variation in a returning light ratio by forming a periodic structure for selectively feeding back only a light of wavelength used by diffracting a light generated in an active layer at the upper or lower side of the layer of a laser which is self-oscillated. CONSTITUTION:A guide layer 10 made of In1-pGapP1-qAsq formed between a first upper clad layer 4 and an active layer 4 is formed by a 2-luminous flux interference exposure method and etching, and its periodic structure is so formed as to selectively feed back only a light of wavelength used by operat ing as a secondary diffraction grating. The thickness of the layer 4 is set so that an oscillation spectrum becomes a self-oscillation mode. Since only the light of the wavelength used by the grating of the light generated from the layer 3 is selectively fed back in this manner and the beam width of the spec trum is extended peculiarly for the self-oscillation, S/N characteristic is particu larly preferable to oscillate in a single mode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば光ディスク、光通信、プリンタ等の
光源として用いられる半導体レーザに関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser used as a light source for, for example, optical discs, optical communications, printers, and the like.

〔従来の技術〕[Conventional technology]

第2図はよく知られた従来の半導体レーザのチ・ツブの
構造を示す斜視図である。
FIG. 2 is a perspective view showing the structure of a well-known conventional semiconductor laser chip.

乙の図において、1ばn−GaAsからなる基板、2は
n −A l xG al−xA sからなる下クラッ
ド層、3はアンドープA j yG al−yA sか
らなる活性層、4はp −A I XG al、A s
からなる第1上クラット層、5はn−GaAsからなる
電流ブロック層、6はp  A l +tG al−X
A Sからなる第2上クラッド層、7はp−GaAsか
らなる電極コンタクト層、8はp側電極、9はn側電極
である。
In the figure B, 1 is a substrate made of n-GaAs, 2 is a lower cladding layer made of n-AlxGal-xAs, 3 is an active layer made of undoped AjyGal-yAs, and 4 is a p- A I XG al, A s
5 is a current blocking layer made of n-GaAs; 6 is p A l +tG al-X
A second upper cladding layer made of AS, 7 an electrode contact layer made of p-GaAs, 8 a p-side electrode, and 9 an n-side electrode.

次に動作について説明する。Next, the operation will be explained.

p#電極f3.n側電極9間に順方向にバイアスを加え
ていくと、下クラッド層2および第1上クラッド層4よ
りエネルギーギャップが狭く、下クラッド層2および第
1上クラッド層4より屈折率の高い活性層3には電子・
ホール対および光が有効に閉じ込められる。
p# electrode f3. When a forward bias is applied between the n-side electrodes 9, an active layer with a narrower energy gap than the lower cladding layer 2 and the first upper cladding layer 4 and a higher refractive index than the lower cladding layer 2 and the first upper cladding layer 4 is formed. Layer 3 contains electrons and
Hole pairs and light are effectively confined.

以上の説明は、ストライプと直交する断面内の垂直方向
(上下方向)に関する電子・ホール対と光の閉じ込めに
関するものであるが、一方、水平方向に関しては、電流
ブロック層5が下クラッド1d2や基板1とは異なる多
数キャリアを持つため、キャリアの伝導を妨げるポテン
シャルの壁によって電流狭窄機構が構成され、電流ブロ
ック層5のない溝部をキャリアが流れることになり、電
子・ホール対が溝内に集中することになる。
The above explanation relates to the confinement of electron/hole pairs and light in the vertical direction (up and down direction) in the cross section perpendicular to the stripes.On the other hand, in the horizontal direction, the current blocking layer 5 is connected to the lower cladding 1d2 and the substrate. Since it has a majority carrier different from 1, a current confinement mechanism is formed by a potential wall that prevents carrier conduction, and carriers flow through the groove where there is no current blocking layer 5, and electron/hole pairs are concentrated in the groove. I will do it.

なお、この電流ブロック層5は、活性層3より小さいエ
ネルギーギャップを持つため、活性層3から生じた光に
よってキャリアを生成したのち、これを伝導してポテン
シャルの壁の高さを減らす恐れがあるが、この問題しt
電流ブロック層5に非発光再結合センタを多く形成して
おくことにより解決することができる。
Note that this current blocking layer 5 has a smaller energy gap than the active layer 3, so there is a risk that after carriers are generated by the light generated from the active layer 3, they will be conducted and the height of the potential wall will be reduced. But this problem
This problem can be solved by forming a large number of non-radiative recombination centers in the current blocking layer 5.

また、水平方向の光の閉じ込めは、溝外の電流ブロック
層5近くで光の吸収係数が急激に増大して実効屈折率が
下がるため、結局溝内部での屈折率が下がり、有効に光
が閉じ込められて発振が効率良く行われる。
In addition, confinement of light in the horizontal direction is caused by a sudden increase in the absorption coefficient of light near the current blocking layer 5 outside the groove, and a decrease in the effective refractive index, which ultimately causes the refractive index inside the groove to decrease, effectively trapping light. It is confined and oscillations are performed efficiently.

また、水平方向の光の閉じ込めを行う導波機構と17で
の実効屈折率差は、第1上クラッド層4の厚みを制御す
る乙とにより任意に設定できる。この実効屈折率差を大
きくしていくと、すなわち第1上クラッド層4の厚みを
薄くしていくと、発振スペクトルは第3図(11)に示
すような多モードから第3図(b)に示すような自励発
振モードへ、さらに第3図(C)に示すような単一モー
ドへと変わっていく乙とが知られており、適当な実効屈
折率差を設定することに、より任意の発振スペクトルを
選択することができる。
Further, the waveguide mechanism that confines light in the horizontal direction and the effective refractive index difference at 17 can be arbitrarily set by controlling the thickness of the first upper cladding layer 4. As this effective refractive index difference increases, that is, as the thickness of the first upper cladding layer 4 decreases, the oscillation spectrum changes from the multimode shown in FIG. 3(11) to that shown in FIG. 3(b). It is known that the mode changes to a self-sustained oscillation mode as shown in Figure 3 (C), and then to a single mode as shown in Figure 3 (C).By setting an appropriate effective refractive index difference, Any oscillation spectrum can be selected.

上記のような構成の半導体レーザを実際に、光ディスク
、光通イd、プリンタ等の光源に1史用する場合、その
発振スペクトル特性が重要となる。
When a semiconductor laser having the above-mentioned configuration is actually used as a light source for an optical disk, an optical communication device, a printer, etc., its oscillation spectrum characteristics are important.

例えば、プリンタの光源に使用するためには、感度分散
を抑える必要性から単一モー・ドが要求される。特に、
高速走査型ホログラフィックプリンタにおいては、高速
変調時でも波長シフトがほとんどない動的単一モードレ
ーザが望まれている。
For example, for use as a light source in a printer, a single mode is required due to the need to suppress sensitivity dispersion. especially,
In high-speed scanning holographic printers, a dynamic single-mode laser with almost no wavelength shift even during high-speed modulation is desired.

また、光ディスクの読取り用光源としてはS/N特性の
良いものが要求されるが、第4図に示すS7N特性から
れかるように、単一モードレーザ。
Furthermore, a light source for reading optical discs is required to have good S/N characteristics, and as can be seen from the S7N characteristics shown in FIG. 4, single mode lasers are used.

多モードレーザの場合、現状では実使用での戻り先車の
範囲が制限されるため、S/N特性の良い自動発振レー
ザが望まれている。
In the case of multimode lasers, the range of return destination vehicles in actual use is currently limited, so an automatic oscillation laser with good S/N characteristics is desired.

また、光通信用光源としては、データリンク等の比較的
短距離の用途に限定した場合、マルチモー ド7アイバ
で生じるモーダルノイズを低減するため多モードレーザ
が使われる。
Furthermore, as a light source for optical communications, when limited to relatively short-distance applications such as data links, multimode lasers are used to reduce modal noise generated by multimode 7-eye bars.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の半導体レーザは、レーザの各応用分
膏に共通して使用できる構造のものは存在せず、分野別
にそれぞれの特性にあった構造を選択しなければならな
い。このため、各半導体レーザ毎の製造工程が痩雑とな
るうえ、構造が分散化されるため、歩留りも向上しにく
いという問題点があった。
As for the conventional semiconductor lasers as described above, there is no structure that can be commonly used for various laser applications, and a structure suitable for each field must be selected to suit the characteristics of each field. For this reason, the manufacturing process for each semiconductor laser becomes complicated and the structure is dispersed, so there is a problem that it is difficult to improve the yield.

この発明は、かかる問題点を解決するtこめになされた
もので、より広い応用分腎に対応できる共通した構造を
有し、特にS/N特性が良く、単一モー ドで発振する
半導体レー・ザを得る乙とを目的一 とする。
This invention was made with the aim of solving these problems, and is a semiconductor laser that has a common structure that can be applied to a wider range of applications, has particularly good S/N characteristics, and oscillates in a single mode.・The first objective is to obtain the

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体レーザは、自動発振するレーザの
活性層の上側または下側に、活性層で生した光を回折し
て使用する波長の光のみを選択的に帰還する周期構造を
形成したものである。
The semiconductor laser according to the present invention has a periodic structure formed above or below the active layer of an automatically oscillating laser, which diffracts the light generated in the active layer and selectively returns only the light of the wavelength to be used. It is.

〔作用〕[Effect]

乙の発明においては、活性層で生じた光のうら回折格子
によって1史用する波長の光のみが選択的に帰還され、
また、そのスペクトルの線幅は自動発振特有の拡がった
ものとなる。
In the invention of B, only the light of the wavelength used for one cycle is selectively returned by the back diffraction grating of the light generated in the active layer,
Moreover, the linewidth of the spectrum becomes wide, which is characteristic of automatic oscillation.

〔実施例〕〔Example〕

第1図はこの発明の半導体レーザの一実施例の構造を示
す斜視図である。
FIG. 1 is a perspective view showing the structure of an embodiment of the semiconductor laser of the present invention.

この図において、第2図と同一符号は同一部分を示し、
10は前記第1上クラツドI凶4と前記活性1!i3の
間に挟まれて形成されたInk−pG a、P 1−Q
ASqからなる導波層で、He −Cd+z−ザの32
5n+mの発振線を用いた2光束干渉露光法およびエツ
チングにより作成され、その周期構造は、2次回折格子
として作用して1吏用する波長の光のみを選択的に帰還
するように、 A=・・(+キー) m:整数、λ。二使用する波長、n:導波層10内の屈
折率のピッチ となっている。
In this figure, the same symbols as in Fig. 2 indicate the same parts,
10 is the first upper crust I evil 4 and the active 1! Ink-pGa formed between i3, P 1-Q
In the waveguide layer consisting of ASq, 32 of He-Cd+z-
A= ...(+ key) m: Integer, λ. 2. Wavelength to be used, n: pitch of refractive index within the waveguide layer 10.

また、第1上クラッド層4の厚みは、発振スペクトルが
第3図(b)に示したような自動発振モードとなるよう
に設定されている。
Further, the thickness of the first upper cladding layer 4 is set so that the oscillation spectrum becomes an automatic oscillation mode as shown in FIG. 3(b).

なお、各成長はすべてMBE法、あるいはMOCV l
)法により行われる。
In addition, all growth is done by MBE method or MOCV l.
) is done by law.

次に動作について説明する。Next, the operation will be explained.

p O−1!I電極8とn側電極9間に順方向にバイア
スを加えていくと、第3図(b)に示したスペクトルの
うらの1本が導波層10によって形成される回折格子に
より選択されて第3図(0)に示すようなスペクトルで
発振するようになる。このとき、活性層3の中央部への
電流の注入、閉じ込めおJ:び光の閉じ込めは従来例に
示したものと同様に下クラッド層2.第1上クラッド層
4および電流ブロック層5により効率良く行われている
p O-1! When a forward bias is applied between the I electrode 8 and the n-side electrode 9, one line at the back of the spectrum shown in FIG. 3(b) is selected by the diffraction grating formed by the waveguide layer 10. It begins to oscillate with a spectrum as shown in FIG. 3(0). At this time, current injection and confinement into the center of the active layer 3 and light confinement are performed in the lower cladding layer 2 in the same manner as in the conventional example. This is efficiently performed by the first upper cladding layer 4 and the current blocking layer 5.

すなわら、この発明の半導体レーザの発振モードは、第
3図(8)に示すように単一モードではあるが、自動発
振によるためにそのスペクトル綿幅が1人程度に拡がっ
ている動的単一自動発振モードとなる。しながって、第
4図に示すように、戻り先車によらずに高いS/Nを保
つことができる。
In other words, although the oscillation mode of the semiconductor laser of this invention is a single mode as shown in FIG. Single automatic oscillation mode. Therefore, as shown in FIG. 4, a high S/N ratio can be maintained regardless of the destination vehicle.

なお、上記実施例では導波層10をI nl−、G a
In addition, in the above embodiment, the waveguide layer 10 is I nl-, Ga
.

P 、、A sqで構成したが、AjGaAs系で構成
しても良いほか、活性層3の下側に配置しても良い。
Although it is made of P , , A sq , it may be made of AjGaAs, or it may be placed below the active layer 3 .

〔発明の効果〕〔Effect of the invention〕

乙の発明は以上説明したとおり、自動発振するレーザの
活性層の上側または下側に、活性層で生じた光を回折し
て使用する波長の光のみを選択的に帰還する周期構造を
形成したので、戻り先車の変化によらずS/N特性が極
めて良好であり、使用条件の異なる種々の用途に利用で
きるという効果がある。
As explained above, the invention of Party B forms a periodic structure above or below the active layer of an automatically oscillating laser that diffracts the light generated in the active layer and selectively returns only the light of the wavelength to be used. Therefore, the S/N characteristic is extremely good irrespective of changes in the destination vehicle, and there is an effect that it can be used for various applications with different usage conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第[図はこの発明の半導体レーザの一実施例の構造を示
す斜視図、第2図は従来の半導体レーザの構造を示す斜
視図、第3図は半導体レーザの発振モードを説明するた
めの図、第4図は半導体レーザの発振モードによるS/
N特性を示す図である。 図において、1は基板、2は下クラッド層、3は活性層
、4は第1上クラッド層、5は電流ブロック層、6は第
2上クラッド層、7はコンタクト層、8は[1側電極、
9はn側電極、10は導波層である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄   (外2名)第1図 第2図
[Figure] is a perspective view showing the structure of an embodiment of the semiconductor laser of the present invention, Figure 2 is a perspective view showing the structure of a conventional semiconductor laser, and Figure 3 is a diagram for explaining the oscillation mode of the semiconductor laser. , Figure 4 shows the S/D by the oscillation mode of the semiconductor laser.
FIG. 3 is a diagram showing N characteristics. In the figure, 1 is the substrate, 2 is the lower cladding layer, 3 is the active layer, 4 is the first upper cladding layer, 5 is the current blocking layer, 6 is the second upper cladding layer, 7 is the contact layer, 8 is the [1 side] electrode,
9 is an n-side electrode, and 10 is a waveguide layer. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 活性層にストライプ状に電流を流すための電流狭窄機構
と、ストライプの横方向に実効屈折率差を有する導波機
構とを備えた自励発振レーザにおいて、活性層の上側ま
たは下側に、前記活性層で生じた光を回折して使用する
波長の光のみを選択的に帰還する周期構造を形成したこ
とを特徴とする半導体レーザ。
In a self-oscillation laser equipped with a current confinement mechanism for flowing current in a stripe shape in an active layer and a waveguide mechanism having an effective refractive index difference in the lateral direction of the stripe, the above-mentioned A semiconductor laser characterized by forming a periodic structure that diffracts light generated in an active layer and selectively returns only light of a wavelength to be used.
JP62099008A 1987-04-21 1987-04-21 Semiconductor laser Expired - Lifetime JP2728401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62099008A JP2728401B2 (en) 1987-04-21 1987-04-21 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62099008A JP2728401B2 (en) 1987-04-21 1987-04-21 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS63263785A true JPS63263785A (en) 1988-10-31
JP2728401B2 JP2728401B2 (en) 1998-03-18

Family

ID=14235030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099008A Expired - Lifetime JP2728401B2 (en) 1987-04-21 1987-04-21 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2728401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526128A2 (en) * 1991-07-24 1993-02-03 Sharp Kabushiki Kaisha A method for producing a distributed feedback semiconductor laser device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165478A (en) * 1983-03-10 1984-09-18 Nec Corp Distributed feedback type semiconductor laser
JPS6373683A (en) * 1986-09-17 1988-04-04 Furukawa Electric Co Ltd:The Distributed feedback semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165478A (en) * 1983-03-10 1984-09-18 Nec Corp Distributed feedback type semiconductor laser
JPS6373683A (en) * 1986-09-17 1988-04-04 Furukawa Electric Co Ltd:The Distributed feedback semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0526128A2 (en) * 1991-07-24 1993-02-03 Sharp Kabushiki Kaisha A method for producing a distributed feedback semiconductor laser device
US5292685A (en) * 1991-07-24 1994-03-08 Sharp Kabushiki Kaisha Method for producing a distributed feedback semiconductor laser device

Also Published As

Publication number Publication date
JP2728401B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
JP3714430B2 (en) Distributed feedback semiconductor laser device
EP0332453B1 (en) Distributed feedback semiconductor laser device and current injection method therefor
JP2005510090A (en) Surface emitting DFB laser structure for broadband communication systems and arrangement of this structure
US7359423B2 (en) Distributed feedback laser diode
KR100278546B1 (en) Semiconductor laser device
US5299219A (en) Stripe-type laser diode used as a light source
JPS63263785A (en) Semiconductor laser
EP0206745A2 (en) A semiconductor laser apparatus
JPS62173786A (en) Distributed feedback type semiconductor laser
JPH11195838A (en) Distribution feedback type of semiconductor laser
GB2178233A (en) Semiconductor laser array device
US5327445A (en) Quantum-well type semiconductor laser device
JPH03268379A (en) Semiconductor laser-chip and manufacture thereof
JPH06310801A (en) Semiconductor laser
KR100429531B1 (en) Distributed feedback semiconductor laser
JP2777434B2 (en) Semiconductor laser
JPS6332979A (en) Semiconductor laser
JPH0824207B2 (en) Semiconductor laser device
JPH10326932A (en) Distribution feedback type semiconductor laser
JPS5911690A (en) Semiconductor laser device
JPH1154834A (en) Semiconductor laser element
JPS63278290A (en) Semiconductor laser and its use
JP4024319B2 (en) Semiconductor light emitting device
JPH02281681A (en) Semiconductor laser
JPS60128690A (en) Semiconductor light-emitting device